第五章__对流传热分析

合集下载

V4-第五章-对流传热的理论基础-2014

V4-第五章-对流传热的理论基础-2014

单位时间热对流传递到微元体的净热量: 1 + 2
t t Q对流 c p u v dxdy y x
Q导热 + Q对流 = U热力学能
单位时间导入导出的净热量: 单位时间热力学能的增量:
2t 2t Q导热 2 dxdy+ 2 dxdy x y
t y
y 0
h
t
t y
y 0
λ:流体导热系数; ∂t/∂y: 贴壁流体层的温度梯度 注意与导热问题第三类边界条件的区别
例5-1: 热边界层中特定位置x处的温度分布由下式给出 , t ( y) A By Cy 2 其中 A,B,C为常数。试求相应的局部换热系数hx的表达式。 分析:计算hx的公式主要有:对流换热微分方程式和努塞尔数准则。根据 本例条件,应该采用对流换热微分方程式计算。 解:
惯性力 体积力 压力梯度 粘性力
能量守恒方程:热力学第一定律 Q=∆E+W
[导入与导出的净热量] + [热对流传递的净热量] + [内热源发热量]
= [总能量的增量] + [对外膨胀功]
Q — Q导热 Q对流 Q内热源
E — U 热力学能 U K(动能)
假设: 无内热源,低速流动,流体不对外作功
1. 流动边界层及其厚度的定义
普朗特 实验发现:流体近壁面流动时基于粘性力的速度梯度 主要存在于近壁面的薄层,主流区速度梯度很小。
yx
du dy
速度边界层的定义 固壁表面附近流体速度剧烈变化的薄层称为速度边界 层 ,速度边界层外的主流区速度梯度视为零。
Ludwig Prandtl 1875-1953
Q导热 + Q对流 = U热力学能

第五章对流传热原理

第五章对流传热原理


§5-3 边界层型对流传热问题数学描述
能量微分方程:
长江大学机械工程学院
School of Mechanical Engineering

t t 2 2 y x
2 2
t t t u v x y c p
数量级
1 1 1

1 1


2
1 1
§5-3 边界层型对流传热问题数学描述
p y 0( )
长江大学机械工程学院
School of Mechanical Engineering
表明:边界层内的压力梯度仅沿x方向变化,而边 界层内法向压力梯度极小。 边界层内任一截面压力p与y无关,即p=p(x)
主流压力: p dp
x
dx
u u 1 dp u u v 2 x y dx y
2
§5-3 边界层型对流传热问题数学描述
u v 质量守恒方程: 0 x y
长江大学机械工程学院
School of Mechanical Engineering
长江大学机械工程学院
流场控制方程特例:
School of Mechanical Engineering
二维、常物性、不可压流体对流换热问题数学描述:
u v 0 质量守恒方程: x y
动量守恒方程:
4个方程,4个未知量 —— 可求得速度 场 (u,v)、温度场(t)及压力场(p), 既适 用于层流,也适用于紊流(瞬时值)
长江大学机械工程学院
School of Mechanical Engineering
§5-3 边界层型对流传热问题数学描述

《传热学》第5章_对流传热的理论基础分析

《传热学》第5章_对流传热的理论基础分析

动量守恒定律
能量守恒定律
t t t 2t 2t u v 2 2 x y c p x y
12
第5章 对流传热的理论基础
2. 定解条件 (1)规定边界上流体的温度分布(第一类边界条件)
(2)给定边界上加热或冷却流体的热流密度(第二类边界条件)
1
第5章 对流传热的理论基础
5.1 对流传热概说
5.1.1 对流传热的影响因素
影响流动的因素和影响流体中热量传递的因素包括:
1. 流体流动的成因:强制对流or自然对流 2. 流体有无相变:流体显热or相变热
3. 流体的流动状态:层流or湍流,后者较大
4. 换热表面的几何因素:形状、大小、相对位置、换热表面状态 5. 流体的物理性质:密度、粘度、导热系数等等
(2) 稳态的对流问题,非稳态项消失,公式(5-6a)可以改写为:
2t 2t 对流项为速度矢量与温度梯度的点积 c p U gradt x 2 y 2 (3) 如果流体中有内热源,那么直接在(5-6)右端添加内热源项:
2 2 2 u v u v x, y 2 y y x x
第5章 对流传热的理论基础
复习:
对流传热:流体经过固体表面时流体与固体间的热量交换。
对流传热的表达形式——牛顿冷却公式:
Ahtm
t m 是流体与固体表面间的平均温差,总取正值。
关键点:表面传热系数h的定义式,没有揭示表面传热系数与影响它的 各物理量之间的内在联系。 主要内容:(1) 对流传热过程的物理本质 (2) 对流传热的数学描述方法 (3) 分析解的应用 关键点:(1) 掌握各种数学表达式所反映的物理意义 (2) 理解对流传热过程的物理本质

传热学 第五章 对流传热

传热学 第五章 对流传热

思路:
定性地分析对流传热的影响因素
深入讨论对流传热过程的数学描述 导出边界层问题的简化方程
给出相应的求解方法
3
2. 对流传热的特点 (1) 导热与热对流同时存在的复杂热传递过程 (2) 流固之间存在温差 (3) 必须有直接接触(流体与壁面)和宏观运动 (4) 由于流体的粘性,受壁面摩擦阻力的影响,紧贴壁面处会 形成速度梯度很大的边界层
自然对流:流体因各部分温度不同而引起的密度差所产生的 浮升力所推动的流动
5
(2) 流动状态
层流:(Laminar flow )流体微团沿主流方向做有规则的 分层运动,整个流场呈一簇互相平行的流线
湍流:(Turbulent flow )流体质点做复杂无规则的运动,
流体各部分之间发生剧烈的混合。
(3) 流体有无相变
15
2. 动量守恒方程
牛顿第二运动定律: 作用在微元体上各外力的总和等于控制体中流体动量的变化率
F = ma
作用力:体积力(重力、离心力、电磁力) 表面力:切应力、z应力
16
应力形式的运动微分方程:
(1)
牛顿流体的本构关系:
1)达朗伯原理——两相邻正交截面上的剪切力互等 2)斯托克斯三假设
a) 流体各向同性,任一质点在的各个方向上物理性质都相同 b) 应力分量与变形速度成正比 c) 变形速度为零:切应力为零,法向应力为流体静压强 P
Note: 第三类边界条件中的h为已知量
12
§5-2 对流传热问题的数学描述
为便于分析,以二维对流传热问题为研究对象: 假设:a) 流体为连续性介质 b) 流体为不可压缩的牛顿流体
c) 所有物性参数(?、cp、?、? )为常量 d) 粘性耗散热忽略不计 控制变量:速度 u、v;压力 p;温度 t 控制方程:连续性方程、动量方程、能量方程

传热学第五章_对流换热原理-6

传热学第五章_对流换热原理-6

2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f

dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情

传热学第五章对流换热

传热学第五章对流换热

1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:

传热学第五章对流换热

传热学第五章对流换热
第五章
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 §5-7 §5-8
对流换热
Convective heat transfer
对流换热概说 对流换热的数学描写 对流换热边界层微分方程组 对流换热边界层积分方程组 相似理论与量纲分析 管内受迫流动 横向外掠圆管的对流换热 自然对流换热及实验关联式
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
同理:() dτ qm hout − qm hin ≈ ρcp (
y
H y + dy − H y =
∂t ∂v ⋅ v + ⋅ t )dxdydτ ∂y ∂y
(qm h)out − (qm h)in ∴ ∂t ∂t ∂u ∂v = ρ c p (u + v )dxdy + ρ c p t ( + )dxdy ∂x ∂y ∂x ∂y ∂t ∂t = ρ c p (u + v )dxdy (d ) ∂x ∂y
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的概念。

传热学第五章_对流换热原理-1

传热学第五章_对流换热原理-1

Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。

第五章对流换热

第五章对流换热

第五章对流换热思考题1、在对流换热过程中,紧靠壁面处总存在一个不动的流体层,利用该层就可以计算出交换的热量,这完全是一个导热问题,但为什么又说对流换热是导热与对流综合作用的结果。

答:流体流过静止的壁面时,由于流体的粘性作用,在紧贴壁面处流体的流速等于零,壁面与流体之间的热量传递必然穿过这层静止的流体层。

在静止流体中热量的传递只有导热机理,因此对流换热量就等于贴壁流体的导热量,其大小取决于热边界层的厚薄,而它却受到壁面流体流动状态,即流动边界层的强烈影响,故层流底层受流动影响,层流底层越薄,导热热阻越小,对流换热系数h也就增加。

所以说对流换热是导热与对流综合作用的结果。

2、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

答:依据对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。

3、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。

试判断这种说法的正确性?答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。

因此表面传热系数必与流体速度场有关。

4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

答:依据对流换热热阻主要集中在热边界层区域的导热热阻。

层流边界层的热阻为整个边界层的导热热阻。

紊流边界层的热阻为层流底层的导热热阻。

导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。

5、对管内强制对流换热,为何采用短管和弯管可以强化流体的换热?答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。

第五章对流传热分析

第五章对流传热分析

第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。

5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。

在对流换热过程中,流体内部的导热与对流同时起作用。

牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。

研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。

2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。

(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。

(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。

(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。

(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。

综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。

3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。

同时,分析求解的前提是给出正确地描述问题的数学模型。

在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。

传热学第五章_对流换热原理-2

传热学第五章_对流换热原理-2
3 能量微分方程
能量微分方程式描述流体温度场—能量守恒
[导入与导出的净热量] + [热对流传递的净 热量] +[内热源发热量] = [总能量的增量] + [对外作膨胀功]
Q = E + W
Q — Q导热 Q对流 Q内热源
W — 体积力(重力)作的功 表面力作的功 (1)压力作的功: a) 变形功;b) 推动功 (2)表面应力作的功:a) 动能;b)
流体的连续流动遵循质量守恒规律。
从流场中 (x, y) 处取出边长为 dx、dy 的微元 体,并设定x方向的流体流速为u,而y方向上 的流体流速为v 。 M 为质量流量 [kg/s]
单位时间内流入微元体的净质量 = 微元体内流 体质量的变化。
mass balance
v v dy y
mass mass mass
作用力 = 质量 加速度(F=ma)
①控制体中流体动量的变化率
从x方向进入元体质量流量 在x方向上的动量 :
v v dy y
udy 1 u
从x方向流出元体的质量流 u
量在x方向上的动量
dy
u u dx x
u u dx dy 1 u u dx
x x
dx v
从y方向进入元体的质量流量在x方向上的动量为 :
作用在x方向上表面力的净值为 :
yx dxdy 1 x dxdy 1
y
x
作用在y方向上表面力的净值为
xy dxdy 1 y dxdy 1
x
y
斯托克斯提出了归纳速 度变形率与应力之间的 关系的黏性定律
xy
yx
u y
v x
x
p 2
u x
y

传热学 第五章 对流换热

传热学 第五章 对流换热

t qw
n w
第三类边界条件?
思考
对流换热微分方程表明,在边界上垂直于壁面的热量传 递完全依靠导热,那么在对流换热过程中流体的流动起 什么作用?
hx
tw t
x
t y
y0,x
c
p
t
u t x
v
t y
2t x2
2t y 2
流场决定温度场
小结
我们学习了 影响对流换热的一些因素; 对流换热微分方程:对流换热系数的定义 对流换热微分方程组:连续性方程、动量方程、能量方程
A qxdA
A
hx
tw
t
x
dA
h
1 A
A hxdA
对流换热的 核心问题
对流换热的影响因素
对流换热是流体的导热和热对流两种基本传热方式共同作用的结果。 影响因素:
1)流动的起因:强迫对流换热与自然对流换热 2) 流动的状态:层流和紊流 3) 流体有无相变 4) 流体的物理性质
5) 换热表面的几何因素
v
t y
2t x2
2t y 2
2) 对流换热的单值性条件
(1) 几何条件 (2) 物理条件 (3) 时间条件 (4) 边界条件
1904年,德国科学家普朗特(L. Prandtl)提出著名 的边界层概念后,上述方程的求解才成为可能。
第一类边界条件 t w f x, y, z,
q 第二类边界条件 w f x, y, z,
采用氢冷须注意其密封结构,否则泄露后会发生爆炸。
5) 换热表面的几何因素
强迫对流
(1)管内的流动
(2)管外的流动
自然对流
(3)热面朝上
(4)热面朝下
对流换热分类

传热学第五章对流传热的理论基础

传热学第五章对流传热的理论基础
30
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W

第五章 对 流 换 热

第五章 对 流 换 热

第五章 对 流 换 热本章内容要求:1 、重点内容: 对流换热及其影响因素;牛顿冷却公式;用分析方法求解对流换热问题的实质边界层概念及其应用相似原理无相变换热的表面传热系数及换热量的计算2 、掌握内容:对流换热及其影响因素;用分析方法求解对流换热问题的实质3 、讲述基本的内容:对流换热概述; 对流换热的数学描写; 对流换热的边界层微分方程组; 边界层积分方程组的求解及比拟理论; 相似原理及量纲分析; 相似原理的应用; 内部流动强制对流换热实验关联式; 外部流动强制对流换热实验关联式; 自然对流换热实验关联式在绪论中已经指出, 对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程, 是发生在流体中的热量传递过程的特例。

由于流体系统中流体的运动,热量将主要以热传导和热对流的方式进行,这必然使热量传递过程比单纯的导热过程要复杂得多。

本章将在对换热过程进行一般性讨论的基础上,将质量守恒、动量守恒和能量守恒的基本定律应用于流体系统,导出支配流体速度场和温度场的场方程-对流换热微分方程组。

由于该方程组的复杂性,除少数简单的对流换热问题可以通过分析求解微分方程而得出相应的速度分布和温度分布之外,大多数对流换热问题的分析求解是十分困难的。

因此,在对流换热的研究中常常采用实验研究的方法来解决复杂的对流换热问题。

在这一章,我们将 通过方程的无量纲化和实验研究方法的介绍而得到常用的准则及准则关系式。

讨论的重点放在工程上常用的管内流动、平行流过平板以及绕流圆管的受迫对流换热,大空间和受限空间的自然对流换热,以及蒸汽凝结与液体沸腾换热。

§5-1 对流换热概述本节要求:1。

对流换热的概念:流体−−→−温差固体壁面; 2.对流换热中,导热核对流通式汽作用;3.对流换热的影响因素:)(f w t t hA -=Φ,h ——过程量;4.对流换热系数如何确定:0=∂∂∆-=y y tt h λ1 对流换热过程对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程 ,( 直接接触是与辐射换热的区别),是宏观的热对流与微观的热传导的综合传热过程。

传热学-第五章-对流原理.

传热学-第五章-对流原理.

三个准则数分别称为努谢尔特准则,雷诺 准则和普朗特准则,相应地用符号Nu、Re 和Pr表示,代入式(d)中,得
N uARcePer
写成一般形式的无量纲关系式,则为
u=f〔Re,Pr)
上两式称之为准则方程式,式中的系 数和指数,或方程的具体形式由试验确
定。
至于自然对流换热,无论是理论分析还 是试验分析,都觉察正是由于壁面和流 体之间存在的温度差,使流体密度不均 匀所产生的浮升力,导致了自然对流运 动的发生和进展。自然对流换热系数α 与其影响因素的一般关系式为
如下图,流体接触管道后,便从两侧流过, 并在管壁上形成边界层。正对着来流方向 的圆管最前点,即φ=0处,流速为零, 边界层厚度为零。此后,在圆管壁上形成 层流边界层,并随着φ角的增大而增厚。 当厚度增加到肯定程度时,便过渡到紊流 边界层。在圆管壁φ=80°四周处,流体 脱离壁面并在圆管的后半部形成旋涡。
明显,流体温度的分布与流体的流淌有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进展,没有横向 流淌,不发生物质交换,壁面法线方向上的 热量传递,根本上靠分子的导热进展,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀全都。
二、
从上节可以知道,在大多数状况下, 影响无相变对流换热过程的换热系数 α的物理因素可归结为流体流态、物 性、换热壁面状况和几何条件、流淌 缘由四个方面。争论说明,对于管内 受迫流淌,假设假定物性是常数,不 随温度而变,争论的是平均对流换热 系数。影响换热系数α的因素有流速V, 管径D,流体密度ρ,动力粘度μ,比 热cp和导热系数λ。

《传热学》第5-6章-对流换热

《传热学》第5-6章-对流换热

dxdy
λ
∂ 2t ∂x2
+
∂ 2t ∂y 2
dxdy

ρc
p


(ut
∂x
)
+

(vt
∂y
)dxdy
=
ρc p
∂t ∂τ
dxdy
ρc
p

∂t ∂τ
+ u ∂t ∂x
+ v ∂t ∂y
+
t
∂u ∂x
+
∂v ∂y

=
λ

∂ 2t ∂x 2
+
似,已很少再用
5-2对流换热的数学描述
1) 对流换热微分方程
取边长为∆x, ∆y, ∆z=1的微元体为研究对象
当粘性流体在壁面上流动时,由于 粘性的作用,流体的流速在靠近壁 面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑 移状态(即:y=0, u=0)
在这极薄的贴壁流体层中, 热量只能以导热方式传递

∂ρ ∂T
p
λ ↑⇒ h ↑ (流体内部和流体与壁面间导热热阻小)
ρ、c ↑⇒ h ↑ (单位体积流体能携带更多能量)
µ ↑⇒ h ↓ (有碍流体流动、不利于热对流)
α ↑⇒ 自然对流换热增强
5) 换热表面的几何因素
对流换热分类
1
对流换热的主要研究方法
v (1) 分析法——解析解 v (2) 数值法——近年发展的方法 v (3) 实验法——主要方法(拟合公式) v (4) 比拟法——热量传递与动量传递 的相
在层流边界层与层流底层内,垂直于壁面方向上的热量传递 主要靠导热。紊流边界层的主要热阻在层流底层。

第五章对流传热理论基础

第五章对流传热理论基础
动量方程中的惯性力项和能量方程中的对流项均为非线性项,难以直接求解
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]

传热学5-对流换热分析

传热学5-对流换热分析

Mx
M x dx x
M y vdx
单位时间内、沿x轴方向、 经x表面流入微元体的质量 单位时间内、沿x轴方向、经 x+dx表面流出微元体的质量
M x udy
M x M x dx M x dx x
单位时间内、沿x轴方向流入微元体的净质量:
M x M x dx

无论流体流动与否, p 都存在;而 ii只存在于流动时

同一点处各方向的 p 都相同;而 ii与表面方向有关
推导过程见P110 动量微分方程 — Navier-Stokes方程(N-S方程)
u u u p u u ( u v ) Fx ( 2 2 ) x y x x y
M x ( u ) dx dxdy x x
单位时间内、沿 y 轴方向流入微元体的净质量:
M y M y dy
单位时间内微元体 内流体质量的变化:
( v) dy dxdy y y
M y
( dxdy) dxdy
Mx
速度场和温度场由对流换热微分方程组确定: 质量守恒方程、动量守恒方程、能量守恒方程
2 质量守恒方程(连续性方程) 流体的连续流动遵循质量守恒规律
(x, y) 处取出边长为 dx、dy 的微元体(z方向为单位长度),M 为质量 流量 [kg/s]
从流场中
Mx
M x dx x
M y vdx
热的核心问题

研究对流换热的方法:
(1)分析法 (2)实验法 (3)比拟法 (4)数值法
传热系数大致范围
5 对流换热的影响因素
对流换热是流体的导热和对流两种基本传热方式 共同作用的结果。其影响因素主要有以下五个方面: (1)流动起因 (2)流动状态 (3)流体有无相变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。

5.1内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。

在对流换热过程中,流体内部的导热与对流同时起作用。

牛顿冷却公式w f ()q h t t =-是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。

研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。

2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。

(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。

(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。

(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。

(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。

综上所述,可知表面传热系数是如下参数的函数()w f p ,,,,,,,,h f u t t c l λραμ=这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。

3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。

同时,分析求解的前提是给出正确地描述问题的数学模型。

在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数2x x w ,xW /(m K )t h t y λ∆⎛⎫∂=-⋅ ⎪∂⎝⎭由上式可有2x x w ,xW /(m K )h y λθ∆θ⎛⎫∂=-⋅ ⎪∂⎝⎭其中θ为过余温度,t t θ=-。

对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。

由于对流换热问题的分析求解常常要求解包括连续性方程、动量微分方程和能量微分方程在内的一系列方程,因此它的求解过程比导热问题要困难得多。

5.1.2 对流换热微分方程组1.连续性方程二维常物性不可压缩流体稳态流动连续性方程:0u x yυ∂∂+=∂∂2.动量微分方程式动量微分方程式描述流体速度场,可从分析微元体的动量守恒中建立。

它又称纳斯-斯托克斯方程,简称N·S 方程。

2222u u u pu u u X x y x x y ρυμτ⎛⎫⎛⎫∂∂∂∂∂∂++=-++ ⎪⎪∂∂∂∂∂∂⎝⎭⎝⎭ 2222pu Y x y y x y υυυυυρυμτ⎛⎫⎛⎫∂∂∂∂∂∂++=-++ ⎪⎪∂∂∂∂∂∂⎝⎭⎝⎭3.能量微分方程式能量微分方程式描述流体的温度场,由能量守恒原理分析进出微元体的各项能量来建立。

22p 22t t t t t c u x y x y ρυλτ⎛⎫⎛⎫∂∂∂∂∂++=+ ⎪⎪∂∂∂∂∂⎝⎭⎝⎭5.1.3 边界层分析及边界层换热微分方程组1.边界层的概念由于对流换热的热阻大小主要取决于紧靠壁面附近的流体流动状况,而该区域中速度和温度的变化最为剧烈。

因此,将固体壁面附近流体速度急剧变化的薄层称为流动边界层,而将温度急剧变化的薄层称为热边界层。

流动边界层的厚度δ通常规定为在壁面法线方向达到主流速度99%处的距离,即0.99u u ∞=。

而热边界层的厚度t δ为沿该方向达到主流过余温度99%处的距离,即f 0.99θθ=。

t δ不一定等于δ,两者之比决定于流体的物性。

读者应熟练掌握流动边界层和热边界层的特点及两者的区别,这是进行边界层分析的前提。

2.边界层的特性 (1)边界层极薄,其厚度δ、t δ与壁面尺寸相比都是很小的量。

(2)边界层内法线方向速度梯度和温度梯度非常大。

(3)边界层内存在层流和紊流两种流态。

(4)引入边界层的概念后,流场可分为边界层区和主流区。

边界层区是流体粘性起作用的区域,而主流区可视为无粘性的理想流体。

(建议增加关于管内(受限空间)流动时的边界层分析,因为学生容易误解,管内流动情况下边界层也很薄。

)3.边界层微分方程组二维稳态无内热源层流边界层对流换热方程组由动量微分方程、连续性方程、能量微分方程组成,即221d d u u pu u xyxyυνρ∂∂∂+=-+∂∂∂0u xyυ∂∂+=∂∂22t t t uaxyyυ∂∂∂+=∂∂∂利用边界层理论,可将原本需整个流场求解的问题,转化为可分区(主流区和边界层区)求解的问题。

其中,主流区按理想流体看待,而边界层区用边界层微分方程组求解。

4.外掠平板层流换热边界层微分方程式分析求解 由常物性流体外掠平板层流边界层换热微分方程组22u u u u x yyυν∂∂∂+=∂∂∂0u xyυ∂∂+=∂∂22t t t uaxyyυ∂∂∂+=∂∂∂x w ,xΔt h t y λ⎛⎫∂=- ⎪∂⎝⎭可求解得到如下结论:(1)边界层厚度及局部摩擦系数1/2x5.0R e xδ-=1/3t Prδδ-=f,x 1/2x0.332R e 2C -=(2)常壁温平板局部表面传热系数1/21/32x x 0.332R e PrW /(m K )h xλ=⋅1/21/3N u 0.332R e Pr=其中普朗特准则Pr aν=,反映流体物性对换热影响的大小;努谢尔特准则N u hlλ=,反映对流换热强弱的程度。

5.1.4 边界层换热积分方程组及求解1.概述分析平板层流边界层换热问题的一种近似方法是,通过分析流体流过边界层任一微元宽度时的质量、动量及能量守恒关系,导出边界层积分方程组。

它与边界层微分方程组的不同在于,它不要求对边界层内每一微元都满足守恒定律,而是只要求包括固体边界及边界层外边界在内的有限大小的控制容积满足守恒定律即可。

2.边界层积分方程组 (1)边界层动量积分方程式d d()d ()d d d w u u u u y uu y xxδδρρτ∞∞∞-+-=⎰⎰(2)边界层能量积分方程式f0w d()d d t u t t y a x y δ⎛⎫∂-= ⎪∂⎝⎭⎰ 3.求解结果常物性流体外掠平板层流边界层速度分布曲线33122u y y u δδ∞⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭无量纲温度分布3w f wf t t 3122t t y y t t θθδδ⎛⎫⎛⎫-==- ⎪ ⎪-⎝⎭⎝⎭离平板前沿x 处的流动边界层厚度的无量纲表达式1/2x4.64R e x δ=局部摩擦系数f,x 1/2x0.323R e 2C -=离平板前沿x 处的热边界层厚度的无量纲表达式1/3t1/2x4.52PrR ex δ-=局部表面传热系数1/21/32x x 0.332R e PrW /(m K )h xλ=⋅1/21/3N u 0.332R e Pr=(建议增加积分解与分析解结果的比较,说明今后在计算过程中如何选取公式)5.1.5 动量传递和热量传递的类比紊流总粘滞应力为层流粘滞应力与紊流粘滞应力之和,即()2t m d N /m d l u yτττρνε=+=+紊流总热流密度为层流导热量和紊流传递热量之和,即()2t p h d W /m d l t q q q c a yρε=+=-+柯比朋类比律2/3x f,x Pr/2St C ⋅=(建议说明为什么可以类比、类比的原则是什么)5.1.6 相似理论基础1.相似原理 研究对流换热的主要方法是在相似理论指导下的实验方法,相似理论使个别的实验数据上升到能够代表整个相似群(?)的高度。

(建议再展开一些,许多学生不明白相似原理的用途)(1)相似性质1)用相同形式且具有相同内容的微分方程式所描述的现象称为同类现象。

只有同类现象才能谈相似问题。

(边界条件是否要相同)2)彼此相似的现象,其相关的物理量场分别相似。

3)彼此相似的现象,其同名相似准则必定相等。

(2)相似准则间的关系1)物理现象中的各物理量不是单个起作用,而是由各准则数组成联合作用。

因此方程的解只能是由这些准则组成的函数关系式,称为准则关联式。

2)按准则关联式的内容整理实验数据,就能得到反映现象变化规律的实用关联式,从而解决了实验数据如何整理的问题。

(3)判别相似的条件凡同类现象,单值性条件(几何条件、物理条件、边界条件、时间条件等)相似,同名的已定准则相等,现象必定相似。

学习相似理论时,读者应深入理解并充分掌握以下问题,如怎样安排实验、测量什么参数、如何整理实验数据,如何推广应用所得的实验关联式。

对于同一组实验数据,不同人采用不同的准则关系式形式,完全可能得到不同的实验关联式。

衡量一个实验关联式的好坏应该考虑该公式是否将所有实验数据拟合后的偏差最小,同时其参数范围是否广泛等。

教材中介绍的所有实验关联式都是前人经过大量实验研究并用相似理论方法整理出来的研究成果,学习时要充分理解并注意其使用方法及参数范围。

2.对流换热常用准则数及其物理意义 (1)雷诺准则,R e ulν=,它表示流体流动时惯性力与粘滞力的相对大小。

(2)格拉晓夫准则,32ΔG r g t lαν=,它表示浮升力与粘滞力的相对大小。

(3)普朗特准则,Pr aν=,它表示流体的动量传递能力与热量传递能力的相对大小。

(4)努谢尔特准则,N u hlλ=,它表示壁面法向无量纲过余温度梯度的大小。

在受迫对流换热问题中,引入无量纲准则数后,原本影响因素众多的表面传热系数就变为Nu =f (Re ,Pr)。

由此可知,根据准则数安排实验,可大大减少实验次数,并减少实验的盲目性。

(关于准则的物理意义,建议稍微展开一点解释,因为教材中关于此问题的解释不容易被学生理解。

许多学生是死记硬背下来的)3.实验数据的整理方法通常,对流换热问题的准则关联式可表示为如下形式N u (R e,Pr,G r)f =-----5.2公式小结5.2.1 外掠平板层流换热流动边界层厚度1/2x4.64R ex δ=热边界层厚度1/3t1/2x4.52PrR ex δ-=局部摩擦系数f,x 1/2x0.323R e 2C -=局部表面传热系数1/21/32x x 0.332R e PrW /(m K )h xλ=⋅1/21/3x x N u 0.332R e Pr=平均表面传热系数1/21/320.664R ePrW /(m K )h lλ=⋅ 1/21/3N u 0.664R ePr=5.2.2外掠平板紊流换热局部摩擦系数1/5f,x x0.0592Re C -=局部表面传热系数关联式4/51/3x xN u 0.0296R e Pr=平均表面传热系数关联式0.81/3Nu (0.037Re870)Pr=-5.3习题解析(以下几式中的矩形符号表示“正比于”或“相当于”的意思)例5.1 利用数量级分析的方法,对流体外掠平板的流动,从动量微分方程可导出边界层厚度有如下的变化关系式x δ试证明之。

相关文档
最新文档