费托合成(FT合成)工艺说明
费托合成工艺流程

费托合成工艺流程
《费托合成工艺流程》
费托合成工艺是一种重要的化学工艺,用于生产烯烃和芳烃等燃料和化工产品。
该工艺广泛应用于石油炼制、石油化工和合成气等领域。
费托合成工艺流程涉及多个步骤,包括原料处理、催化剂准备、反应器运行等。
首先,原料处理是费托合成工艺流程的重要步骤。
一般来说,原料包括天然气、重质烃等,需要进行除硫、除氮、除氧等工艺处理,以保证原料的纯净度和稳定性,从而提高反应器的运行效率。
其次,催化剂准备也是费托合成工艺流程中的关键环节。
费托合成反应需要催化剂的参与,一般以铁、钴、镍等金属为活性成分,搭配氧化铝、硅铝酸盐等作为载体,通过一系列的物化方法得到合适的催化剂,以保证反应的高效进行。
最后,反应器运行是费托合成工艺流程中最为重要的环节。
反应器一般为固定床反应器或者流化床反应器,通过催化剂的介导,原料与氢气在高温高压下发生一系列反应,生成烯烃和芳烃等产品,同时产生水蒸气、二氧化碳等副产物。
反应器运行稳定性和高效率的要求,对操作人员和设备都提出了较高的技术要求。
总的来说,《费托合成工艺流程》是一个综合性的工程,涉及到多个专业领域的知识和技术,而且对设备和操作都有很高的
要求。
只有全面了解和掌握费托合成工艺流程,才能更好地运用该工艺生产出高效、环保的产品。
合成气衍生产品——费托合成介绍

M n(1 )2nn 1
Mn 碳原子数为n的烃的质量分数; 为链增长几率
产物分布制约了产品的选择性,使得目的产品收率低,汽油产 品的收率不超过40%(wt%),而有些产品如石蜡收率高达80 % ----二次加工
直链的烷烯烃,尤其是α-烯烃含量较高,而异构烷烃与芳烃含量
较少-----汽油的辛烷值较低
合成气衍生产品——费托合成介绍化学 与化工
典型的F-T合成产品的组成与分布比较
反应器
产品,wt% 甲醇(C1)
液化石油汽(LPG) (C2-C4)
汽油(C5-C12) 柴油(C13—C19) 软蜡(C20-C30) 硬蜡(C30以上)
含氧化合物
固定床/ Arge
气流床/Synthol
5 12.5
22.5 15 23 18 4
提出FT合成在钴催化剂上最大程度上制备重质烃,然后再在加氢裂解与异构化催化剂上转 化为油品的概念
荷兰Shell公司
浆态床反应器技术、MTG工艺和ZSM-5催化剂开发成功 Sasol-Ⅱ建成投产,中压法,循环流化床反应器,熔融铁催化剂
美国Mobil公司
循环流化床反应器由美国M.W.凯洛格开发,SASOl 公司改进。
合成气衍生产品——费托合成介绍
3.4.2 F-T合成的基本原理
化学反应过程 ◦ 主反应化学计量式
CO 2 H 2 ( CH 2 ) H 2 O
H R ( 227 . C ) 165 KJ
CO H 2 O H 2 CO 2
H R ( 227 . C ) 39 . 8 KJ
10 33
39 5 4 2 7
合成气衍生产品——费托合成介绍
合成反应的热力学特征 F-T合成反应是一个强放热反应; 2721~2930kJ/m3(CO+H2)(如果考虑到原料 气中的惰性气体存在以及转化不完全等因素, 实际放热量约为1674kJ/m3(CO+H2)) ; 温度为 1500℃左右(绝热条件下,反应器温度), 可导致催化剂局部过热,降低反应选择性。
费托合成原理及应用

费托合成原理及应用费托合成原理是指在高压和高温条件下,通过将碳(C)和氢(H)进行反应合成氢气(H2)和甲烷(CH4)。
费托合成技术是一种用于生产合成气和液体燃料的重要工艺。
费托合成反应的化学方程式如下:2H2 + CO -> CH3OH3H2 + CO -> CH4 + H2O费托合成原理主要基于以下几个步骤。
第一步是水气反应。
水蒸气(H2O)和一氧化碳(CO)通过水气反应生成氢气(H2)和二氧化碳(CO2)。
CO + H2O -> CO2 + H2第二步是水煤气变换反应(WGS反应)。
一氧化碳和水蒸气通过水煤气变换反应生成二氧化碳和氢气。
CO + H2O -> CO2 + H2第三步是甲烷合成反应。
在合成气中,氢气和一氧化碳经过甲烷合成反应生成甲烷。
2H2 + CO -> CH3OH由于费托合成原理只需碳和水素两种元素即可,因此可以使用各种碳源,如煤、天然气、生物质等。
此外,该工艺还可以用于合成多种液体燃料,如甲醇、烯烃等。
费托合成技术具有以下几个重要应用。
1. 液体燃料生产:费托合成技术可用于生产多种液体燃料,如甲醇、柴油等。
这些燃料具有高燃烧效率和低污染排放的特点。
2. 氢气生产:费托合成反应可产生大量的氢气。
氢气是一种清洁能源,被广泛用于工业生产和能源转化。
3. 一次性化学品生产:费托合成技术可用于生产一次性化学品,如单体、溶剂等。
这些化学品在医疗、工业和日常生活中有广泛的应用。
4. 合成氨生产:费托合成技术可用于生产合成氨。
合成氨是一种重要的化学原料,广泛用于农业肥料和化学工业。
5. 温室气体减排:费托合成技术可将二氧化碳捕获并储存,从而减少温室气体排放。
这对于应对气候变化具有重要意义。
总之,费托合成原理及其应用对于提高能源利用效率、减少污染和推动可持续发展具有重要意义。
随着技术的进步,费托合成技术的应用前景将更加广阔。
费托合成(F-T)综述

费托合成(F-T)综述综述F-T合成的基本原料为合成⽓,即CO和H2。
F-T合成⼯艺中合成⽓来源主要有煤、天然⽓和⽣物质。
以煤为原料,通过加⼊⽓化剂,在⾼温条件下将煤在⽓化炉中⽓化,然后制成合成⽓(H2+CO),接着通过催化剂作⽤将合成⽓转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。
煤间接液化⼯艺主要有:Fischer-Tropsch ⼯艺和莫⽐尔(Mobil)⼯艺。
典型的Fischer-Tropsch⼯艺指将由煤⽓化后得到的粗合成⽓经脱硫、脱氧净化后,根据使⽤的F-T合成反应器,调整合成⽓的H2/CO ⽐,在反应器中通过合成⽓与固体催化剂作⽤合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加⼯成汽油、柴油、航空煤油、⽯蜡等成品。
F-T合成早已实现⼯业化⽣产,早在⼆战期间,德国的初产品⽣产能⼒已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。
⼆战之后,由于⽯油的迅述兴起,间接液化技术⼀度处于停滞状态。
期间,南⾮由于种族隔离制度⽽被“禁油”,不得不⼤⼒发展煤间接液化技术。
但是随着70年代⽯油危机的出现,间接液化技术再次受到强烈关注。
同时,由间接液化出来的合成液体燃料相⽐由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。
80年代后,国际上,⼀些⼤的⽯油公司开始投资研发GTL相关技术和⼯艺[1]。
⽬前南⾮建有3座间接液化⼚。
马来西亚(Shell公司)和新西兰(Mobil 公司)各建有⼀座天然⽓基间接液化⼚。
费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
费托合成—费托合成工艺简介(煤制油技术课件)

04 铁基高温浆态床费托合成工艺特点
(1)采用铁催化剂,有利于实现大规模低成本的催化剂生产;
(2)有利于实现合成气转化过程中降低甲烷生产率、实现较高温度下合成重组分的目标,有利于提高过 程馏分油的产率; (3)催化剂的产油能力比低温浆态床大幅度提高,铁基催化剂消耗低,有利于降低合成成本和下游处理 成本,有利于实现清洁生产;
04 铁基高温浆态床费托合成工艺特点
(4)高温合成副产蒸汽压力等级高,彻底解决了低温浆态床费托合成技术的低位能过剩的问题,提高过 程的综合集成热效率; (5)浆态床反应器温度分布均匀,移热方便,容易控制,易于大型化;
(6)浆态床催化剂磨损小,可在线更换,操作周期长。
费托合成工艺简介
目录
01 费托合成工艺类型 02 费托合成工艺选择原则 03 铁基高温浆态床费托合成工艺 04 铁基高温浆型
根据使用的反应器与催化剂可将不同的费托合成工艺细分为四种典型的工艺: 铁基/钴基低温固定床费托合成技术 ; 铁基高温流化床费托合成技术 ; 铁基/钴基低温浆态床费托合成技术 ; 铁 基 高 温 浆 态 床 费 托 合 成 技 术 。
02
费托合成工艺选择原则
原则上讲,费托合成反应器系统工艺应综合考虑热力学及动力学两个方面的问 题,才能使过程达到最优化的设计。为此,集成一个有效的费托合成回路需要 根据具体过程需求,优化合理的工艺配置,在平衡各种消耗中寻找满足项目约 束条件的最佳设计参数。
03
铁基高温浆态床费托合成工艺
费托合成单元采用最新的铁基高温浆态床费托合成技术,铁基高温浆态床过程对 费托合成流程的集成就是在各种优化约束条件下,对催化剂体系重新塑造所产生的 合成工艺技术。
费托合成(F-T)综述

综述F-T合成的基本原料为合成气,即CO和H2。
F-T合成工艺中合成气来源主要有煤、天然气和生物质。
以煤为原料,通过加入气化剂,在高温条件下将煤在气化炉中气化,然后制成合成气(H2+CO),接着通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。
煤间接液化工艺主要有:Fischer-Tropsch 工艺和莫比尔(Mobil)工艺。
典型的Fischer-Tropsch工艺指将由煤气化后得到的粗合成气经脱硫、脱氧净化后,根据使用的F-T合成反应器,调整合成气的H2/CO 比,在反应器中通过合成气与固体催化剂作用合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加工成汽油、柴油、航空煤油、石蜡等成品。
F-T合成早已实现工业化生产,早在二战期间,德国的初产品生产能力已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692−1744 )。
二战之后,由于石油的迅述兴起,间接液化技术一度处于停滞状态。
期间,南非由于种族隔离制度而被“禁油”,不得不大力发展煤间接液化技术。
但是随着70年代石油危机的出现,间接液化技术再次受到强烈关注。
同时,由间接液化出来的合成液体燃料相比由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。
80年代后,国际上,一些大的石油公司开始投资研发GTL相关技术和工艺[1]。
目前南非建有3座间接液化厂。
马来西亚(Shell公司)和新西兰(Mobil 公司)各建有一座天然气基间接液化厂。
F-T合成石蜡的研制

F-T合成石蜡的研制F-T合成石蜡的研制摘要:简要介绍以F-T合成产品为原料制备石蜡产品的工艺过程及产品的性能特点。
关键词:F-T合成石蜡工艺性能前言将合成气经催化反应转化为液态烃的方法是1923年由德国科学家Frans Fischer和Hans Tropsch 发明的,简称费-托合成(F-T合成)。
F-T合成于1936年首先在德国实现工业化,其后的发展起起伏伏。
从技术成熟度及可靠性而言,目前国外F-T合成技术以Sasol、Shell、Exxon、BP 的工艺较佳,其中南非Sasol公司的技术水平和工业化程度处于领先地位。
全世界在建及进行可行性研究的GTL项目总产能超过9750×104 t/a,可以预计在不久的将来,F-T合成产品将成为石油产品的重要补充。
目前全球石油蜡市场供需基本平衡,但由于国际原油市场上石蜡基原油产量不断减少,同时北美及欧洲I类润滑油基础油装置的关停将使石油蜡的生产失去原料,世界石油蜡产量将因受资源限制而有所减少;与此相对应的是,根据过去25 a间的统计结果分析,全球石蜡市场需求是稳定增长的,预计在今后15 a这种势头还将持续下去。
按此推测全球石蜡市场石油蜡缺口将逐渐增大。
F-T合成产品不含硫、氮、芳烃等杂质,经精制容易达到很高的纯度;低温F-T合成过程的主要产品以正构烃为主且分布很宽,是生产石蜡产品的优质原料。
可以预计F-T合成石蜡将成为石蜡供应中逐渐增长的重要部分。
目前市场上销售的F-T合成石蜡主要是Shell公司和Sasol公司生产的,其质量和颜色稳定、碳分布窄,原则上与石油蜡具有相同的应用领域。
这些蜡产品的独特的白色对需要添加色彩的应用领域,如蜡烛等,是非常理想的,使用少量的染料就能达到鲜明的色彩。
目前国内采用中国科学院山西煤炭化学研究所、兖州煤矿等技术建设的CTL工业试验装置已投入生产运行;中国石油化工股份有限公司的GTL工业试验装置已经历长期平稳运转。
这些装置为F-T合成石蜡的生产提供了可靠的原料。
煤资源化学-费托合成

制作人:
1、费托合成的概念
2、费托合成的历史
目
3、费托合成的原理
录
4、费托合成的工艺流程
5、费托合成的前景展望
第一章 费托合成的定义
费托合成(Fischer-Tropsch synthesis)是煤间接液 化技术之一,简称为FT反应,它以合成气(CO和H2)为 原料在催化剂和适当反应条件下合成以烃类为主的液 体燃料的工艺过程。
第四章 费托合成的工艺流程
1.合成气的制备 2.F-T合成制备烃类
1. 合成气的制备
除德国之外, 我国是研究开发与 应用煤气化技术最多的国家, 涉 及到固定床、流化床、气流床等 各种方法。下面便分别介绍几种 以煤作为原料制备合成气的工艺 流程。
壳 牌 公 司 煤 气 化 工 艺 流 程
兖矿集团煤气化工艺流程
(2n 1)CO (n 1)H 2 Cn H 2n1OH (n 1)CO2
要 化 学
反
4.醛类的生成
(n 1)CO (2n 1) H 2 Cn H 2n1COH nH2O
应
(2n 1)CO (n 1)H 2 Cn H 2n1COH nH2O
5.积炭反 应
2CO C C C CO O22
南非沙索间接液化厂
ห้องสมุดไป่ตู้
2020/4/21
荷兰壳牌公司间接液化厂
第三章 费托合成的原理
费托合成的主要原料是合成气。合成气的主要成分是 CO和H2 ,可以通过煤、天然气、生物质等为原料经气化获 得。CO和H2在催化剂和高温高压条件下反应得到直链烷烃、 烯烃,还有的醇、醛、少量芳香烃类等。
1.烷烃的生成
nCO (2n 1)H 2 Cn H2n 2 nH2O
费托合成—费拖合成工艺流程(煤制油技术课件)

目录
01 费托合成反应原料气
05 轻质油、气分离
02
费托合成反应产物及采出
06
轻质油、合成水及释放气 三相分离
03 高温油气采出及分离
07 循环气工艺流程
04 重质油工艺流程
08 反吹气工艺流程
目录
09 重质蜡采出 10 重质蜡及释放气工艺流程 11 反应系统压力控制
01
费托合成反应原料气
来自精脱硫单元的总硫含量 < 0.05ppm的费托净化气,与来自循环气压缩机 一段出口的循环气、来自PSA(变压吸附制高纯氢)单元的回收氢气及来自尾气脱 碳单元的脱碳净化气混合,混合后的合成气进入循环换热分离器与费托合成反应 器顶部出来的高温油气换热,然后进入费托合成反应器。
02
费托合成反应产物及采出
进入费托合成反应器的合成气通过反应器底部的气体分布器以鼓泡的形式通过 含有催化剂的浆态床层,进行费托合成反应。反应生成的轻质烃类化合物、H2O、 CO2以及未反应的合成气所形成的高温油气以气相形式从反应器的顶部导出,反 应产生的重质烃类经反应器内过滤系统过滤后作为重质蜡从反应器中部排至重质 蜡收集罐。
05
轻质油、气分离
从轻质油分离器分离出的气相一部分作为尾气送至尾气脱碳单元,另一部分经循 环气压缩机分液罐分液后进入循环气压缩机入口。
06 轻质油、合成水及释放气三相分离
轻质油分离器分离出的液相进入油水分离器进行油、水及释放气三相分离,分离出的 轻质油经轻质油泵升压、轻质油加热器加热后送入汽提塔中上部进行气提;分离出的释 放气进入释放气压缩机;分离出的合成水经合成水泵升压后送入中间罐区。
03
高温油气采出及分离
费托合成反应器顶部出来的高温油气进入循环换热分离器与循环气(来自净化装 置的费托净化气、循环气压缩机一段出口循环气、PSA单元的氢气及来自尾气脱碳 单元的脱碳净化气)换热冷却、分离出气液两相。
费托合成工艺流程

费托合成工艺流程费托合成是一种合成燃料的工艺,该工艺通过加氢反应使废物转化为可再生燃料。
下面是费托合成的工艺流程。
首先,准备废物和催化剂。
常用的废物包括植物秸秆、木屑、农作物残渣等,催化剂通常使用铁、钴或镍等金属,以及一些助剂如硅酸盐和钾。
接下来,将废物经过预处理。
预处理包括粉碎和干燥。
粉碎可以增加废物的比表面积和可溶性,从而增加反应效率。
干燥可以去除废物中的水分,以防止水分对反应的影响。
然后,将预处理后的废物与催化剂一起投入到反应器中。
反应器是一个密闭的容器,内部设置有一系列的加热管,以提供反应温度。
同时,反应器中加入一定的氢气用于反应。
在反应器中,废物首先经过热解和脱氧反应。
热解是指通过高温将废物分解为气体和液体,同时释放出一些有机化合物。
脱氧反应是指将废物中的氧元素移除,从而将废物转化为纯碳和纯氢。
随后,废物中的纯碳和纯氢与氢气进行加氢反应。
加氢反应是指将废物中的碳氢化合物与氢气反应,生成燃料。
在反应中,催化剂起到催化作用,促使反应的进行。
最后,反应结束后,将反应产物进行冷却和分离。
冷却可以将产物从高温转化为室温,分离可以将产物中的不同组分进行分离。
常见的产物分离方法包括蒸馏、萃取和过滤等。
通过上述的费托合成工艺流程,废物可以转化为可再生燃料。
这种燃料具有高效能和低排放的特点,在环保和能源领域具有广泛的应用前景。
同时,费托合成也实现了对废物资源的有效利用,减少了废物对环境的污染和占用的土地资源。
费托合成工艺流程具有较高的技术复杂度和投资成本,但随着技术的不断进步和工艺的改进,其经济性和可行性逐渐提升。
未来,费托合成有望成为一种重要的可再生能源生产技术,为社会的可持续发展做出贡献。
费托合成

FTS技术现状
中国中科合成油公司的铁基浆态床费托合成技 术。 中国山东兖州矿业集团的低温铁系催化剂浆态 床和高温铁系催化剂固定流化床费托合成技术。 中国神华集团的煤基浆态床和低温浆态床费托 合成技术。
FTS反应机理
FTS产品分布
典型FTS合成产品的组成与分布
组成 / wt%
甲醇(C1) LPG(C2~C4) 汽油(C5~C12) 柴油(C13~C19) 软蜡(C20~C30) 硬蜡(C30 以上) 含氧化合物
流化床反应器
FFB与CFB的相对投资费用和能量效率
压力 / 反应器 反应器数 MPa CFB FFB FFB 3 2 2 2.5 2.5 >2.3 相对容量 / % 反应器 气体循环 总容量 100 46 49 100 78 71 100 87 82 能量效 能耗 / 率/% % 61.9 63.6 74.7 100 44 41
循环流化床FTS工艺
循环流化床FTS工艺
Syntroleum 公司工艺 ①美国Syntroleum公司开发的GTL工艺使用含N2 稀释合成气为原料,采用循环流化床反应器及专 利钴基催化剂,在190~232℃和2.1~3.5MPa下 合成气在大空速下无循环回路一次通过,避免了 N2的聚集,减少了加氢裂解步骤,而且操作压 力也较低 ②该工艺设备简单,操作容易,建造费用较低, 装置规模不大就可产生效益,目前已完成中试
采用SMDS(中间馏分油合成)工艺在马来西亚的 Bintulu建成以天然气为原料,年产50×104t/a液体 荷兰Shell公司 燃料,包括中间馏分油和石蜡 采用MFT工艺及Fe/Mn超细催化剂进行2000t/a工 业试验 中国科学院山西煤 炭化学研究所
1994
FTS技术现状
费托合成

费托合成费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,可简称为FT反应,它以合成气(CO和H2)为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。
1923年由就职于Kaiser Wilhelm 研究院的德国化学家Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。
其反应过程可以用下式表示:nCO+2nH2─→[-CH2-]n+nH2O 副反应有水煤气变换反应H2O + CO →H2 + CO2 等。
一般来说,烃类生成物满足Anderson-Schulz-Flor分布。
费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。
合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。
反应器采用固定床或流化床两种形式。
如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。
此外,近年来正在开发的浆态反应器,则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与一氧化碳之摩尔比为0.58~0.7的合成气。
铁系化合物是费托合成催化剂较好的活性组分。
研究进展传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液体烃少,重质石蜡烃较多。
其主要成分是直链烷烃、烯烃、少量芳烃及副产水和二氧化碳。
50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所需的设计参数。
南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床Synthol反应器,并于1980年和1982年相继建成两座年产1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。
此两套装置皆采用氮化熔铁催化剂和流化床反应器。
反应温度320~340℃,压力2.0~2.2MPa。
产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧化合物6%。
费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
费托合成工艺简介

费托合成工艺简介费托合成(Fischer–Tropsch process),又称F-T合成,是将煤由气态转变成液态烃的技术之一,以CO和H2的合成气为原料在合适的催化剂及条件的促进下,合成以汽柴油、石蜡烃等为主的液体燃料的工艺过程。
费托合成反应原理主反应:生成烷烃:nCO+(2n+1)H2= C n H2n+2+nH2O生成烯烃:nCO+(2n)H2 = CnH2n+nH2O副反应:生成甲烷:CO+3H2 = CH4+H2O生成甲醇:CO+2H2= CH3OH生成乙醇:2CO+4H2 = C2H5OH+ H2O积炭反应:2CO = C+CO2除了以上反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。
按反应温度可分为低温费托合成工艺和高温费托合成工艺。
通常将反应温度低于280℃的称为低温费托合成工艺,产物主要是柴油以及高品质石蜡等,常采用固定床或浆态床反应器;高于300℃的称为高温费托合成工艺,产物主要是汽油、柴油、含氧有机化学品和烯烃,常采用流化床(循环流化床、固定流化床)反应器。
低温费托合成工艺产品相对来说比较单一,产品以柴油为主,占到75%左右。
其余为石脑油、液化气和部分高品质石蜡。
高温费托合成工艺产品种类更加多样化,不但有汽油、柴油、溶剂油,还有烯烃、烷烃、含氧化合物等,其中烯烃含量能达到40%左右,且以直链烯烃为主,这些产品的附加值比较高。
几种常见的费托合成反应器1固定床反应器(Arge反应器)固定床反应器首先由鲁尔化学(Ruhrchemir)和鲁奇(Lurge)两家公司合作开发而成,简称Arge反应器。
1955年第一个商业化Arge反应器在南非建成投产。
反应器直径3米,由2052根管子组成,管内径5厘米,长12米,体积40m3,管外为沸腾水,通过水的蒸发移走管内的反应热,产生蒸汽。
管内装填了挤出式铁催化剂。
通常多管固定床反应器的径向温差为大约2~4°C。
轴向温度差为15~20°C。
生物质的费托合成工艺

生物质的费托合成工艺一、引言生物质是一种可再生的资源,其利用对于环境保护和可持续发展具有重要意义。
费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,具有广泛的应用前景。
本文将从费托合成工艺的原理、优势和应用等方面进行探讨。
二、费托合成工艺的原理费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,其原理是将生物质通过热解、气化等方式转化为合成气,再将合成气通过费托反应器进行催化反应,最终得到液体燃料和化学品。
三、费托合成工艺的优势1. 可再生性:生物质是一种可再生的资源,其利用对于环境保护和可持续发展具有重要意义。
2. 降低碳排放:费托合成工艺可以将生物质转化为液体燃料和化学品,从而降低碳排放。
3. 多样性:费托合成工艺可以利用多种生物质进行转化,具有较高的适应性。
4. 经济性:费托合成工艺可以将生物质转化为高附加值的液体燃料和化学品,具有较高的经济效益。
四、费托合成工艺的应用1. 生物质液体燃料:费托合成工艺可以将生物质转化为液体燃料,如生物柴油、生物汽油等,具有广泛的应用前景。
2. 生物质化学品:费托合成工艺可以将生物质转化为化学品,如甲醇、乙醇等,具有广泛的应用前景。
3. 生物质能源:费托合成工艺可以将生物质转化为能源,如生物气、生物煤等,具有广泛的应用前景。
五、结论费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,具有可再生性、降低碳排放、多样性和经济性等优势,其应用前景广阔。
在未来的发展中,费托合成工艺将成为生物质利用的重要途径,为环境保护和可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。
此时SASOL的三座工厂的综合产能已经大约为760万吨/年。
由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。
南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。
1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。
除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费-托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费-托合成天然气液化工厂。
F-T合成的主要化学反应F-T合成的主反应:生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O生成烯烃:nCO+(2n)H2 = CnH2n+nH2O另外还有一些副反应,如:生成甲烷:CO+3H2 = CH4+H2O生成甲醇:CO+2H2 = CH3OH生成乙醇:2CO+4H2 = C2H5OH+ H2O积炭反应:2CO = C+CO2除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。
费-托合成催化剂合成催化剂主要由Co、Fe、Ni、Ru等周期表第VIII族金属制成,为了提高催化剂的活性、稳定性和选择性,除主成分外还要加入一些辅助成分,如金属氧化物或盐类。
大部分催化剂都需要载体,如氧化铝、二氧化硅、高岭土或硅藻土等。
合成催化剂制备后只有经CO+H2或H2还原活化后才具有活性。
目前,世界上使用较成熟的间接液化催化剂主要有铁系和钴系两大类,SASOL使用的主要是铁系催化剂。
在SASOL固定床和浆态床反应器中使用的是沉淀铁催化剂,在流化床反应器中使用的是熔铁催化剂。
F-T合成反应器SASOL自1955年首次使用固定床反应器实现商业化生产以来,紧紧抓住反应器技术和催化剂技术开发这两个关键环节,通过近五十年的持之以恒的研究和开发,在煤间接液化费-托合成工艺开发中走出了一条具有SASOL特色的道路。
迄今已拥有在世界上最为完整的固定床、循环流化床、固定流化床和浆态床商业化反应器的系列技术。
1 固定床反应器(Arge反应器)固定床反应器首先由鲁尔化学(Ruhrchemir)和鲁齐(Lurge)两家公司合作开发而成,简称Arge反应器。
1955年第一个商业化Arge反应器在南非建成投产。
反应器直径3米,由2052根管子组成,管内径5厘米,长12米,体积40m3;管外为沸腾水,通过水的蒸发移走管内的反应热,产生蒸汽。
管内装填了挤出式铁催化剂。
反应器的操作条件是225°C,2.6MPa。
大约占产品50%的液蜡顺催化剂床层流下。
基于SASOL的中试试验结果,一个操作压力4.5 MPa的Arge反应器在1987年投入使用。
管子和反应器的尺寸和Arge 反应器基本一致。
通常多管固定床反应器的径向温差为大约2~4°C。
轴向温度差为15~20°C。
为防止催化剂失活和积碳,绝不可以超过最高反应温度,因为积碳可导致催化剂破碎和反应管堵塞,甚至需要更换催化剂。
固定床中铁催化剂的使用温度不能超过260°C,因为过高的温度会造成积碳并堵塞反应器。
为生产蜡,一般操作温度在230°C左右。
最大的反应器的设计能力是1500桶/天。
固定床反应器的优点有:易于操作;由于液体产品顺催化剂床层流下,催化剂和液体产品分离容易,适于费-托蜡生产。
由于合成气净化厂工作不稳定而剩余的少量的H2S,可由催化剂床层的上部吸附,床层的其它部分不受影响。
固定床反应器也有不少缺点:反应器制造昂贵。
高气速流过催化剂床层所导致的高压降和所要求的尾气循环,提高了气体压缩成本。
费-托合成受扩散控制要求使用小催化剂颗粒,这导致了较高的床层压降。
由于管程的压降最高可达0.7 MPa,反应器管束所承受的应力相当大。
大直径的反应器所需要的管材厚度非常大,从而造成反应器放大昂贵。
另外,装填了催化剂的管子不能承受太大的操作温度变化。
根据所需要的产品组成,需要定期更换铁基催化剂;所以需要特殊的可拆卸的网格,从而使反应器设计十分复杂。
重新装填催化剂也是一个枯燥和费时的工作,需要许多的维护工作,导致相当长的停车时间;这也干扰了工厂的正常运行。
2 浆态床反应器德国人在上世纪的40和50年代曾经研究过三相鼓泡床反应器,但是没有商业化。
SASOL 的研发部门在二十世纪七十年代中期开始了对浆态床反应器的研究。
1990年研发有了突破性进展,一个简单而高效的蜡分离装置成功地通过了测试。
100桶/天的中试装置于1990年正式开车。
SASOL于1993年5月实现了ID=5m、20m高,产能为2500桶/天的浆态床反应器的开工。
SASOL的三相浆态床反应器(Slurry Phase Reactor)可以使用铁催化剂生产蜡、燃料和溶剂。
压力2.0 MPa,温度高于200℃。
反应器内装有正在鼓泡的液态反应产物(主要为费-托产品蜡)和悬浮在其中的催化剂颗粒。
SASOL浆态床技术的核心和创新是其拥有专利的蜡产物和催化剂实现分离的工艺;此技术避免了传统反应器中昂贵的停车更换催化剂步骤。
浆态床反应器可连续运转两年,中间仅维护性停车一次。
反应器设计简单。
SASOL浆态床技术的另一专利技术是把反应器出口气体中所夹带的“浆”有效地分离出来。
典型的浆态床反应器为了将合成蜡与催化剂分离,一般内置2~3层的过滤器,每一层过滤器由若干过滤单元组成,每一组过滤单元又由3~4根过滤棒组成。
正常操作下,合成蜡穿过过滤棒排出,而催化剂被过滤棒挡住留在反应器内。
当过滤棒被细小的催化剂颗粒堵塞时可以采用反冲洗的方法进行清洗。
在正常工况下一部分过滤单元在排蜡,另一部分在反冲洗,第三部分在备用。
另为了将反应热移走,反应器内还设置2~3层的换热盘管,进入管内的是锅炉给水,通过水的蒸发移走管内的反应热,产生蒸汽。
通过调节汽包的压力来控制反应温度。
此外在反应器的下部设有合成气分配器,上部设有除尘除沫器。
其操作过程如下:合成气经过气体分配器在反应器截面上均匀分布,在向上流动穿过由催化剂和合成蜡组成的浆料床层时,在催化剂作用下发生FT合成反应。
生成的轻烃、水、CO2和未反应的气体一起由反应器上部的气相出口排出,生成的蜡经过内置过滤器过滤后排出反应器,当过滤器发生堵塞导致器内器外压差过大时,启动备用过滤器,对堵赛的过滤器应切断排蜡阀门,而后打开反冲洗阀门进行发冲洗,直至压差消失为止。
为了维持反应器内的催化剂活性,反应器还设置了一个新鲜催化剂/蜡加入口和一个催化剂/蜡排出口。
可以根据需要定期定量将新鲜催化剂加入同时排出旧催化剂。
浆态床反应器和固定床相比要简单许多,它消除了后者的大部分缺点。
浆态床的床层压降比固定床大大降低,从而气体压缩成本也比固定床低很多。
可简易地实现催化剂的在线添加和移走。
浆态床所需要的催化剂总量远低于同等条件下的固定床,同时每单位产品的催化剂消耗量也降低了70%。
由于混合充分,浆态床反应器的等温性能比固定床好,从而可以在较高的温度下运转,而不必担心催化剂失活、积碳和破碎。
在较高的平均转化率下,控制产品的选择性也成为可能,这就使浆态床反应器特别适合高活性的催化剂,SASOL现有的浆态床反应器的产能是2500桶/天,2003年为卡塔尔和尼日利亚设计的是ID=9.6m、17000桶/天的商业性反应器。
SASOL认为设计使用Co催化剂的能力达到22300桶/天的反应器也是可行的,这在经济规模方面具有很大的优势。
3 循环流化床反应器1955年前后,萨索尔在其第一个工厂(Sasol I)中对美国Kellogg 公司开发的循环流化床反应器(CFB)进行了第一阶段的500倍的放大。
放大后的反应器内径为2.3米,46米高,生产能力1500桶/天。
此后克服了许多困难,多次修改设计和催化剂配方,这种后来命名为Synthol 的反应器成功地运行了30年。
后来SASOL通过增加压力和尺寸,反应器的处理能力提高了3倍。
1980年在SASOL II、1982年在SASOL III分别建设了8台ID=3.6m、生产能力达到6500桶/天的Synthol 反应器。
使用高密度的铁基催化剂。
循环流化床的压降低于固定床,因此其气体压缩成本较低。
由于高气速造成的快速循环和返混,循环流化床的反应段近乎处于等温状态,催化剂床层的温差一般小于2°C。