工程师必看PCB布局和走线规则

合集下载

PCB布线的基本规则与技巧

PCB布线的基本规则与技巧

PCB布线的基本规则与技巧
敬迎:翼彳1.一般规则
1.1PCB板上预划分数字、模拟、DAA信号布线区域。

1.2数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。

1.3高速数字信号走线尽量短。

1.4敏感模拟信号走线尽量短。

1.5合理分配电源和地。

1.6DGND、AGND、实地分开。

1.7电源及临界信号走线使用宽线。

1.8数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。

2.元器件放置
2.1在系统电路原理图中:
a)划分数字、模拟、DAA电路及其相关电路;
b)在各个电路中划分数字、模拟、混合数字/模拟元器件;
c)注意各IC芯片电源和信号引脚的定位。

2.2初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。

Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。

2.3初步划分完毕彳爰,从Connector和Jack开始放置元器件:
a)Connector和Jack周围留出插件的位置;
b)元器件周围留出电源和地走线的空间;
c)Socket周围留出相应插件的位置。

2.4首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a)确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB板(Printed Circuit Board),即印刷电路板,是电子元器件连接和支撑的重要组成部分。

在电子设备中,PCB板起到连接电子元件、传导电信号和供电的作用。

本文将介绍PCB板的基础知识、布局原则、布线技巧和设计规则。

一、PCB板的基础知识1.PCB板的分类:根据不同的材料和结构,PCB板可以分为单面板、双面板和多层板。

2.PCB板的制作工艺:PCB板的制作包括原材料选购、制板、布线、焊接和测试等过程。

3.PCB板的重要参数:常见的PCB板参数包括厚度、层数、焦耳效应、阻抗控制等。

二、PCB板的布局原则1.布局紧凑且合理:电子元件应尽量集中布置,以减少信号线的长度和杂散电磁干扰。

2.电气分区与热分区:将电子元件按照功能分区,以便降低信号干扰,同时考虑热量的分布和散热问题。

3.处理信号线和电源线的互相干扰:要尽量增加信号线和电源线的间距,并避免平行穿越,以减少互相干扰。

4.放置元件外围的预留空间:为元器件的安装和维修预留足够的空间,以方便组装和维护。

三、PCB板的布线技巧1.信号线和电源线布线:信号线和电源线应分开布线,以减少互相干扰。

信号线应尽量缩短长度,减少串扰和信号损耗。

2.确定信号线的走向:信号线的走线路径应避开高频干扰源和高功率设备。

一般情况下,信号线应尽量走直线,避免拐弯和交叉。

3.地线布线:地线是保证PCB板正常工作的重要线路,地线应尽量接近信号线,以减少回流噪声。

同时,地线应尽量宽,以降低电阻和噪声。

4.设置滤波电容:在PCB板上合适的位置加入滤波电容,可以有效降低电源杂波及其他噪声的干扰。

四、PCB板的设计规则1.规定LED、电位器和按键的位置和引脚间距。

2.规定电源线的规格、引脚间距和安全间距。

3.规定电子元件与焊盘的间距和接触面积。

4.规定PCB板的最小线宽、最小孔径和最小间距。

5.规定PCB板的阻焊、喷锡、丝印等工艺要求。

pcb布线的要求和规则

pcb布线的要求和规则

pcb布线的要求和规则PCB布线可是电路板设计里超重要的一环呢,就像给城市规划道路一样,有好多有趣的要求和规则哦。

一、电气规则。

1. 线宽。

线宽可不是随便定的呀。

如果是电源线或者地线呢,一般要宽一些。

为啥呢?因为它们要承载比较大的电流呀。

就像大水管才能供应大楼里很多人的用水一样,宽的线才能让大电流顺利通过,不容易发热。

要是线太细了,电流一大,它就会像小细胳膊拎重物一样,累得发热,搞不好还会把自己给烧坏呢。

而对于信号线,电流小一些,线宽就可以相对窄一点,但也不能太窄啦,不然信号传输可能会不稳定哦。

2. 间距。

线与线之间的间距也很有讲究。

不同电压的线之间得保持一定的距离,就像不同性格的人相处得保持点空间一样。

如果间距太小,电压高的线可能就会对电压低的线产生干扰,就像一个大嗓门的人在小空间里会吵到旁边安静的人一样。

而且间距太小还容易引起短路,这可就麻烦大了,就像两条本不该相交的路突然撞在一起,那交通就乱套啦。

3. 过孔。

过孔在PCB上就像一个个小隧道。

过孔的大小和数量也得合适。

过孔太小的话,可能会影响信号的传输质量,就像小隧道里塞个大卡车,肯定走得不顺溜。

而过孔太多呢,会占用不少空间,而且也可能对电路板的性能有一些小影响,就像城市里到处挖小坑,虽然每个坑不大,但是多了也会影响市容和交通呢。

二、布线走向。

1. 直角与钝角。

布线的时候,最好不要有直角,能钝角就钝角。

直角就像一个很尖锐的转弯,信号在这儿走就会很不舒服,就像汽车在直角弯处很容易磕磕碰碰一样。

钝角就柔和多了,信号走起来也顺畅,这样信号传输的质量就会比较好。

2. 平行布线。

平行布线的时候要特别小心。

如果是不同类型的信号线平行走得太长了,就容易互相干扰。

这就好比两个人并肩走得太久,胳膊腿总会不小心碰到对方。

所以平行布线的时候,要么拉开距离,要么中间加个隔离带,像给它们之间加个小栅栏一样。

三、布局相关。

1. 元件布局与布线。

元件的布局对布线影响很大哦。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

pcb布局布线技巧及原则

pcb布局布线技巧及原则

PCB布局布线技巧及原则1. 引言PCB(Printed Circuit Board)布局布线是电子产品设计中至关重要的一步。

良好的布局布线能够确保电路的可靠性、性能和EMI (Electromagnetic Interference)抗干扰能力。

本文将介绍一些常见的PCB布局布线技巧及原则,帮助读者更好地进行电路设计和布线。

2. PCB布局技巧2.1 分区布局在设计复杂的电路板时,将电路板分为几个功能区域进行布局是一个很好的策略。

例如,将微处理器、模拟电路和电源电路分开布局。

这可以降低信号干扰,并更好地管理电源分配和地平面。

2.2 复用层对于多层PCB设计,可以使用复用层的技术来提高布局效率。

复用层是指多个分区共享同一个地平面或电源平面。

这样做可以减少电路板的层数,提高信号完整性和EMI性能。

2.3 阻抗控制在高速设计中,阻抗控制是非常重要的。

通过合理设计走线宽度、间距和层间距,可以实现所需的阻抗匹配。

使用阻抗控制工具进行模拟和仿真分析,以确保信号完整性。

2.4 时钟信号布局时钟信号在高速电子系统中非常关键。

为了降低时钟抖动和噪声,应优先布置时钟信号线。

时钟信号线应尽量短、直接,并与其他信号线保持一定的距离以减少干扰。

2.5 地平面和电源分布良好的地平面和电源分布可以大大改善电路性能和抗干扰能力。

地平面应尽量连续、整齐,并尽可能地覆盖整个PCB区域。

电源分布应合理,避免共享电流,以减少电源波动。

3. PCB布线原则3.1 追求最短和最直接的路径布线时应尽量追求最短和最直接的路径,以降低传输延迟和信号损失。

避免走线过长或弯曲,特别是对于高速信号和时钟信号。

3.2 避免平行和交叉在布线过程中,应尽量避免平行和交叉走线。

平行走线容易引起串扰干扰,而交叉走线则易引起交互耦合。

合理规划走线,尽量平行走线和交叉垂直走线。

3.3 差分信号布线对于高速差分信号,应采用差分布线技术。

差分信号的两条传输线上的信号互为补码,可以大大减小对外部干扰的敏感度。

PCB布局布线基本规则

PCB布局布线基本规则

PCB布局布线基本规则1.PCB布局规则:a.分区布局:将电路根据功能或信号特性划分为不同的区域,例如电源区、信号区、地区等。

这样可以降低不同功能电路之间的干扰,并便于布线和维护。

b.元件布局:布置元件时,应尽量避免元件之间的干扰,尤其是高频电路和低频电路之间。

元件之间的距离和方向应符合电路设计要求,并考虑到制造工艺。

c.焊缺少布局:布局时应考虑到焊接的可行性,尽量避免焊接困难的地方,例如过小的间距、焊接高度差等。

d.引脚分布:相同类型的引脚应尽量靠近一起,并按照布局规则布置,以便于连接更好。

e.散热布局:对于需要散热的元件,应设计合适的散热装置,并考虑空间布局和散热通道。

2.PCB布线规则:a.信号和地线布线:信号和地线应尽量并行布线,以减小串扰,信号线和地线之间要保持一定的距离。

对于高速信号,应采用差分布线方式,以提高抗干扰能力。

b.电源线布线:电源线的布线要考虑到功率和干扰失真,避免共模干扰。

电源线应尽量短而粗,减少压降和噪音。

c.时钟布线:时钟信号应尽量短、直接、规整布线,以减小时钟偏差和时钟抖动,提高电路性能。

d.确定布线顺序:按照信号优先级和电路层次确定具体的布线顺序,先布线关键信号,再布线次要信号。

e.保持对称性:对于差分信号,应保持布线对称性,使两条线的长度相等,以减小串扰。

f.避免交叉布线:布线时应尽量避免信号线的交叉,特别是高频信号。

交叉会引入串扰、电磁辐射等问题。

g.地线布线:地线是非常重要的,应尽量保持低阻抗和低电压降。

地线网应尽量均匀分布,缩短回路长度。

h. 电源去耦布线:对于需要去耦的元件,如数字电路的Vcc和GND,应尽量采用两个电容、一个靠近Vcc引脚,另一个靠近GND引脚,以提供稳定的电源。

以上仅是PCB布局和布线的基本规则,实际设计还需要结合具体的电路需求和PCB制造工艺等因素进行综合考虑。

布局和布线的好坏直接影响电路性能、可靠性和电磁兼容性,因此在进行PCB设计时,需要有一定的经验和技巧,不断进行反复优化和仿真验证,确保设计的质量和可靠性。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。

2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。

3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。

4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。

5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。

二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。

2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。

3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。

对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。

4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。

对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。

5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。

同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。

6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。

7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。

三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。

2.尽量减小信号线的面积,减少对周围信号的干扰。

3.尽量采用四方对称布线,减少线路不平衡引起的干扰。

4.尽量降低线路阻抗,提高信号的传输质量。

PCB布局布线设计规范和要求

PCB布局布线设计规范和要求

PCB布局布线设计规范和要求预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制PCB布局布线设计规范和要求PCB布局规范一:布局设计原则1:距板边距离应大于5mm2:先放置与结构关系密切的元件,如接插件,开关,电源插座等3:优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件4:功率大的元件摆放在有利于散热的位置上5:质量较大的元器件应避免放在板的中心,应靠近机箱中的固定边放置6:有高频连线的元件尽可能靠近,以减少高频信号的分布和电磁干扰7:输入,输出元件尽量远离8:带高压的元器件尽量放在调试时手不易触及的地方9:热敏元件应远离发热元件10:可调元件的布局应便于调节11:考虑信号流向,合理安排布局使信号流向尽可能保持一致12:布局应均匀,整齐,紧凑13:SMT元件应注意焊盘方向尽量一致,以利于装焊,减少桥联的可能14:去藕电容应在电源输入端就近位置15:波峰焊面的元件高度限制为4mm16:对于双面都有的元件的PCB,较大较密的IC,插件元件放在板的顶层,底层只能放较小的元件和管脚数少且排列松散的贴片元件17:对小尺寸高热量的元件加散热器尤为重要,大功率元件下可以通过敷铜来散热,而且这些元件周围尽量不要放热敏元件.18:高速元件尽量靠近连接器;数字电路和模拟电路尽量分开,最好用地隔开,再单点接地19:定位孔到附近焊盘的距离不小于7.62mm(300mil),定位孔到表贴器件边缘的距离不小于5.08mm(200mil)二:布线设计原则1:线应避免锐角,直角,应采用四十五度走线2:相邻层信号线为正交方向3:高频信号尽可能短4:输入,输出信号尽量避免相邻平行走线,最好在线间加地线,以防反馈耦合5:双面板电源线,地线的走向最好与数据流向一致,以增强抗噪声能力6:数字地,模拟地要分开7:时钟线和高频信号线要根据特性阻抗要求考虑线宽,做到阻抗匹配8:整块线路板布线,打孔要均匀9:单独的电源层和地层,电源线,地线尽量短和粗,电源和地构成的环路尽量小10:时钟的布线应少打过孔,尽量避免和其他信号线并行走线,且应远离一般信号线,避免对信号线的干扰;同时避开板上的电源部分,防止电源和时钟互相干扰;当一块电路板上有多个不同频率的时钟时,两根不同频率的时钟线不可并行走线;时钟线避免接近输出接口,防止高频时钟耦合到输出的CABLE线并发射出去;如板上有专门的时钟发生芯片,其下方不可走线,应在其下方铺铜,必要时对其专门割地;11:成对差分信号线一般平行走线,尽量少打过孔,必须打孔时,应两线一起打,以做到阻抗匹配12:两焊点间距很小时,焊点间不得直接相连;从贴盘引出的过孔尽量离焊盘远些Q:众所周知PCB板包括很多层,但其中某些层的含义我还不是很清楚。

PCB设计布局及布线规则

PCB设计布局及布线规则

PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。

按工艺设计规范的要求进行尺寸标注。

2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。

根据某些元件的特殊要求,设置禁止布线区。

3. 综合考虑PCB性能和加工的效率选择加工流程。

加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。

4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。

G. 如有特殊布局要求,应双方沟通后确定。

5. 同类型插装元器件在X或Y方向上应朝一个方向放置。

同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。

7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。

当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。

9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是电子产品中常用的一种电路元件,它由导线和电子元器件组成。

在进行PCB板的设计时,需要遵循一些基础知识、布局原则、布线技巧和设计规则,以确保电路板的稳定性和可靠性。

一、PCB板基础知识1.PCB板的分类:单面板、双面板、多层板。

2.PCB板的材料:常用的材料有FR-4玻璃纤维布基板和铝基板。

3.PCB板的层次结构:底层、封装层(元器件的焊接)、布线层(导线的布局)。

4.PCB板的元器件封装:常用的有DIP封装、SMD封装和BGA封装。

二、布局原则1.分区布局原则:将整个电路板划分为功能区、电源区和信号区,使各个区域之间的干扰最小。

2.元件布局原则:将功能相似的元器件尽量靠近,减少导线长度,降低电磁干扰。

3.重要性能电路布局原则:将音频、射频等重要性能电路放置在相对比较靠近电源接口的位置,以避免电源和地的干扰。

4.高功率元件布局原则:高功率元件(如继电器、驱动板等)应远离低功率元件,以避免高功率元件的热与电磁干扰对低功率元件产生不利影响。

三、布线技巧1.信号线布线技巧:要尽量避免信号线的交叉,使信号线按照逻辑关系进行布线,减少互相干扰的可能。

2.电源线布线技巧:按照电流大小和电压的需求进行布线,尽量减小电源线的长度和电阻。

3.地线布线技巧:要保证地线的连续性和稳定性,避免形成环路和过长的回流路径。

4.时钟信号布线技巧:时钟信号的布线应尽量短且相等,以避免时钟偏差和信号失真。

5.差分信号布线技巧:差分信号的正负线要尽量靠近,长度要保持一致,以降低互相干扰的可能性。

四、设计规则1.间距规则:不同电压等级之间、信号与电源之间、信号与地之间要有足够的间距以保证安全性和稳定性。

2.导线规则:要根据电流大小和导线的宽度选择合适的线宽,以确保导线的稳定性和通气性。

3.焊盘规则:要根据元器件的引脚数目确定焊盘的大小,以保证焊接的可靠性和稳定性。

PCB设计常用规则

PCB设计常用规则

PCB设计常用规则1.布局规则:-尽量把信号线距离外部干扰源保持一定的距离,例如电源线或传感器线。

-确保电源和地线的位置合理,避免产生不必要的电源噪声。

-按模拟和数字信号分类,使其互相之间的交叉干扰最小化。

-有时会需要将辐射敏感部件放在较远的位置,以降低敏感部件的辐射噪声和互相干扰。

-尽量减少思路级距离,以避免布线时的冲突。

正确的放置元件和电源是设计的基础。

2.电源规则:-为模拟和数字设计分别提供独立且稳定的电源线路。

-尽量避免共地,尤其是大电流回流路径和精密模拟电路的共地。

-采用足够大的电流轨迹和电源引脚,以确保电流正常通行。

-确保地线有足够的导电面积,以减小接地的电阻。

3.信号完整性规则:-严格控制信号和层间距离,以减少信号之间的串扰。

-控制信号线的长度,在高速传输中,尽量保持信号长度的匹配性,以降低信号传输的延迟差异。

-使用正确的终端和阻抗匹配技术来降低信号波形失真。

-对于时钟线,尽可能地短并采用分布式布局,以减少时钟偏移和抖动。

4.焊盘和引脚规则:-控制软硬连板的距离,以确保焊盘的可靠性和质量。

-使用足够大的焊盘或足够的焊盘面积,以确保良好的焊接性能。

-确保SMT元件的引脚尺寸、间距和与焊盘的配对,以确保正确的组装。

5.热管理规则:-确保散热器或冷却体与芯片之间有足够的热接触面积。

-调整散热板上的负载分布,以确保散热板的温度均匀分布。

-处理高功率芯片的散热问题时,考虑加入热沉或风扇以提高散热效果。

除了上述规则外,还有其他一些更加具体的规则需要根据具体的设计需求进行调整。

例如,高频线路的规则会更严格,需要更小的封装和更短的线路,以减少信号衰减和串扰。

模拟和数字信号的传输速率不同,需要采取不同的规则来控制布线和层间距离。

各种规则的合理应用,可以提高PCB的可靠性、稳定性和性能。

PCB布局布线的一些规则

PCB布局布线的一些规则

PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。

同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。

8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。

9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。

二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。

从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。

必要时应采取手工优先布线、屏蔽和加大安全间距等方法。

保证信号质量。

b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。

c、有阻抗控制要求的网络应尽量按线长线宽要求布线。

(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。

在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。

《pcb布线规则及技巧》

《pcb布线规则及技巧》
3. MIPI线对应至少保证2W以上的距离,MIPI线对间最好走一条地线以作保护。 4. SCL和SDA是I2C的串行数据线,并不要求等长。在走线时应尽量不与时钟线MCLK
交叉,二者距离应至少保证2W,3W为宜(因为I2C串行数据线的工作频率大概是 400K,而时钟线的工作频率在1M以上,易产生干扰)
电路或设备中,也往往要用到EMI电路或采取其它措施防止和抑制EMI的发生,以防 止和抑制干扰,如通讯电缆的终端电阻,电脑的机箱,变压器的屏蔽罩,用顺磁材 料或抗磁材料来疏导或阻止电磁场的穿行等等。EMI是产品投放市场前电工认证的 一个必检内容。 我们平时经常见到一些产品由于EMI不过关的报告或投诉。我 们常见 的开关电源入口处,有一个两个绕组的电感,这个电感是共模抑制电感,也起到减 少EMI的作用。另外,一些数据线的两头,会鼓出来一个大包包(例如电脑
13. 金手指布线时过孔只能打在补强以下。 14. 布线过程中,过孔的大小为硬板0.4/0.2,其余板0.35/0.15或0.3/0.1 15. MIPI接口是指串行差分接口,DVP接口是指并行传输接口
布线时发现边上布线空间不足,不够包地 ,除了可以换层之外,可以把过孔上移
当发现电源线(如左图 DOVDD)引脚在内部时, 0.2 粗细的电源线会超出安全距 离,此时可以打过孔布线或 者将电源线一分为二走向芯 片引脚,左图一分为二影响 DVDD走线,否则不应在 芯 片内部打过孔
(一分为二)
当电源线或地线引脚成排时,可采用图 示方法布线
当电源线走线与其他走线相交,若 走外围绕圈将导致空间不足以包地 时,可打过孔布线
MIPI线对间包地,当其中一组MIPI线S型 走线时,需对地线进行布线,便于散热
该图布线有误,MIPI线布线时应注意等 长,布线过程中应使MIPI线尽量紧靠, 间距保持在2W以内,长度无法实现等长 时,应使MIPI线集中在一个区域绕线改 变长度

pcb布局布线技巧及原则

pcb布局布线技巧及原则

pcb布局布线技巧及原则随着现代电子产品的迅速发展,PCB布局布线技术也变得越来越重要。

合理的PCB布局和布线,可以使电路板满足各种电气和电磁兼容性要求,提高电路可靠性和生产效率。

本文将介绍PCB布局布线的一些技巧及原则,以帮助电子工程师更好地设计出优秀的电路板。

1. 布局原则(1)分区原则在PCB布局设计中,分区原则是非常重要的一项内容。

设计师首先需要根据电路的功能特征,将电路板分成若干区域。

每个区域中的电路具有相同的特征和要求,例如电源、信号处理、调试等等,设计师应注意避免不同类型的电路混合在同一区域内。

(2)分层原则为了减小电路板的尺寸和降低电路板的干扰,电子工程师会采用分层原则。

具体来说,电路板会分成不同的层,例如信号层、地层和电源层等。

这样就可以大幅减少信号线的长度,从而减小了电路板的电磁干扰,提高了整个电路板的性能。

(3)最短线路原则在PCB布局设计中,需要尽可能的缩短电路板的信号线路,以减小电路板的电磁干扰,提高信号传输的可靠性。

设计师在布线时最好保证信号线的长度尽可能短。

(4)空间利用原则在设计电路板布局时,设计师还应考虑空间利用原则,充分利用电路板的空间,使得每一块电路板发挥最大的效益。

例如,在空间有限的情况下,可以采用堆叠电容和器件的方式,以节省空间。

2. 布线技巧(1)防止信号干扰为防止信号线之间的干扰,可以将两条信号线之间插入空白区域或地线,或者增加信号线之间的距离。

此外,设计师还可以采用屏蔽技术,在某些敏感信号线附近铺设金属屏蔽来防止干扰。

(2)少转弯原则在布线时,少转弯原则也是非常重要的。

因为信号线在转弯的时候会产生电容和电感,这样就会对信号的传输产生影响。

因此,在信号传输方向的每个转弯点,都尽量减少转弯角度或使用圆角。

(3)避免信号共享线信号共享线指的是多个信号共用一条线路。

这样会导致信号之间的干扰,并且也不利于信号的传输。

设计师应尽量避免使用信号共享线。

(4)对地设计技巧地线的设计也非常重要。

PCB电路板布局布线基本原则

PCB电路板布局布线基本原则

PCB电路板布局布线基本原则1.电源分配:电源的布局是电路布局的首要考虑因素。

电源线应该尽量短,粗,走直线,避免与其他信号线相交,以减少干扰和电源噪声。

2.信号与地平面的分离:为了防止信号间的串扰和杂散电磁辐射,应尽量隔离模拟信号和数字信号以及高频信号和低频信号。

同时,需要设置大面积的地平面,以提供良好的地连接,降低噪声。

3.分区规划:将电路板划分为不同的模块或功能区,根据信号层次、噪声敏感度和功率特性来确定布局,各个区域之间应平衡布局,避免相互干扰。

4.元件布局:元件之间的布局应考虑信号的流向、施加特性和相互关系。

一般来说,从输入到输出的信号流向应是逐渐增强的。

另外,重要的元件和模块应放在离输入和输出较近的位置,以便于调试和维护。

5.确定关键信号线:在布局和布线中,关键信号线,如时钟信号、高速差分信号等,需要特别关注。

这些信号线需要尽量走最短的路径,减少路径中的阻抗变化和反射,同时需要与其他信号线保持最小的距离,以减少串扰。

6.信号层次:不同的信号层次应通过合理的布局和布线来满足设计要求。

高频信号需要使用内层铜箔进行引导,而尽量与数字信号、低频信号和电源线分开。

对于高频信号,尽量使用短而宽的线路,并使用适当的层间连接技术来减小阻抗。

7.传导和辐射:在布局和布线中需要考虑到传导和辐射两个方面的干扰。

传导干扰可以通过合理的布局和接地设计来减少,而辐射干扰则需要通过电路板的屏蔽和接地设计来避免。

8.压降和散热:在布线中需要注意电流路径的压降问题,尽量使用宽而短的线路来减小电阻和电压降。

同时,需要合理设计散热结构,确保电路板的温度在可接受范围内。

综上所述,PCB电路板布局和布线的基本原则主要包括电源分配、信号与地平面的分离、分区规划、元件布局、关键信号线的处理、信号层次设计、传导和辐射的控制、压降和散热的考虑等。

这些原则可以帮助设计师设计出性能优良、可靠稳定的PCB电路板。

PCB板基础知识、布局原则、布线技巧、设计规则

PCB板基础知识、布局原则、布线技巧、设计规则

PCB 板基础知识一、PCB 板的元素1、 工作层面对于印制电路板来说,工作层面可以分为6大类,信号层 (signal layer )内部电源/接地层 (internal plane layer )机械层(mechanical layer ) 主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用。

EDA软件可以提供16层的机械层。

防护层(mask layer ) 包括锡膏层和阻焊层两大类。

锡膏层主要用于将表面贴元器件粘贴在PCB上,阻焊层用于防止焊锡镀在不应该焊接的地方。

丝印层(silkscreen layer ) 在PCB 板的TOP 和BOTTOM 层表面绘制元器件的外观轮廓和放置字符串等。

例如元器件的标识、标称值等以及放置厂家标志,生产日期等。

同时也是印制电路板上用来焊接元器件位置的依据,作用是使PCB 板具有可读性,便于电路的安装和维修。

其他工作层(other layer ) 禁止布线层 Keep Out Layer钻孔导引层 drill guide layer钻孔图层 drill drawing layer复合层 multi-layer2、 元器件封装是实际元器件焊接到PCB 板时的焊接位置与焊接形状,包括了实际元器件的外形尺寸,所占空间位置,各管脚之间的间距等。

元器件封装是一个空间的功能,对于不同的元器件可以有相同的封装,同样相同功能的元器件可以有不同的封装。

因此在制作PCB 板时必须同时知道元器件的名称和封装形式。

(1) 元器件封装分类通孔式元器件封装(THT ,through hole technology )表面贴元件封装 (SMT Surface mounted technology )另一种常用的分类方法是从封装外形分类: SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装(2) 元器件封装编号编号原则:元器件类型+引脚距离(或引脚数)+元器件外形尺寸例如 AXIAL-0.3 DIP14 RAD0.1 RB7.6-15 等。

Pcb布局规则和技巧

Pcb布局规则和技巧

Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。

2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。

3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。

4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。

Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。

2、以每个功能单元的核心元器件为中心,围绕他来进行布局。

元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。

3、在高频下工作的电路,要考虑元器件之间的分布参数。

一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。

特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。

易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。

2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。

高电压的元器件应尽量放在手触及不到的地方。

3、重量超过15G的元器件,可用支架加以固定,然后焊接。

那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。

热敏元器件应远离发热元器件。

4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果采用过波峰焊的加工工艺,还应确定过波峰焊时PCBA的走动方向5、2、5、布局操作:一、要依照各模块电路的特性,遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局。

、二、参考原理图,根据电路的特性安排主要元器件布局。

三、要考虑各元件立体空间协调与安规距离的符合5、2、6、过锡方向分析,散热分析,风向及风流量考虑 (如:散热片应怎样放、多厚、散热牙(翼)方向、散热面积多大最利于散热、散热片材质要求、辅助散热、风道方向、PIN脚稳固性、可靠度等)5、2、7、布局应尽量满足以下要求: 初级电路与次级电路分开布局;交流回路, PFC、PWM回路,整流回路,滤波回路这四大回路包围的面积尽量小, 各回路中功率元件引脚彼此尽量靠近,控制IC要尽量靠近被控制的MOS管,控制IC周边的元件尽量靠近IC布置5、2、8、电解电容不可触及高发热元件,如大功率电阻,变压器,散热片5、2、9所有金属管脚不能紧靠在相邻元件本体上,以防过锡时高温使元件管脚烫伤其它元件外壳而短路或爆裂5、2、10、发热元件一般应均匀分布,以利于单板与整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件5、2、11、跳线不要放在IC及其它大体积塑胶外壳的元件下,避免短路或烫伤别的元器件。

5、2、12、SMD封装的IC摆放的方向必需与过锡炉的方向成平行,不可垂直,如下图SOL5、2、13、SMD封装的IC两端尽可能要预留2、0mm的空间不能摆元件,为了预防两端SMD元件吃锡不良。

如果布局上有困难,可允许预留1、0mm的空间5、2、14、多脚元件应有第1脚及规律性的脚位标识(双列16PIN以上与单排10PIN以上均应进行脚位标识)PFC MOS与PWM MOS散热片必须接地,以减少共模干扰5、2、15、对热敏感元件(如电解电容、IC、功率管等)应远离热源,变压器、电感、整流器等;发热量大的元件应放在出风口或边缘;散热片要顺着风的流向摆放;发热器件不能过于集中5、2、16.功率电阻要选用立插封装摆放,以便散热或避免烧坏板子;如果就是卧插封装,作业时一定要用打KIN元器件5、2、17、考虑管子使用压条时,压条与周边元件不能相碰或出现加工抵触5、2、18、贴片元件间的间距:a、单面板:PAD与PAD之间要求不小于0、75mmb、双面板:PAD于PAD之间要求不小于0、50mmc、单面板/双面板:PAD于板边间距要求不小于1、0mm;避免折板边损坏元件(机器分板);次级对大地或功能地: 0、9mm(≥150Vin);0、9 mm(≤150Vin)L对N: 3、0mm(保险之前);1、7mm(保险之后至大电解处)(≥150Vin)2、2mm(保险之前);0、9mm(保险之后至大电解处)(≤150Vin)电气间隙与爬电距离不区分:原边其她直流高压:1、7 mm(≥150Vin);0、9 mm(≤150Vin)同类型线路间最小距离:0、5mm(SMT 0、4mm),局部短线可以用到0、4mm(SMT 0、35mm)注:1、以上为普通布板情况,特殊情况或未到之处请咨询安规工程师2、初、次级同时靠近一个地时,初级到地距离+次级到地距离≥初、次级间距离5、4、PCB布线5、4、1、为了保证PCB加工时板边不出现断线的缺陷,PCB布线距离板边不能小于0、5mm 5、4、2、在布线时,不能有90度夹角的走线出现5、4、3、IC相邻PIN脚不允许垂直于引脚相连5、4、4、各类螺钉孔的禁布区范围内禁止有走线5、4、5、逆变器高压输出的电路间隔要大于240mil,否则开槽≥1、0mm,并有高压符号标示5、4、6、铜箔最小间距:单/双面板0、40mm,特殊情况可以减小,但不超过4处5、4、7、设计双面板时要注意,底部有金属外壳或绕铜线的元件,因插件时底部与PCB接触,顶层的焊盘要开小或不开,同时顶层走线要避开元件底部,以防短路发生不良。

5、4、9、双面板锰铜线顶层不要铺铜,锰铜线孔不做金属化;(锰铜丝等作为测量用的跳线,焊盘过孔要做成非金属化;若就是金属化,那么焊接后,焊盘内的那段电阻将被短路,电阻的有效长度将变小而且不一致,从而导致测试结果不准确)。

5、4、10、布线时交流回路应远离PFC、PWM回路。

5、4、11、PFC、PWM回路要单点接地。

5、4、12、、有金属与PCB接触的元件,禁止下面有元件跳线与走线。

5、4、13、金属膜电阻下不能走高压线(针对多面板)。

5、4、14、反馈线应尽量远离干扰源( 如PFC电感、PFC二极管引线、MOS管)的引线,不得与它们靠近平行走线。

5、4、15、变压器下面禁止铺铜、走线及放置器件。

5、4、16、若铜箔入焊盘的宽度较焊盘的直径小时,则需加泪滴,如下图。

经常需拆取的元件,引脚焊盘周围须加大铺铜面积,以防拆取元件造成翘皮,如插座多PIN脚、晶体脚、单焊盘铜箔等有可能经常取插维修之焊盘。

5、4、17、布线要尽可能的短,特别就是EMI线路,主回路及部分回路与电源线,大电流的铜箔要求走粗;主回路及各功能模块的参考点或地线要分开。

错正确基板弯曲标准如下:弯曲度X=H-T/L*100%单面板:X<0、7%5、10、4、铜箔厚度标准以70um为主+0、0070、018mm(18um,1/2盎司) -0、0050、035mm(35um,1盎司) +0、010-0、0050、07mm (70um,2盎司) +0、018-0、0085、10、5、开孔孔径的公差a、单面板孔径的公差0、05mmb、双面板孔径的公差0、075mm5、11、孔径与孔距5、11、1、一般电阻、电容、二极管元件孔径大小为:a、单面板元件脚大小+0、3mm (打Kin元件+0、4mm),b、双面板元件脚大小+0、4mm;c、R/I,A/I元件孔径:元件脚大小+0、4mm。

5、11、2、PCB一般最小孔径为1、0mm,特殊情况可开0、8mm。

如脚直径为0、6mm、5、11、3、孔边到孔边大于或等于0、75mm or PCB厚度;孔边到PCB板边大于或等于PCB厚度5、11、4、电阻及二极管A/I元件脚距必须就是7、5mm,10mm,12、5mm,特殊情况1/8W的电阻可用6、0mm5、11、5、引脚直径0、8mm以上只能手插,不能打A/I,0、8mm以下脚距为17、5mm以下可AI。

5、11、6、引脚直径0、8mm以上的立式元件不能打R/I,因机器不能剪断元件脚。

5、11、7、R/I元件的脚距必须就是2、5mm或5、0mm;5、11、8、A/I&R/I的板边定位孔规定为孔径大小为3、5或4、0mm,且要有两个在同一直在线标5、0mm/5、0mm孔。

5、12、连片方式5、12、1、控制小板连片方式 (可参考下图)、注意:由于使用机器设备分板,不用人工折板,要求零件PAD 与板边间距不小于1、0mm;板与板之间漏空,以利机器辅助分板,提高效率。

PCB 的连片最大与最小尺寸:最大 最小AI 立式 483﹡406 100﹡80 AI 卧式 457﹡310 100﹡80 5、12、2、大板连片方式、注:不就是所有大板都要加板边,若靠板边3mm 内无元件脚及上锡位,可两边都不加板边或一边不加板边、大板长度小于200mm,一般要求水平方向两连片,可在板边层画出示意图;若Layout 时全部用传统元件需打R/I,板边一定要加标准5mm/5mm孔。

5、13、导入R/I 注意事项5、13、1、打卧式PIN 脚为内弯脚,立式PIN 脚为外弯。

5、13、2、(Layout 时注意周边安全位置需留出及PIN 脚与防焊短路) 5、13、3、PCB 孔距(即材料脚距):卧式元件5mm----18mm 之间; 5、13、4、立式只能固定打2、5mm 与5、0mm 两种。

5、13、5、电阻最大能打到1W 小型化 ,电解电容最大直径为10mm 以下,高度为20mm 。

陶瓷电容/电解电容/Y 电容:本体高度不能超过18mm,宽度不能超过10mm 所有材料均要为编带。

5、14、卧式零件与相邻零件布置原则 5、14、1、卧式零件孔径规格:5、14、2、零件成水平直线时,相邻两孔中心距离最小为2、5mm 、5、14、3、零件成垂直直线时,相邻两零件距离最小为2、5mm 。

15~450 1、m孔径+0、4mm(最小为1、0mm) 5、0~20mm 规格 线角角度 线长 孔径 孔距(pitch) 种类5、14、4、两零件成900布置时,相邻两零件距离最小为2、5m5、14、5、零件成阶梯状布置时,相邻两零件距离最小为2、5mm。

5、14、6、引脚尽量沿弯脚方向布置(AI卧式弯脚朝内)。

零件布置时,孔位必须为00或900、每片PCB最少布置15颗AI零件。

5、14、7、电容可自插零件最大高度为20mm,本体最大直径为10mm立式零件孔径规格。

VR规格15~4501、5±0、3mm孔径+0、4mm(最小为1、0mm)5、0mm规格线角角度线长孔径孔距(pitch)种类3.0 ±0.15.0 ±0.1Ø1.2±0.1Ø1.02. 55、14、8、零件成垂直直线布置时,本体间距为1~1、5mm。

5、14、9、零件成水平直线布置时,本体间距为1~1、5mm。

5、14、10、当零件互成900布置时,零件相距最小为2mm。

5、15、立式零件布置范围内有卧式零件布置时,需参照下列要求5、15、1、三脚晶体/半圆形晶体下方不可布置AI零件。

(除架高外)5、15、2、架高立式零件本体下方不可布置与之相垂直的卧式零件、(AI治具无法放置零件)5、16、AI线脚对PCB Layout的要求5、16、1、距AI线脚孔引脚方向2、0mm内不得放置器件(同一电位点)5、16、2、距AI线脚孔引脚方向2、5mm内不得放置元器件(不同电位点)如下图所示,间距需在2、5mm以上。

5、16、3、SMD元件于AI元件距离 (同电位)。

5、16、4、SMD元件于AI元件距离 (不同电位)。

建议:电源PCB板AI与RI元件比较多,可委外加工打AI板,速度快,效率高,省工省时,错误率极低。

元件不会东倒西歪,节省PCB修改时间。

2、5最小間距在2、4mm以上,否則,影響SMD貼片,或與SMD零件短路、。

相关文档
最新文档