人教版高一数学直线与圆的位置关系知识点
直线与圆的位置关系
直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d ,两圆的半径分别为R 和r ,则①两圆外离⇔d >R+r ;有4条公切线;②两圆外切⇔d=R +r ;有3条公切线;③两圆相交⇔R -r <d <R+r (R >r )有2条公切线;④两圆内切⇔d=R -r (R >r )有1条公切线;⑤两圆内含⇔d <R —r (R >r )有0条公切线.(注意:两圆内含时,如果d 为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )例题2图A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;• 当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30 C. 45 D.604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长. OD C B Ax y M B A O C l B A 例题3图 例题8图 例题9图 •A B P C EF •O 例题10图 第3题图 第4题图 第5题图 第6题图OO2O16. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC =1,,则⊙O的半径等于()A.45B.54C.43D.657.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( ) A.相离 B.相交 C.相切 D.不能确定8.如图,在ABC△中,12023AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30º,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°.求弦AB的长.中考题型一、选择题1.(2009年·宁德中考)如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A.43 B.4 C.23 D.2(第1题图)(第2题图)2.(2009年·潍坊中考)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为()A.2R B.3R C.R D.32RBPAOC第8题图第9题图第11题图第10题图第12题图第13题图3.(2009年·襄樊中考)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C,若∠A=25°则∠D 等于( )A .40°B .50°C .60° D.70°(第3题图) (第4题图)4.(2009年湖南省邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( ) A.AD =21BC B.AD =21AC C.AC >AB D.AD >DC二、填空题5.(2009年·綦江县中考)如图,AB 与⊙O 相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .(第5题图) (第6题图)6.(2009年·庆阳市中考)如图直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.三、解答题7.(2009桂林百色)如图,△ABC 内接于半圆,AB 是直径,过A 点作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线; (2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.课后练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、R T⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。
直线与圆的位置关系讲义
九年级数学时间: 学生:第讲直线与圆的位置关系【知识点】1直线和圆的位置关系有三种:, 。
2设r为O O的半径,d为圆心O到直线l的距离, d r, 则直线l与O O相交。
d r,则直线l与O O相切d r,则直线l与O O相离。
3圆的切线的性质:圆的切线垂直于_________________ 的半径。
4圆的切线的判定定理:经过直径的一端,并且____________ 这条直径的直线是圆的切线。
5圆的切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.三角形的内切圆:(1)定义:与三角形三边都相切的圆称为三角形的内切圆。
(2)_________________________________ 内切圆的作法;______ .(3)_________________________ 内心的性质:内心是 _______ 的交点,内心到的距离相等,内心与三角形顶点的连线________ 这个内角。
【课前自测】1. (2011?成都)已知O O的面积为9n cm2,若点0到直线I的距离为n cm则直线l与。
O的位置关系是()A、相交B、相切 C 、相离D无法确定2.如图,从O O外一点A引圆的切线AB切点为B,连接AO并延长交圆于点C,连接BC若/ A= 26°,则/ ACB的度数为▲.3.已知O O的半径为5,圆心O到直线AB的距离为2,则O O上有且只有_______________ 到直线AB的距离为3.4.如图,已知AB是O O的一条直径,延长AB至C点,使得AC= 3BQ 个占I 八、、CD与O O相切,切点为D.若CD= d,则线段BC的长度等于5.如图23, PA与O O相切,切点为A, PO交O O于点C,点B是优弧CBA上一点,若 / ABC=32,则/ P的度数为【例题讲解】例1.如图,AB是O O的直径,点D在AB的延长线上,DC切O O于点C,若/ A=25°, 则/ D 等于A. 20°B.30°C.40°D.50°例2已知BD是O O的直径,OAL OB,M是劣弧AB上的一点,过M作O O的切线MP交OA的延长线于点P, MD交OA于点N。
高一数学下册《直线与圆的位置关系》知识点整理
高一数学下册《直线与圆的位置关系》知识点整理一、教学目标知识与技能理解直线与圆的位置的种类;利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;会用点到直线的距离来判断直线与圆的位置关系.过程与方法设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交;情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判直线与圆的位置关系.三、教学设想问题设计意图师生活动初中学过的平面几何中,直线与圆的位置关系有几类?启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.直线与圆的位置关系有哪几种呢?得出直线与圆的位置关系的几何特征与种类.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化"数形结合"的数学思想.问题设计意图师生活动生:观察图形,利用类比的方法,归纳直线与圆的位置关系.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?使学生回忆初中的数学知识,培养抽象概括能力.师:引导学生回忆初中判断直线与圆的位置关系的思想过程.生:回忆直线与圆的位置关系的判断过程.你能说出判断直线与圆的位置关系的两种方法吗?抽象判断直线与圆的位置关系的思路与方法.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.师:指导学生阅读教科书上的例1.生:新闻记者教科书上的例1,并完成教科书第136页的练习题2.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?使学生熟悉判断直线与圆的位置关系的基本步骤.生:阅读例1.师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?进一步深化"数形结合"的数学思想.师:指导学生阅读并完成教科书上的例2,启发学生利用"数形结合"的数学思想解决问题.生:阅读教科书上的例2,并完成第137页的练习题.问题设计意图师生活动通过例2的学习,你发现了什么?明确弦长的运算方法.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.完成书上练习巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.0.课堂小结:教师提出下列问题让学生思考:通过直线与圆的位置关系的判断,你学到了什么?判断直线与圆的位置关系有几种方法?它们的特点是什么?如何求出直线与圆的相交弦长?。
高一数学直线与圆的位置关系知识点总结
高一数学直线与圆的位置关系知识点总结1、知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法设直线:,圆:,圆的半径为,圆心到直线的距离为,那么判别直线与圆的位置关系的依据有以下几点:(1)当时,直线与圆相离;(2)当时,直线与圆相切;(3)当时,直线与圆相交;3、情态与价值观让同学通过观测图形,理解并掌控直线与圆的位置关系,培育同学数形结合的思想.二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判直线与圆的位置关系.三、教学设想问题设计意图师生活动1.中学学过的`平面几何中,直线与圆的位置关系有几类?启发同学由图形猎取判断直线与圆的位置关系的直观认知,引入新课.师:让同学之间进行争论、沟通,引导同学观测图形,导入新课.生:看图,并说出自己的看法.2.直线与圆的位置关系有哪几种呢?得出直线与圆的位置关系的几何特征与种类.师:引导同学利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化数形结合的数学思想.问题设计意图师生活动生:观测图形,利用类比的方法,归纳直线与圆的位置关系.3.在中学,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?使同学回忆中学的数学知识,培育抽象概括技能.师:引导同学回忆中学判断直线与圆的位置关系的思想过程.生:回忆直线与圆的位置关系的判断过程.4.你能说出判断直线与圆的位置关系的两种方法吗?抽象判断直线与圆的位置关系的思路与方法.师:引导同学从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,查找两种方法的数学思想.5.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.师:指导同学阅读教科书上的例1.生:新闻记者教科书上的例1,并完成教科书第136页的练习题2.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?使同学熟识判断直线与圆的位置关系的基本步骤.生:阅读例1.师;分析例1,并展示解答过程;启发同学概括判断直线与圆的位置关系的基本步骤,留意给同学留有总结思索的时间.生:沟通自己总结的步骤.师:展示解题步骤.7.通过学习教科书上的例2,你能说明例2中表达出来的数学思想方法吗?进一步深化数形结合的数学思想.师:指导同学阅读并完成教科书上的例2,启发同学利用数形结合的数学思想解决问题.生:阅读教科书上的例2,并完成第137页的练习题.问题设计意图师生活动8.通过例2的学习,你发觉了什么?明确弦长的运算方法.师:引导并启发同学探究直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法. 9.完成书上练习巩固所学过的知识,进一步理解和掌控直线与圆的位置关系. 师:引导同学完成练习题.生:相互争论、沟通,完成练习题.10.课堂小结:老师提出以下问题让同学思索:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?。
高考数学考点归纳之 直线与圆、圆与圆的位置关系
高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。
直线与圆知识点总结
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
直线与圆的位置关系知识点总结
直线与圆的位置关系知识点总结在平面几何中,直线与圆的位置关系是一个重要且基础的知识点。
理解和掌握它们之间的关系,对于解决许多几何问题具有关键作用。
接下来,咱们就详细聊聊直线与圆的位置关系。
一、直线与圆的位置关系的定义直线与圆有三种位置关系:相交、相切、相离。
当直线与圆有两个公共点时,我们称直线与圆相交。
想象一下,就好像直线穿过了圆,与圆有两个交点。
当直线与圆只有一个公共点时,称直线与圆相切。
这时候,直线就像是轻轻触碰了一下圆,只有那一个瞬间的接触点。
当直线与圆没有公共点时,就是直线与圆相离。
直线和圆仿佛处在两个完全不同的世界,没有任何交集。
二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小来判断。
若 d < r,则直线与圆相交。
比如,圆的半径是 5,圆心到某条直线的距离是 3,因为 3 < 5,所以直线与圆相交。
若 d = r,则直线与圆相切。
比如半径为 6 的圆,圆心到某直线距离恰好为 6,那这条直线就与圆相切。
若 d > r,则直线与圆相离。
比如圆半径 4,圆心到某直线距离 7,因为 7 > 4,所以直线与圆相离。
2、代数法将直线方程与圆的方程联立,消去其中一个变量(比如 y),得到一个关于另一个变量(比如 x)的一元二次方程。
通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。
若Δ > 0,则直线与圆相交,意味着有两个不同的交点。
若Δ = 0,则直线与圆相切,只有一个交点。
若Δ < 0,则直线与圆相离,没有交点。
三、直线与圆相交1、弦长公式当直线与圆相交时,所形成的线段称为弦。
弦长的计算可以通过勾股定理来推导。
设直线方程为 Ax + By + C = 0,圆的方程为(x a)²+(y b)²= r²,直线与圆的交点为 P(x₁, y₁),Q(x₂, y₂)。
首先求出圆心(a, b) 到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。
直线和圆的三种位置关系知识点
. (1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.(2)(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.(3)(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.(4)(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.(5)(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).(6);..。
高一数学 直线与圆的方程——直线与圆的位置关系(带答案)
专题二 直线与圆的位置关系教学目标:直线和圆的位置关系的判断 教学重难点:直线和圆的位置关系的应用 教学过程:第一部分 知识点回顾考点一:直线与圆的位置关系的判断:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=()0r >有相交、相离、相切。
可从代数和几何两个方面来判断: (1)代数方法判断直线与圆方程联立所得方程组的解的情况:由⎩⎨⎧=-+-=++222)()(0r b y a x C By Ax ,消元得到一元二次方程,计算判别式∆, ①0∆>⇔相交;②0∆<⇔相离;③0∆=⇔相切; (2)几何方法如果直线l 和圆C 的方程分别为:0=++C By Ax ,222)()(r b y a x =-+-. 可以用圆心),(b a C 到直线的距离=d 22||Aa Bb C A B+++与圆C 的半径r 的大小关系来判断直线与圆的位置关系:①d r <⇔相交;②d r >⇔相离;③d r =⇔相切。
提醒:判断直线与圆的位置关系一般用几何方法较简捷。
例1 直线x sin θ+y cos θ=2+sin θ与圆(x -1)2+y 2=4的位置关系是( )A .相离B .相切C .相交D .以上都有可能答案 B 解析 圆心到直线的距离d =|sin θ-2-sin θ|sin 2θ+cos 2θ所以直线与圆相切.例2 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2)C .(-24,24)D .(-18,18)答案C 设l 的方程y =k (x +2),即kx -y +2k =0.圆心为(1,0).由已知有|k +2k |k 2+1<1,∴-24<k <24.例3 圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离为1的点有几个?解:圆(x -3)2+(y -3)2=9的圆心为O 1(3,3),半径r =3, 设圆心O 1(3,3)到直线3x +4y -11=0的距离为d ,则d =22|334311|2334⨯+⨯-=<+如图1,在圆心O 1的同侧,与直线3x +4y -11=0平行且距离为1的直线l 1与圆有两个交点,这两个交点符合题意,又r -d =3-2=1,所以与直线3x +4y -11=0平行的圆的切线的两个切点中有一个切点也符合题意. 所以符合题意的点共有3个。
直线与圆知识点归纳高三
直线与圆知识点归纳高三直线与圆知识点归纳直线和圆是解析几何中常见的两种几何图形,它们有着丰富的性质和联系。
本文将对直线和圆的相关知识点进行归纳总结,帮助高三学生复习和掌握这一部分内容。
一、直线的定义和性质1. 直线的定义:直线是由无数个点连成的路径,它没有宽度和长度,可以无限延伸。
2. 直线的性质:(1) 直线上的任意两点可以确定一条直线;(2) 任意一条直线可以通过两个点确定;(3) 直线可以延伸到无穷远,也可以延伸到无穷近。
二、圆的定义和性质1. 圆的定义:圆是由平面上距离某一点固定距离的所有点构成的图形。
2. 圆的性质:(1) 圆上任意两点都在圆周上;(2) 圆心到圆周上的任一点的距离都相等,称为半径;(3) 圆的直径是通过圆心,并且两端点都在圆上的线段,长度为半径的两倍;(4) 圆的周长是圆周的长度,记作C,公式为C = 2πr,其中r 为半径;(5) 圆的面积是圆内部的所有点构成的区域,记作S,公式为S = πr²。
三、直线与圆的关系1. 直线与圆的位置关系:(1) 直线可与圆相交,相切或不相交;(2) 如果直线与圆相交,可能有两个交点,一个交点或没有交点;(3) 如果直线与圆相切,有且只有一个切点;(4) 如果直线不与圆相交或切,那么直线与圆之间的距离等于直线到圆心的距离。
2. 判断直线与圆的位置关系的方法:(1) 利用勾股定理:如果直线与圆的距离小于半径,那么直线与圆相交;如果直线与圆的距离等于半径,那么直线与圆相切;如果直线与圆的距离大于半径,那么直线与圆不相交也不相切。
(2) 利用方程求解:已知直线和圆的方程,将直线方程代入圆的方程中,求解得到交点或切点。
四、直线和圆的相关定理1. 直径定理:如果一条直线通过圆的圆心,并且两个端点都在圆上,那么这条直线的长度等于圆的直径。
2. 切线定理:过圆外一点引一条直线与圆相交,那么这条直线与圆的切点到圆心的线段垂直于直线。
3. 弦切角定理:相交弦所夹的圆心角等于它们所对的弧所夹的圆心角的一半。
高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习
直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。
直线与圆的位置关系—知识讲解
直线与圆的位置关系—知识讲解【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2015•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.在Rt△DOF中,DF4.∴DE=DF=4.【总结升华】本题综合考察了平行线的判定,全等三角形的判定和勾股定理的应用,是一道很不错的中档题.举一反三:【变式1】(2015•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.C B举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B,则AC 等于( )AC..【答案】因为以AB 为直径的⊙O 与BC 相切于点B ,所以∠ABC =90°,在Rt△ABC中,AC==C .类型三、三角形的内切圆5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.【思路点拨】O 是△ABC 的内心,∠A=50°,根据内切圆的性质可求∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠ ,在△BOC 中,根据三角形内角和求出∠BOC 的度数. 【答案与解析】解:∵O 是△ABC 的内心,∠A=50°,∴∠OBC+∠OCB=11(180)=(18050)=6522A ︒-︒-︒︒∠, ∴∠BOC=180°-65°=115°.【变式】如图,△ABC中,∠C=90°,BC=4,AC=3,⊙O内切与△ABC,则△ABC去除⊙O剩余阴影部分的面积为()A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.C B。
高一直线与圆的知识点总结
高一直线与圆的知识点总结直线和圆是几何学中的基本概念和重要对象,它们在高一数学课程中占据了重要的位置。
本文将对高一直线与圆的相关知识点进行总结,包括直线的性质、直线与圆的关系以及解题技巧等内容。
一、直线的性质直线是最简单的几何对象之一,具有以下性质:1. 直线没有端点,可以无限延伸。
2. 直线上的两点可以确定一条直线。
3. 直线上任意三点不共线。
4. 直线可以垂直于另一条直线。
垂直直线之间的夹角为90度。
5. 直线可以平行于另一条直线。
平行直线之间的夹角为零度。
二、圆的性质圆是由平面上所有与圆心的距离相等的点组成的集合,具有以下性质:1. 圆心到圆上任意一点的距离相等。
2. 圆上任意两点可确定圆心的连线,称为弦。
3. 圆心到圆弧的距离称为半径,全等圆的半径相等。
4. 圆上的弦垂直于弦所对应的弧。
5. 圆的弧度表示圆弧的长度与半径的比值。
一个圆的弧度为2π。
三、直线与圆的关系1. 直线与圆相切:直线与圆仅有一个公共点。
2. 直线与圆相交:直线与圆有两个不重合的交点。
3. 直线与圆相离:直线与圆没有公共点。
4. 切线的性质:与圆相切的直线称为切线,切线与以切点为圆心的圆相切于切点。
四、解题技巧在解决与直线和圆相关的问题时,以下是一些常用的解题技巧:1. 利用直线和圆的性质进行推导和证明。
2. 利用圆的切线性质求解问题。
3. 利用角的概念和相关定理进行证明和计算。
4. 利用勾股定理和相似三角形的性质进行计算和推理。
5. 运用代数的工具,如坐标系和方程,进行解题。
五、实例分析为了更好地理解直线与圆的知识点,以下是一个示例问题的分析:问题:已知直线AB与圆O相交于点C,连接CO并延长至点D,若∠CAB=60度,求证∠COD=120度。
解析:根据题目信息,我们可以得知∠CAB为60度,即直线AB与圆O相交于点C的切线。
我们希望证明∠COD为120度。
首先,连接OA和OD,因为OC是圆O的半径,所以OC=OD。
直线与圆的位置关系知识点总结
直线与圆的位置关系知识点总结直线与圆的位置关系是几何学中一个重要的概念,涉及到直线和圆的交点、相切等不同情况。
本文将对直线与圆的位置关系进行总结,包括直线与圆的相交、相切以及不相交三种情况。
一、直线与圆的相交关系1. 直线与圆相交于两个交点:当直线与圆的位置关系是相交时,直线将穿过圆的两个交点。
这种情况通常出现在直线与圆的直径、弦或切线相交的情况下。
2. 直线与圆相交于一个交点:当直线与圆的位置关系是相切时,直线与圆仅有一个交点。
这种情况通常出现在直线是圆的切线的情况下。
二、直线与圆的相切关系1. 切线:当直线与圆的位置关系是相切时,直线与圆仅有一个交点,并且直线与圆的切点处的切线垂直于半径。
切线是圆上某一点的切线,它与半径的长度相等。
2. 外切线:当一条直线与圆的位置关系为外切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
外切线的一个特点是切点处的切线与直线的延长线垂直。
3. 内切线:当一条直线与圆的位置关系为内切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
内切线的一个特点是切点处的切线与直线的延长线垂直。
三、直线与圆的不相交关系当直线与圆的位置关系不相交时,即直线与圆没有交点。
总结:直线与圆的位置关系可以分为相交、相切以及不相交三种情况。
在相交的情况下,直线与圆相交于两个交点或一个交点。
在相切的情况下,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
而不相交的情况下,直线与圆没有交点。
以上是对直线与圆的位置关系知识点的总结。
了解并掌握这些知识点对于解决相关几何问题非常重要。
希望本文能够帮助您更好地理解和应用直线与圆的位置关系。
人教版高一数学直线与圆的位置关系知识点
人教版高一数学直线与圆的地点关系知识点数学在科学发展和现代生活生产中的应用特别宽泛,以下是查词典数学网为大家整理的人教版高一数学直线与圆的地点关系知识点,希望能帮助大家学习。
一、教课目的1、知识与技术(1)理解直线与圆的地点的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离 ;(3)会用点到直线的距离来判断直线与圆的地点关系. 2、过程与方法设直线:,圆:,圆的半径为,圆心到直线的距离为,则鉴别直线与圆的地点关系的依照有以下几点:(1)当时,直线与圆相离;(2)当时,直线与圆相切;(3)当时,直线与圆订交;3、神态与价值观让学生经过察看图形,理解并掌握直线与圆的地点关系,培养学生数形联合的思想.二、教课要点、难点:要点:直线与圆的地点关系的几何图形及其判断方法.难点:用坐标法判直线与圆的地点关系.三、教课假想问题设计企图师生活动1.初中学过的平面几何中,直线与圆的地点关系有几类?启迪学生由图形获得判断直线与圆的地点关系的直观认知,引入新课 .师:让学生之间进行议论、沟通,指引学生察看图形,导入新课 .生:看图,并说出自己的见解.2.直线与圆的地点关系有哪几种呢?得出直线与圆的地点关系的几何特色与种类.师:指引学生利用类比、归纳的思想,总结直线与圆的地点关系的种类,进一步深入数形联合的数学思想.问题设计意图师生活动生:察看图形,利用类比的方法,归纳直线与圆的地点关系.3.在初中,我们如何判断直线与圆的地点关系呢?如何用直线与圆的方程判断它们之间的地点关系呢?使学生回想初中的数学知识,培育抽象归纳能力.师:指引学生回想初中判断直线与圆的地点关系的思想过程.生:回想直线与圆的地点关系的判断过程.4.你能说出判断直线与圆的地点关系的两种方法吗?抽象判断直线与圆的地点关系的思路与方法.师:指引学生从几何的角度说明判断方法和经过直线与圆的方程说明判断方法.生:利用图形,找寻两种方法的数学思想.5.你能两种判断直线与圆的地点关系的数学思想解决例 1 的问题吗 ?领会判断直线与圆的地点关系的思想方法,关注量与量之间的关系 .师:指导学生阅读教科书上的例 1.生:新闻记者教科书上的例1,并达成教科书第136 页的练习题 2.6.经过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?使学生熟习判断直线与圆的地点关系的基本步骤.生:阅读例 1.师;剖析例 1,并展现解答过程 ;启迪学生归纳判断直线与圆的地点关系的基本步骤,注意给学生留有总结思虑的时间.生:沟通自己总结的步骤.师:展现解题步骤.7.经过学习教科书上的例2,你能说明例 2 中表现出来的数学思想方法吗 ?进一步深入数形联合的数学思想.师:指导学生阅读并达成教科书上的例2,启迪学生利用数形联合的数学思想解决问题.生:阅读教科书上的例2,并达成第137 页的练习题 .问题设计企图师生活动8.经过例 2 的学习,你发现了什么?明确弦长的运算方法.师:指引并启迪学生探究直线与圆的订交弦的求法.生:经过剖析、抽象、归纳,得出订交弦长的运算方法.9.达成书上练习稳固所学过的知识,进一步理解和掌握直线与圆的地点关系.师:指引学生达成练习题.生:相互议论、沟通,达成练习题.10.讲堂小结:教师提出以下问题让学生思虑:(1)经过直线与圆的地点关系的判断,你学到了什么?单靠“死”记还不可以 ,还得“活”用 ,临时称之为“先死后活”吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学直线与圆的位置关系知识
点
数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的人教版高一数学直线与圆的位置关系知识点,希望能帮助大家学习。
一、教学目标
1、知识与技能
(1)理解直线与圆的位置的种类;
(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
(3)会用点到直线的距离来判断直线与圆的位置关系.
2、过程与方法
设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:
(1)当时,直线与圆相离;
(2)当时,直线与圆相切;
(3)当时,直线与圆相交;
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.
二、教学重点、难点:
重点:直线与圆的位置关系的几何图形及其判断方法.
难点:用坐标法判直线与圆的位置关系.
三、教学设想问题设计意图
师生活动
1.初中学过的平面几何中,直线与圆的位置关系有几类?
启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.
师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.
生:看图,并说出自己的看法.
2.直线与圆的位置关系有哪几种呢?得出直线与圆的位置关系的几何特征与种类.
师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化数形结合的数学思想.问题设计意图
师生活动
生:观察图形,利用类比的方法,归纳直线与圆的位置关系.
3.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?
使学生回忆初中的数学知识,培养抽象概括能力.
师:引导学生回忆初中判断直线与圆的位置关系的思想过程. 生:回忆直线与圆的位置关系的判断过程.
4.你能说出判断直线与圆的位置关系的两种方法吗?
抽象判断直线与圆的位置关系的思路与方法.
师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.
生:利用图形,寻找两种方法的数学思想.
5.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?
体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.
师:指导学生阅读教科书上的例1.
生:新闻记者教科书上的例1,并完成教科书第136页的练习题2.
6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?
使学生熟悉判断直线与圆的位置关系的基本步骤.
生:阅读例1.
师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间. 生:交流自己总结的步骤.
师:展示解题步骤.
7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?
进一步深化数形结合的数学思想.
师:指导学生阅读并完成教科书上的例2,启发学生利用数形结合的数学思想解决问题.
生:阅读教科书上的例2,并完成第137页的练习题.问题设计意图
师生活动
8.通过例2的学习,你发现了什么?
明确弦长的运算方法.
师:引导并启发学生探索直线与圆的相交弦的求法.
生:通过分析、抽象、归纳,得出相交弦长的运算方法. 9.完成书上练习
巩固所学过的知识,进一步理解和掌握直线与圆的位置关系. 师:引导学生完成练习题.
生:互相讨论、交流,完成练习题.
10.课堂小结:
教师提出下列问题让学生思考:
(1)通过直线与圆的位置关系的判断,你学到了什么?
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石
多鸟”的效果。
(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
(3)如何求出直线与圆的相交弦长?
观察内容的选择,我本着先静后动,由近及远的原则,有目
的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术
刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
人教版高一数学直线与圆的位置关系知识点就分享到这里了,更多高一数学知识点请继续关注查字典数学网高中频道!。