verilog编写的uart程序

合集下载

uart16550IP核的设计与FPGA的实现

uart16550IP核的设计与FPGA的实现
UART是用于实现CPU与串行设备通信的芯片。其将从外部传输来的串行数据去除起始位、停止位和校验位转化为字节使供内部并行器件使用,如处理由键盘或鼠标发出的中断信号。反过来内部待发送的数据通过加入起始位、校验位和停止位并进行串并行转换也可以向外发送数据。通过UART我们可以实现计算机内部与外部串行设备的同步管理问题。常见的UART有INS8250和PC16450,PC16650,PC16750而在这里我们要介绍的16550优势在于它可以在计算机需要处理数据前在其FIFO内存储16字节数据,减少数据发送的次数,从而更有效的利用CPU,从而提高系统的整体性能。
图2.1UART16550基本结构图
下面将介绍整个UART工作原理。
CPU通过CPU接口模块设定整个UART初始状态,如是奇校验还是偶校验、波特率数值和停止位的位数。波特率发生器分频出设定好的波特率并以设定的波特率控制发送和接收模块以达到发送和接收的同步。发送数据时CPU将待发送的并行数据输入发送FIFO,在发送FIFO中有16字节的缓存以减少发送数据时CPU中断次数。发送模块将并行数据转化为串行数据并在数据位前加上起始位后面加上奇偶校验位和停止位,通过串行发送方式发送给外设。接收模块会时刻监视串行输入端口,一旦检测到电平转换(即起始位)接收模块会马上进行状态判断并接收数据,通过奇偶校验和启停位检测有效的排除掉错误数据,然后将启停位和校验位去除,剩余的数据位发送到发送FIFO,并通知CPU在CPU接口模块接收的数据,最后数据就被传输至中央处理区。
3.4波特率发生模块
波特率发生器主要功能就是从输入时钟转换出需要的波特率clk。波特率发生器实际就是一个分频器,通过设计一个计数器,使工作频率很高的系统时钟分频为所需的波特率时钟。之所以需要设定这样一个时钟是因为收发设备间的时钟会积累导致接收数据不正确。而波特率发生器就是专门产生一个远远高于波特率的本地时钟信号对输入RXD不断采样以保证接收器和发送器保持同步。

rs串口verilog代码

rs串口verilog代码

UART是通用异步收发器的简称,其中有一种电平规范较RS232规范,它用-3~-15V表示正逻辑,3~15V表示负逻辑,通过FPGA芯片实现RS232通信首先要解决的就是FPGA电平和RS232电平之间的矛盾,通常采用MAX3232作为物理层的电平接口,根据MAX3232提供的标准配制方式把物理电路设计好后,接下来的通信就是要实现逻辑的接收和发送……设计最简单的RS232通信逻辑,FPGA实现将接收到的数据会发出去,总共两个数据传输引脚,一收一发。

将此通信模块分为三个部分:接收模块,波特率控制模块,发送模块。

工作原理:此模块接收MAX3232传过来的串行数据,对齐进行判断采样,校验,最后将数据流中的串行数据转换为八位并行数据,将此八位数据储存,或送给发送模块发送出去。

根据RS232通信标准器串行数据分为起始位、数据位、校验位、停止位,空闲时为高电平,起始位通常为低电平,数据位通常为8位,校验位分为奇校验、偶校验等,停止位一位或两位且为高电平。

FPGA接收模块对此数据进行异步接收,首先就要检测其数据传输开始标识,当然就是检测开始位,于是要有下降沿检测电路,检测到下降沿是输出一高脉冲,此电路可以用两个D触发器加上基本门电路实现,脉冲触发开始进入接收状态,输出接收状态标志位,使其为1,此标志位使能波特率控制模块输出采样脉冲,此计数脉冲触发接收模块中的计数器计数,加到相应的位就把当前的串行总线上的值赋给缓冲器,或对其判断,当计数完成11次计数后,已将8位串行数据转成并行数据到缓冲器中,且进行了校验的判断和停止位的判别,这是接收状态结束,接收状态位置0,计数器清零。

对于波特率产生模块用于控制采样数据脉冲的周期,其周期就为串行数据传送一个bit所用的时间,根据此时间和时钟周期设置计数值。

当接收模块完成工作时,接收状态位为0时可以触发发送模块,发送模块检测接收状态的下降沿,由此产生一高脉冲,与发送模块类似,根据波特率控制模块产生的计数脉冲将并行数据转成串行数据,并加上开始位、校验位、停止位。

uart通信原理与程序

uart通信原理与程序

uart通信原理与程序UART(通用异步收发传输器)是一种串行通信协议,用于在电子设备之间传输数据。

它广泛应用于各种通信设备和嵌入式系统中,是实现设备间通信的一种基本方式。

本文将详细介绍UART的工作原理和编写UART通信程序的步骤。

一、UART的工作原理UART通信是一种简单的、异步的、串行通信方式。

它使用一个数据线(TXD)和一个时钟线(CLK)实现数据的收发。

UART通信的工作原理如下:1.数据传输格式:UART通信使用帧来表示一个完整的数据包,每个帧由起始位、数据位、校验位和停止位组成。

起始位是一个低电平信号,用来告诉接收方接下来的数据的开始。

数据位是实际要传输的数据,可以是一个字节或多个字节。

校验位用于检查数据的准确性,常用的校验方式有奇偶校验和循环冗余校验(CRC)。

停止位是一个高电平信号,用来表示数据的结束。

2.波特率:3.串行传输:UART通信使用串行传输方式,即每个bit按顺序依次传输。

发送方将数据一位一位地发送到TXD线上,接收方通过CLK线来同步数据的传输。

发送方和接收方都在预定的时钟频率下将数据从一个电平变为另一个电平,以便接收方正确地接收数据。

4.启动和停止:UART通信在数据的开始和结束位置需要一些额外的控制位来标识。

当数据传输开始时,发送方发送一个起始位(低电平),接收方通过检测起始位来确定数据传输的开始。

当数据传输完毕时,发送方发送一个或多个停止位(高电平)来表示数据的结束。

5.同步与异步:UART通信是一种异步通信方式,即发送方和接收方的时钟不同步。

发送方和接收方使用各自的时钟来同步数据的传输,接收方通过检测起始位和停止位来确定数据的开始和结束位置。

二、编写UART通信程序的步骤下面是编写UART通信程序的一般步骤:1.设置波特率:首先,需要设置UART的波特率,确保发送方和接收方使用相同的波特率。

波特率的设置通常是通过设置寄存器完成的,具体的方法可以参考芯片的数据手册。

基于FPGA Verilog RS232串口回环测试例程,附源程序仿真源码及测试图片

基于FPGA Verilog RS232串口回环测试例程,附源程序仿真源码及测试图片

FPGA Verilog RS232串口回环测试基于FPGA Verilog RS232串口回环测试例程,支持多byte数据传输,附源程序仿真源码及测试图片。

测试基于SSCOM/友善之臂上位机软件测试,测试结果如下图一图二所示。

图一SSCOM图二图三连续发送仿真截图图四连续接收仿真截图后附verilog源程序代码及testbech仿真例程,注释欠。

重点:多byte回环测试要点,上位机串口多位数据连续发送停止位和起始位之间无间隔,回环程序在接收和发送都需要具备在停止位后能立马跳转到下一个起始位的能力。

重点关注cnt_bit的处理方式。

附录1 顶层例化uart_txd uart_txd(.clk_50m(sys_clk_50m),.reset_n(sys_rst_n),.tx_data(rx_data),.baud_set(3'd4),.send_en(rx_done),.send_done(),.send_busy(send_busy),.uart_tx(uart_tx));uart_rxd uart_rxd(.clk_50m(sys_clk_50m),.reset_n(sys_rst_n),.rx_data(rx_data),.baud_set(3'd4),.rx_done(rx_done),.rx_busy(rx_busy),.uart_rx(uart_rx));附录2 串口发送源程序`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 09:45:23// Design Name:// Module Name: uart_txd// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies:// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_txd(clk_50m,reset_n,tx_data,baud_set,send_en,send_done,send_busy,uart_tx);input clk_50m;input reset_n;input[7:0] tx_data;input[2:0] baud_set;input send_en;output reg send_done;output reg send_busy;output reg uart_tx;reg[12:0] cnt;reg[12:0] baud_rate_cnt_max;reg[3:0] cnt_bit;reg[7:0] tx_data_r;localparam baud_rate_9600 =13'd5207;localparam baud_rate_19200 =13'd2603;localparam baud_rate_38400 =13'd1301;localparam baud_rate_57600 =13'd867;localparam baud_rate_115200 =13'd433;always@(posedge clk_50m or negedge reset_n)if(!reset_n)baud_rate_cnt_max <= baud_rate_115200;elsecase(baud_set)3'd0:baud_rate_cnt_max = baud_rate_9600;3'd1:baud_rate_cnt_max = baud_rate_19200;3'd2:baud_rate_cnt_max = baud_rate_38400;3'd3:baud_rate_cnt_max = baud_rate_57600;3'd4:baud_rate_cnt_max = baud_rate_115200;default:baud_rate_cnt_max = baud_rate_115200;endcasealways@(posedge clk_50m or negedge reset_n)if(!reset_n)tx_data_r <=8'd0;else if(send_en)tx_data_r <= tx_data;elsetx_data_r <= tx_data_r;always@(posedge clk_50m or negedge reset_n)if(!reset_n)send_busy <=1'b0;else if(send_en)send_busy <=1'b1;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit ==4'd10)send_busy <=1'b0;elsesend_busy <= send_busy;endelsesend_busy <= send_busy;always@(posedge clk_50m or negedge reset_n)if(!reset_n)send_done <=1'b0;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit ==4'd10)send_done <=1'b1;elsesend_done <=1'b0;endelsesend_done <=1'b0;always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt <=13'd0;else if(send_busy)beginif(cnt == baud_rate_cnt_max)cnt <=13'd0;elsecnt <= cnt +1'b1;endelsecnt <= cnt;/****************************************always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt_bit <= 4'd0;else if(send_en) //send_en needs to be 1 clock high pulse cnt_bit <= 4'd1;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit == 4'd10)cnt_bit <= 4'd0;elsecnt_bit <= cnt_bit + 1'b1;endelsecnt_bit <= cnt_bit;******************************************/always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt_bit <=4'd0;else if(send_busy &&(cnt_bit ==4'd11))cnt_bit <=4'd1;else if(cnt ==1)cnt_bit <= cnt_bit +1'b1;elsecnt_bit <= cnt_bit;always@(posedge clk_50m or negedge reset_n)if(!reset_n)beginuart_tx <=1'b1;endelsecase(cnt_bit)4'd0:;4'd1: uart_tx <=1'b0;//start4'd2: uart_tx <= tx_data_r[0];//bit 04'd3: uart_tx <= tx_data_r[1];4'd4: uart_tx <= tx_data_r[2];4'd5: uart_tx <= tx_data_r[3];4'd6: uart_tx <= tx_data_r[4];4'd7: uart_tx <= tx_data_r[5];4'd8: uart_tx <= tx_data_r[6];4'd9: uart_tx <= tx_data_r[7];//bit 84'd10: uart_tx <=1'b1;//stopdefault:;endcaseendmodule附录3 串口发送testbench`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 11:38:04// Design Name:// Module Name: uart_txd_tb// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_txd_tb();reg clk_50m;reg reset_n;reg[7:0] tx_data;reg[2:0] baud_set;reg send_en;wire send_done;wire send_busy;wire uart_tx;parameter CLK_PERIOD =20;initial clk_50m =0;always#(CLK_PERIOD /2) clk_50m =~clk_50m;initial begintx_data =8'h55;baud_set =4;reset_n =0;send_en =0;#(CLK_PERIOD *100);reset_n =1;# CLK_PERIOD;send_en =1;#(CLK_PERIOD );send_en =0;#(CLK_PERIOD *4340);send_en =1;#(CLK_PERIOD );send_en =0;#(CLK_PERIOD *4340);#(CLK_PERIOD *100);$stop;enduart_txd uart_txd(.clk_50m(clk_50m),.reset_n(reset_n),.tx_data(tx_data),.baud_set(baud_set),.send_en(send_en),.send_done(send_done),.send_busy(send_busy),.uart_tx(uart_tx));endmodule附录4 串口接收源程序`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 15:30:30// Design Name:// Module Name: uart_rxd// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_rxd(clk_50m,reset_n,rx_data,baud_set,rx_done,rx_busy,uart_rx);input clk_50m;input reset_n;output reg[7:0] rx_data;input[2:0] baud_set;output reg rx_done;output reg rx_busy;input uart_rx;reg[12:0] cnt;reg[12:0] baud_rate_cnt_max;reg[3:0] cnt_bit;reg uart_rx_r1;reg uart_rx_r2;wire nedge;localparam baud_rate_9600 =13'd5207;localparam baud_rate_19200 =13'd2603;localparam baud_rate_38400 =13'd1301;localparam baud_rate_57600 =13'd867;localparam baud_rate_115200 =13'd433;always@(posedge clk_50m or negedge reset_n)if(!reset_n)baud_rate_cnt_max <= baud_rate_115200;elsecase(baud_set)3'd0:baud_rate_cnt_max = baud_rate_9600;3'd1:baud_rate_cnt_max = baud_rate_19200;3'd2:baud_rate_cnt_max = baud_rate_38400;3'd3:baud_rate_cnt_max = baud_rate_57600;3'd4:baud_rate_cnt_max = baud_rate_115200;default:baud_rate_cnt_max = baud_rate_115200;endcasealways@(posedge clk_50m or negedge reset_n)if(!reset_n)beginuart_rx_r1 <=8'd0;uart_rx_r2 <=8'd0;endelse beginuart_rx_r1 <= uart_rx;uart_rx_r2 <= uart_rx_r1;endassign nedge = uart_rx_r2 &(!uart_rx_r1);always@(posedge clk_50m or negedge reset_n) if(!reset_n)rx_busy <=1'b0;else if(nedge)rx_busy <=1'b1;else if(cnt == baud_rate_cnt_max)begin if(cnt_bit ==4'd10)rx_busy <=1'b0;elserx_busy <= rx_busy;endelserx_busy <= rx_busy;always@(posedge clk_50m or negedge reset_n) if(!reset_n)rx_done <=1'b0;else if(cnt == baud_rate_cnt_max)begin if(cnt_bit ==4'd10)rx_done <=1'b1;elserx_done <=1'b0;endelserx_done <=1'b0;always@(posedge clk_50m or negedge reset_n) if(!reset_n)cnt <=13'd0;else if(rx_busy)beginif(cnt == baud_rate_cnt_max)cnt <=13'd0;elsecnt <= cnt +1'b1;endelsecnt <= cnt;always@(posedge clk_50m or negedge reset_n) if(!reset_n)cnt_bit <=4'd1;else if(cnt == baud_rate_cnt_max )begin if(cnt_bit ==4'd10)cnt_bit <=4'd1;elsecnt_bit <= cnt_bit +1'b1;endelsecnt_bit <= cnt_bit;always@(posedge clk_50m or negedge reset_n)if(!reset_n)beginrx_data <=8'd0;endelse if(cnt == baud_rate_cnt_max /2)case(cnt_bit)4'd1:;//start4'd2: rx_data[0]<= uart_rx_r2;//bit 04'd3: rx_data[1]<= uart_rx_r2;4'd4: rx_data[2]<= uart_rx_r2;4'd5: rx_data[3]<= uart_rx_r2;4'd6: rx_data[4]<= uart_rx_r2;4'd7: rx_data[5]<= uart_rx_r2;4'd8: rx_data[6]<= uart_rx_r2;4'd9: rx_data[7]<= uart_rx_r2;//bit 74'd10:;//stopdefault:;endcaseelserx_data <= rx_data;endmodule附录5串口接收testbench`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 19:44:29// Design Name:// Module Name: uart_rxd_tb// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_rxd_tb();reg clk_50m;reg reset_n;wire[7:0] rx_data;wire rx_done;wire rx_busy;reg uart_rx;parameter CLK_PERIOD =20;initial clk_50m =0;always#(CLK_PERIOD /2) clk_50m =~clk_50m;initial beginreset_n =0;uart_rx =1;//idle#(CLK_PERIOD *100);reset_n =1;# CLK_PERIOD;uart_rx =0;//start#(CLK_PERIOD *434);uart_rx =1;//bit0#(CLK_PERIOD *434);uart_rx =0;//bit1#(CLK_PERIOD *434);uart_rx =1;//bit2#(CLK_PERIOD *434);uart_rx =0;//bit3#(CLK_PERIOD *434);uart_rx =1;//bit4#(CLK_PERIOD *434);uart_rx =0;//bit5#(CLK_PERIOD *434);uart_rx =1;//bit6#(CLK_PERIOD *434);uart_rx =0;//bit7#(CLK_PERIOD *434);uart_rx =1;//stop#(CLK_PERIOD *434);uart_rx =1;//idle#(CLK_PERIOD *434);#(CLK_PERIOD *434);#(CLK_PERIOD *434);uart_rx =0;//start #(CLK_PERIOD *434);uart_rx =0;//bit0#(CLK_PERIOD *434);uart_rx =1;//bit1#(CLK_PERIOD *434);uart_rx =0;//bit2#(CLK_PERIOD *434);uart_rx =1;//bit3#(CLK_PERIOD *434);uart_rx =0;//bit4#(CLK_PERIOD *434);uart_rx =1;//bit5#(CLK_PERIOD *434);uart_rx =0;//bit6#(CLK_PERIOD *434);uart_rx =1;//bit7#(CLK_PERIOD *434);uart_rx =1;//stop#(CLK_PERIOD *434);uart_rx =1;//idle#(CLK_PERIOD *434);#(CLK_PERIOD *434);#(CLK_PERIOD *434);$stop;enduart_rxd uart_rxd(.clk_50m(clk_50m),.reset_n(reset_n),.rx_data(rx_data),.baud_set(3'd4),.rx_done(rx_done),.rx_busy(rx_busy),.uart_rx(uart_rx));endmodule。

基于Verilog HDL设计的UART模块

基于Verilog HDL设计的UART模块

1 UART原理串行通信是指外部设备和计算机间使用一根数据线(另外需要地线,可能还需要控制线)进行数据传输的方式。

数据在一根数据线上一位一位传输,每一位数据都占据一个固定的时间长度。

与并行通信方式相比,串行通信方式的传输速度较慢,但这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,因此得到了广泛的应用。

基本的UART只需要发送和接收两条数据线就可以完成数据的全双工通信,其基本功能是在发送端将控制器通过总线传过来的并行数据,以设定的格式,设定的频率串行地传输出去,并同时在接收端将串行接收到的数据,转换成相应的并行数据发送出去。

UART的基本帧格式如图1所示。

其中,起始位总是逻辑O状态,停止位总是逻辑l状态,其持续时间可选为1位、1.5位或2位,其数据位可为5、6、7、8位,校验位可根据需要选择奇校验位,偶校验位或无校验位。

2 UART的设计现今复杂的数字系统的设计往往采用自顶向下的设计方案,利用层次化结构化的方法,将一个设计方案划分为若干模块,在不同层次的模块都可以进行仿真,可以很方便地查看某一层次的代码以改正仿真时发现错误。

在本设计中UART主要由波特率发生器、接收模块、发送模块3部分组成,并具有l位停止位和无校验位。

波特率发生器实现波特率的变换,利用外部时钟信号产生一个所需波特率16倍的波特率时钟,用来控制UART的接收与发送。

接收模块是用于接收串行信号,并将其转化为并行数据;而发送模块则将准备输出的并行数据按照UART的帧格式转化为串行数据输出。

图2为UART结构图。

2.1 波特率发生器波特率表示的是每秒钟传送的二进制数据的位数,即单位时间内传送的信息量。

在串行异步传送中,常用到的波特率为1 200、2 400、4 800、9 600、19 200等。

波特率发生器实际上是一个分频器,主要是产生和。

RS-232通信所采用的波特率同步的时钟。

由于串行数据帧与接收数据时钟是异步的,所以存UA RT的接收端在什么时刻将数据移入寄存器,怎样选择可靠的采样点是非常关键的。

I2C verilog (非常详细的i2c学习心得)

I2C verilog (非常详细的i2c学习心得)
启 动 SDA线 S 1 0 1 0 X X X 应 答 应 答 应 答 控制字节 写 EEPROM存储单元地址 数据 停 止
图 4. AT24C02/4/8/16 字节写入帧格式
启 动 SDA线 S 1 0 1 0 X X X 应 答 应 S 1 0 答 1 0 X X X 应 答 非 P 应 答 控制字节 写 读 EEPROM存储单元 指定地址(n) 启 动 控制字节 数据(n) 停 止
I2C 学习心得
我最近刚做完 I2C 通信协议的编写与调试, 下面介绍一下我从一开始理解夏老师的程序, 修改程序,直到下板调试整个的学习过程,希望对大家学习 I2C 有一定的帮助。 一、 分析源代码 学习 I2C, 首先我们要知道 I2C 是一种串行总线协议。 目前几种常用的串行总线有 UART、 SPI 和 I2C,先来简单了解一下这三种串行总线。
图 5. AT24C02/4/8/16 读指定地址存储单元的数据帧格式
首先是一堆输入输出、寄存器的定义,我们读程序的时候大可先不看这些,等到后面有 需要的时候再回过头来看这些定义, 这里需要注意的是 SDA 与 DATA 的类型, 都是 inout 型, SDA 我们很容易理解,因为主机和从机都会给 SDA 线上发信号,比如字节写入格式时,主机 先给 SDA 发了 1 个 8 位数据,然后作为应答位,从机要把 SDA 拉低,表示我已经接受到你 的信号了,在应答位时主机是不能操作 SDA 线的。然而 DATA 设定为 inout 型,我们可以看 到图 2,其实在字节写入格式时,DATA 是 signal 模块传输给 EEPROM_WR 模块,作为要写入 的数据。 而在字节读取格式时, EEPROM_WR 通过 SDA 从 EEPROM 中读取数据, 其实跟 DATA 是没有关系的,这里可以只将 DATA 设定为 input 型,设定为 inout 型是因为后续的程序会将 EEPROM_WR 读取到的数据发给 signal,与 signal 当初发送的数据进行比较,检验通信是否 正确。如果将比较数据这程序操作放在 EEPROM_WR 模块中,就可以将 DATA 设为 input。 提到 inout 类型,还得再多补充两句,inout,顾名思义,双向口既能作为输入又能作为 输出,可以节省管脚,在具体实现上一般是用三态门来实现,图 6 就是用三态门实现的 sda 总线的示意图。

verilog RS232 串口通信 verilog

verilog RS232 串口通信 verilog
//=============================顶层模块=====================================
module uart_top(clk,rs232_rx,rs232_tx);
input clk; //时钟信号50M
input rs232_rx; //数据输入信号
bps_start,
clk_bps,
rs232_rx,
rx_data,
rx_int
);
input clk; //50MHz时钟
input rst_n; //低电平复位信号
input rs232_rx; //接收数据信号
);
uart_rx uart_rx(//数据接收模块
.clk(clk),
.rst_n(rst_n),
.bps_start(bps_start1),
.clk_bps(clk_bps1),
.rs232_rx(rs232_rx),
.rx_data(rx_data),
else
begin
if(int_cnt<250) int_cnt<=int_cnt+1'b1;
end
end
assign data_flg=(int_cnt==10)?1'b1:1'b0;
always @(posedge data_flg or negedge rst_n)
output rs232_tx; //数据输出信号
wire clk_bps1,clk_bps2;
wire bps_start1,bps_start2;
wire [7:0] rx_data;

nexys3开发板uart控制器设计实验原理

nexys3开发板uart控制器设计实验原理

nexys3开发板uart控制器设计实验原理Nexys3开发板是一款基于Xilinx Spartan-6 FPGA的高性能开发板,具有丰富的外设资源。

其中,UART(Universal Asynchronous Receiver Transmitter)控制器是一种用于实现串行通信的硬件设备,常用于与计算机以及其他外部设备之间进行数据传输。

本文将介绍Nexys3开发板UART控制器设计实验的原理。

UART控制器是一种用于实现串口通信的设备,通过将并行数据转换为串行数据,实现计算机与其他设备之间的通信。

在UART控制器的设计中,主要涉及到串行数据的发送和接收以及波特率的设置。

首先,串行数据发送。

UART通过将输入的并行数据进行排列,并通过将各个数据位的电平状态依次编码为高低电平,生成串行的数据流。

具体实现方法是,将每个数据位与开始位、数据位、停止位以及奇偶校验位拼接起来,形成一个数据帧,然后将数据帧按照波特率的速率依次发送。

在Nexys3开发板上,通过使用片上资源来实现数据位和相应控制位的读取和输出,通过GPIO来控制串行输出引脚的电平状态。

其次,串行数据接收。

UART通过监测接收引脚的电平状态,识别开始位、数据位、停止位以及奇偶校验位,然后对数据进行解码,恢复为原始的并行数据。

在Nexys3开发板上,通过读取接收引脚的电平状态,通过相应的逻辑电路进行译码和解码,然后将数据保存在缓冲区中,供后续的处理和使用。

最后,波特率的设置。

波特率是串口通信中非常重要的参数,它决定了数据传输的速率。

在Nexys3开发板上,可以通过修改FPGA中UART控制器的时钟频率来设置波特率。

通过调整时钟频率,可以改变数据传输的速率,使其与外部设备匹配。

在设计实验中,需要编写相应的Verilog代码来实现UART控制器。

首先,需要定义输入和输出的信号,包括接收引脚、发送引脚、时钟信号以及数据缓冲区等。

然后,需要编写发送和接收相关的逻辑电路,包括数据的排列和解析,以及时钟频率的计算和传输控制等。

verilog分享--verilog快速掌握之模块例化

verilog分享--verilog快速掌握之模块例化

verilog快速掌握之模块例化一、什么是例化1)FPGA逻辑设计中通常是一个大的模块中包含了一个或多个功能子模块,verilog通过模块调用或称为模块实例化的方式来实现这些子模块与高层模块的连接,有利于简化每一个模块的代码,易于维护和修改。

2)如下图,当有了例化的方法之后,当模块中需要两个同样功能的USB模块时,我们只需要编写好一个usb模块的代码,之后通过例化,就可以将俩个usb模块添加到顶层模块之中。

(注意,我们要有硬件思维,例化一个模块,那么就有一个硬件与之对应。

例化多个,就有多个硬件。

)二、例化方法1)首先我们设计好我们需要的功能模块,如下图左边的uart模块;2)之后我们在大模块例化uart模块,如下图右边的例化格式,信号列表中“.”之后的信号是uart模块定义的信号,括号内的信号则是在大模块中申明的信号,这样就将大模块的信号与uart模块信号一一对应起来。

三、参数例化1)模块例化还有一个好处就是在调用的时候还可以传递/改变参数。

如下图,我们设计了一个uart模块,他的数据位宽只有8位,但是如果我们需要一个16位宽的uart模块,这时候我们可以通过参数例化来减少重新编写模块的工作量。

2)我们定义数据位宽为DATA_W=83)在例化的时候我们可以如下图,在模块名后面加上“#(.DATA_W(16))”,就可以将数据位宽定义为16位。

注意,大家务必掌握参数传递的方法,点拨FPGA课程后面有一部分练习要计时到1秒时间,如果modelsim真的要仿真1秒,跑一个用例就要花费好几分钟或者几个小时,这样的低效率是难以忍受的。

我们仿真时,在测试文件改变1秒的参数值,将它变得很小,这样就能加快仿真迅速。

详细情况,学到相应章节自然会清楚的。

verilog串口通信程序【精选文档】

verilog串口通信程序【精选文档】

FPGA实现RS-232串口收发的仿真过程(Quartus+Synplify+ModelSim)(2007-09-11 12:17:37)网上关于RS—232的异步收发介绍得很多,最近没事学着摸索用ModelSim来做时序仿真,就结合网上的参考资料和自己的琢磨,做了这个东西.针对我这个小程序结合FPGA的开发流程,主要走了以下几步:1。

文本程序输入(Verilog HDL)2。

功能仿真(ModelSim,查看逻辑功能是否正确,要写一个Test Bench)3。

综合(Synplify Pro,程序综合成网表)4. 布局布线(Quartus II,根据我选定的FPGA器件型号,将网表布到器件中,并估算出相应的时延)5。

时序仿真(ModelSim,根据时延做进一步仿真)这里贴出我的程序和各个详细步骤,能和各位正在学习的新手们一起分享。

0。

原理略一、文本程序输入(Verilog HDL)发送端:module trans(clk,rst,TxD_start,TxD_data,TxD,TxD_busy);input clk,rst,TxD_start;input[7:0]TxD_data; // 待发送的数据output TxD, // 输出端口发送的串口数据TxD_busy;reg TxD;reg [7:0] TxD_dataReg; // 寄存器发送模式,因为在串口发送过程中输入端不可能一直保持有效电平reg [3:0]state;parameter ClkFrequency = 25000000;// 时钟频率-25 MHzparameter Baud = 115200;// 串口波特率-115200// 波特率产生parameter BaudGeneratorAccWidth = 16;reg [BaudGeneratorAccWidth:0]BaudGeneratorAcc;wire [BaudGeneratorAccWidth:0] BaudGeneratorInc = ((Baud〈<(BaudGeneratorAccWidth—4))+(ClkFrequency>>5))/(ClkFrequency>〉4);wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth];wire TxD_busy;always @(posedge clk or negedge rst)if(~rst)BaudGeneratorAcc <= 0;else if(TxD_busy)BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0]+ BaudGeneratorInc;// 发送端状态wire TxD_ready = (state==0);// 当state = 0时,处于准备空闲状态,TxD_ready = 1 assign TxD_busy = ~TxD_ready; // 空闲状态时TxD_busy = 0// 把待发送数据放入缓存寄存器TxD_dataRegalways @(posedge clk or negedge rst)if(~rst)TxD_dataReg <= 8’b00000000;else if(TxD_ready &TxD_start)TxD_dataReg <= TxD_data;// 发送状态机always @(posedge clk or negedge rst)if(~rst)beginstate 〈= 4’b0000;// 复位时,状态为0000,发送端一直发1电平TxD <= 1'b1;endelsecase(state)4’b0000: if(TxD_start) beginstate <= 4’b0100;// 接受到发送信号,进入发送状态end4’b0100: if(BaudTick) beginstate <= 4’b1000;// 发送开始位—0电平TxD <= 1'b0;end4'b1000: if(BaudTick)beginstate <= 4'b1001;// bit 0TxD <= TxD_dataReg[0];end4'b1001:if(BaudTick) beginstate <= 4’b1010; // bit 1TxD 〈= TxD_dataReg[1];end4’b1010:if(BaudTick) beginstate <= 4'b1011; // bit 2TxD <= TxD_dataReg[2];end4'b1011:if(BaudTick)beginstate <= 4'b1100; // bit 3TxD 〈= TxD_dataReg[3];end4'b1100: if(BaudTick) beginstate 〈= 4’b1101;// bit 4TxD <= TxD_dataReg[4];end4'b1101:if(BaudTick) beginstate 〈= 4’b1110;// bit 5TxD 〈= TxD_dataReg[5];end4'b1110:if(BaudTick) beginstate <= 4’b1111; // bit 6TxD <= TxD_dataReg[6];end4’b1111:if(BaudTick) beginstate 〈= 4’b0010;// bit 7TxD <= TxD_dataReg[7];end4'b0010: if(BaudTick) beginstate 〈= 4'b0011;// stop1TxD 〈= 1’b1;end4’b0011:if(BaudTick)beginstate 〈= 4’b0000;// stop2TxD 〈= 1'b1;enddefault: if(BaudTick)beginstate 〈= 4’b0000;TxD 〈= 1’b1;endendcaseendmodule接收端:module rcv(clk,rst,RxD,RxD_data,RxD_data_ready,);input clk,rst,RxD;output[7:0] RxD_data; // 接收数据寄存器output RxD_data_ready;// 接收完8位数据,RxD_data 值有效时,RxD_data_ready 输出读信号parameter ClkFrequency = 25000000;// 时钟频率-25MHzparameter Baud = 115200; // 波特率-115200reg[2:0]bit_spacing;reg RxD_delay;reg RxD_start;reg[3:0] state;reg[7:0]RxD_data;reg RxD_data_ready;// 波特率产生,使用8倍过采样parameter Baud8 = Baud*8;parameter Baud8GeneratorAccWidth = 16;wire [Baud8GeneratorAccWidth:0]Baud8GeneratorInc = ((Baud8〈<(Baud8GeneratorAccWidth—7))+(ClkFrequency>〉8))/(ClkFrequency>>7);reg [Baud8GeneratorAccWidth:0]Baud8GeneratorAcc;always @(posedge clk or negedge rst)if(~rst)Baud8GeneratorAcc 〈= 0;elseBaud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth—1:0] + Baud8GeneratorInc;// Baud8Tick 为波特率的8倍-115200*8 = 921600wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];// next_bit 为波特率-115200always @(posedge clk or negedge rst)if(~rst||(state==0))bit_spacing 〈= 0;else if(Baud8Tick)bit_spacing <= bit_spacing + 1;wire next_bit = (bit_spacing==7);// 检测到RxD 有下跳沿时,RxD_start 置1,准备接收数据always@(posedge clk)if(Baud8Tick)beginRxD_delay 〈= RxD;RxD_start <= (Baud8Tick & RxD_delay & (~RxD));end// 状态机接收数据always@(posedge clk or negedge rst)if(~rst)state 〈= 4’b0000;else if(Baud8Tick)case(state)4'b0000:if(RxD_start)state <= 4’b1000;// 检测到下跳沿4’b1000: if(next_bit)state 〈= 4'b1001;// bit 04'b1001: if(next_bit) state <= 4'b1010;// bit 14’b1010:if(next_bit) state 〈= 4’b1011; // bit 24’b1011: if(next_bit) state <= 4'b1100;// bit 34’b1100: if(next_bit)state 〈= 4'b1101;// bit 44'b1101:if(next_bit)state <= 4’b1110; // bit 54'b1110: if(next_bit) state <= 4'b1111; // bit 64'b1111: if(next_bit) state 〈= 4'b0001; // bit 74'b0001: if(next_bit) state 〈= 4’b0000;// 停止位default: state <= 4'b0000;endcase// 保存接收数据到RxD_data 中always @(posedge clk or negedge rst)if(~rst)RxD_data 〈= 8’b00000000;else if(Baud8Tick &&next_bit && state[3])RxD_data <= {RxD,RxD_data[7:1]};// RxD_data_ready 置位信号always @(posedge clk or negedge rst)if(~rst)RxD_data_ready <= 0;elseRxD_data_ready <= (Baud8Tick && next_bit &&state==4'b0001); endmodule为了测试收发是否正常,写的Test Bench`timescale 1ns / 1nsmodule rs232_test;reg clk,rst,TxD_start;reg [7:0]TxD_data;wire[7:0] RxD_data;wire //RxD,TxD,TxD_busy,RxD_data_ready;trans trans(.clk(clk),。

UART模块Verilog代码

UART模块Verilog代码

uart.v`timescale 1ns / 100psmodule uart (dout, data_ready, framing_error, parity_error, rxd, clk16x, rst, rdn, din, tbre, tsre, wrn, sdo);output tbre ;output tsre ;output sdo ;input [7:0] din ;input rst ;input clk16x ;input wrn ;input rxd ;input rdn ;output [7:0] dout ;output data_ready ;output framing_error ;output parity_error ;rcvr u1 (dout,data_ready,framing_error,parity_error,rxd,clk16x,rst,rdn) ;txmit u2 (din,tbre,tsre,rst,clk16x,wrn,sdo) ;endmodulercvr.v`timescale 1 ns / 1 nsmodule rcvr (dout,data_ready,framing_error,parity_error,rxd,clk16x,rst,rdn) ;input rxd ;input clk16x ;input rst ;input rdn ;output [7:0] dout ;output data_ready ;output framing_error ;output parity_error ;reg rxd1 ;reg rxd2 ;reg clk1x_enable ;reg [3:0] clkdiv ;reg [7:0] rsr ;reg [7:0] rbr ;reg [3:0] no_bits_rcvd ;reg data_ready ;reg parity ;reg parity_error ;reg framing_error ;wire clk1x ;assign dout = !rdn ? rbr : 8'bz ;always @(posedge clk16x or posedge rst) beginif (rst)beginrxd1 <= 1'b1 ;rxd2 <= 1'b1 ;endelsebeginrxd1 <= rxd ;rxd2 <= rxd1 ;endendalways @(posedge clk16x or posedge rst) beginif (rst)clk1x_enable <= 1'b0;else if (!rxd1 && rxd2)clk1x_enable <= 1'b1 ;else if (no_bits_rcvd == 4'b1100)clk1x_enable <= 1'b0 ;endalways @(posedge clk16x or posedge rst or negedge rdn)beginif (rst)data_ready = 1'b0 ;else if (!rdn)data_ready = 1'b0 ;elseif (no_bits_rcvd == 4'b1011)data_ready = 1'b1 ;endalways @(posedge clk16x or posedge rst)beginif (rst)clkdiv = 4'b0000 ;else if (clk1x_enable)clkdiv = clkdiv +1 ;endassign clk1x = clkdiv[3] ;always @(posedge clk1x or posedge rst)if (rst)beginrsr <= 8'b0 ;rbr <= 8'b0 ;parity <= 1'b1 ;framing_error = 1'b0 ;parity_error = 1'b0 ;endelsebeginif (no_bits_rcvd >= 4'b0001 && no_bits_rcvd <= 4'b1000) //4'b1001 begin/* MSB Firstrsr[0] <= rxd2 ;rsr[7:1] <= rsr[6:0] ;parity <= parity ^ rsr[7] ;*//* LSB First */rsr[7] <= rxd2 ;rsr[6:0] <= rsr[7:1] ;parity <= parity ^ rsr[0] ;endelse if (no_bits_rcvd == 4'b1001) //4'b1010beginrbr <= rsr ;endelse if (!parity)parity_error = 1'b1 ;else if ((no_bits_rcvd == 4'b1011) && (rxd2 != 1'b1))framing_error = 1'b1 ;elseframing_error = 1'b0 ;endalways @(posedge clk1x or posedge rst or negedge clk1x_enable) if (rst)no_bits_rcvd = 4'b0000;elseif (!clk1x_enable)no_bits_rcvd = 4'b0000 ;elseno_bits_rcvd = no_bits_rcvd + 1 ;endmoduletxmit.v`timescale 1 ns / 1 nsmodule txmit (din,tbre,tsre,rst,clk16x,wrn,sdo) ;output tbre ;output tsre ;output sdo ;input [7:0] din ;input rst ;input clk16x ;input wrn ;reg tbre ;reg tsre ;reg clk1x_enable ;reg [7:0] tsr ;reg [7:0] tbr ;reg parity ;reg[3:0] clkdiv ;wire clk1x ;reg sdo ;reg [3:0] no_bits_sent ;reg wrn1 ;reg wrn2 ;always @(posedge clk16x or posedge rst) beginif (rst)beginwrn1 <= 1'b1 ;wrn2 <= 1'b1 ;endelsebeginwrn1 <= wrn ;wrn2 <= wrn1 ;endendalways @(posedge clk16x or posedge rst) beginif (rst)begintbre <= 1'b0 ;clk1x_enable <= 1'b0 ;endelse if (!wrn1 && wrn2)beginclk1x_enable <= 1'b1 ;tbre <= 1'b1 ;endelse if (no_bits_sent == 4'b0010)tbre <= 1'b1 ;else if (no_bits_sent == 4'b1101)beginclk1x_enable <= 1'b0 ;tbre <= 1'b0 ;endendalways @(negedge wrn or posedge rst)beginif (rst)tbr = 8'b0 ;elsetbr = din ;endalways @(posedge clk16x or posedge rst)beginif (rst)clkdiv = 4'b0 ;else if (clk1x_enable)clkdiv = clkdiv + 1 ;endassign clk1x = clkdiv[3] ;always @(negedge clk1x or posedge rst)if (rst)beginsdo <= 1'b1 ;tsre <= 1'b1 ;parity <= 1'b1 ;tsr <= 8'b0 ;endelsebeginif (no_bits_sent == 4'b0001)begintsr <= tbr ;tsre <= 1'b0 ;endelse if (no_bits_sent == 4'b0010)beginsdo <= 1'b0 ;endelseif ((no_bits_sent >= 4'b0011) && (no_bits_sent <= 4'b1010)) begin/*MSB Firsttsr[7:1] <= tsr[6:0] ;tsr[0] <= 1'b0 ;sdo <= tsr[7] ;parity <= parity ^ tsr[7] ;*//*LSB First*/tsr[6:0] <= tsr[7:1] ;tsr[7] <= 1'b0 ;sdo <= tsr[0] ;parity <= parity ^ tsr[0] ;endelse if (no_bits_sent == 4'b1011)beginsdo <= parity ;endelse if (no_bits_sent == 4'b1100)beginsdo <= 1'b1 ;tsre <= 1'b1 ;endendalways @(posedge clk1x or posedge rst or negedge clk1x_enable)if (rst)no_bits_sent = 4'b0000 ;else if (!clk1x_enable)no_bits_sent = 4'b0000 ;elseno_bits_sent = no_bits_sent + 1 ;endmodule。

system verilog中virtual的用法 -回复

system verilog中virtual的用法 -回复

system verilog中virtual的用法-回复Virtual是SystemVerilog语言中的一个关键字,用于定义虚拟接口、虚拟类和虚拟任务。

通过使用virtual关键字,可以在设计中实现多态性和动态绑定,从而提高代码的灵活性和可重用性。

虚拟接口是SystemVerilog的一个重要概念,它是一种可以继承和重写的接口。

在使用virtual关键字声明接口时,可以在派生接口中重写基本接口的方法,并且可以通过基本接口的引用来调用这些重写的方法。

虚拟接口的实现类通常称为实现(implement)。

虚拟接口的一个例子是UART 接口,其包括发送数据和接收数据的方法,实现类可以根据具体应用需要自定义这些方法的实现。

在SystemVerilog中,virtual还可以用于定义虚拟类。

虚拟类是一种可以继承和重写的类,通过使用virtual关键字,可以在派生类中重写基础类的方法,并实现多态性。

虚拟类通常包含一些虚拟成员函数,在派生类中可以根据需要重写这些函数的实现。

虚拟类的一个例子是图形图像处理库中的图形基类,派生类可以根据具体的图形类型来实现不同的绘制和变换方法。

虚拟任务是SystemVerilog中一种特殊的任务类型,它可以在派生任务中重写基本任务的实现。

通过使用virtual关键字,派生任务可以在运行时动态地绑定到基本任务上。

虚拟任务的一个应用是多处理器的调度算法。

对于不同的任务调度算法,可以定义一个基本任务,然后使用虚拟任务来实现不同的调度策略。

为了更好地理解virtual的用法,我们可以通过一个示例来演示。

假设我们正在设计一个简单的图形库,包括一些基本的图形类,如矩形、圆形和椭圆等。

我们使用SystemVerilog来实现这个图形库,并使用virtual 关键字来实现多态性和动态绑定。

首先,我们定义一个基本的图形类,命名为Shape。

在Shape类中,我们定义了一个虚拟方法draw(),用于绘制图形。

verilog编程实例

verilog编程实例

verilog编程实例我们需要明确这个电路的功能和设计要求。

假设我们需要实现一个4位二进制加法器,即输入两个4位的二进制数,输出它们的和。

为了简化问题,我们先考虑只有无符号整数的加法,即只需要实现两个正整数的相加。

接下来,我们可以使用Verilog语言来描述这个电路的结构和行为。

我们首先声明输入端口和输出端口的位宽,即4位。

然后,我们定义一个module,命名为"binary_adder"。

在这个module中,我们定义了两个4位的输入信号a和b,以及一个4位的输出信号sum。

同时,我们还定义了一个内部信号carry,用于记录进位信息。

在module的主体部分,我们使用assign语句来实现信号之间的逻辑关系。

具体地,我们可以通过逐位相加的方式,将输入信号a和b的每一位与进位carry相加,并将结果存储在输出信号sum的对应位上。

同时,我们还需要更新进位carry的值,以确保加法运算的正确性。

为了实现这个逻辑,我们可以使用Verilog中的加法运算符"+"和逻辑与运算符"&"。

通过对输入信号的每一位进行逐位运算,我们可以得到输出信号sum的每一位的值。

同时,我们还需要根据输入信号和进位carry的值,计算出新的进位carry的值。

在实际的Verilog编程中,我们需要注意信号的声明和赋值的顺序。

一般而言,我们需要先声明信号,然后再通过assign语句对信号进行赋值。

这样可以确保信号的值能够正确传递和计算。

完成Verilog代码的编写后,我们需要使用相应的仿真工具来验证电路的功能。

常用的仿真工具有ModelSim和Xilinx ISE等。

通过仿真工具,我们可以为输入信号a和b设置不同的值,并观察输出信号sum的变化。

通过比较输出信号sum和预期的结果,我们可以验证电路的正确性。

除了验证电路的正确性外,我们还可以通过综合工具将Verilog代码转换成对应的门级电路。

UART波特率发生电路设计

UART波特率发生电路设计

UART波特率发生电路设计赵琳娜;赵煌;李红征【摘要】设计了一种基于"ATD+迭代法"的UART波特率发生电路.波特率发生电路中的ATD电路用于监测串行数据的变化,并在串行数据的边沿(上升沿或下降沿)输出低电平信号.波特率探测电路对ATD电路的输出信号的低电平和高电平分别进行计数,该计数值和保持寄存器中存储的最小值比较,若前者小于后者,则保存寄存器中的最小值被该计数值取代,若前者大于后者,则保存寄存器中的最小值不变.经过一段时间比较迭代,最终得到设计需要的最小值,从而通过波特率发生器正确地输出串行数据的波特率.【期刊名称】《电子与封装》【年(卷),期】2010(010)009【总页数】5页(P19-23)【关键词】通用异步收发器;波特率发生电路;ATD电路【作者】赵琳娜;赵煌;李红征【作者单位】江南大学信息工程学院,江苏,无锡,214036;江南大学信息工程学院,江苏,无锡,214036;中国电子科技集团公司第58研究所,江苏,无锡,214035【正文语种】中文【中图分类】TN791UART(Universal Asynchronous Receiver/Transmitter)通用异步收发器是用于控制微机系统(并行设备)与串行设备通信的芯片。

UART提供以下主要功能:发送功能(将由微机系统内部传送过来的并行数据转换为串行数据流输出,并在输出的串行数据流中加入奇偶校验位和启停标记),接收功能(将微机系统外部来的串行数据转换为字节供微机系统内部并行数据的器件使用,并对接收的数据流进行奇偶校验、删除启停标记)。

UART的异步收发是指在UART协议中,接收、发送数据不使用统一参考时钟,收发双方取得同步的方法是采用固定的串行数据格式,即通过在串行数据流中加入启停标记位来实现同步。

串行数据格式如图1所示。

起始位:发出一个逻辑“0”的信号,表示传输字符的开始;数据位:紧接着起始位,其位数可以是5~8位;奇偶校验位:数据位后加上这一位,使得“1”的位数为偶数(偶校验)或奇数(奇校验),以此来校验数据传送的正确性;停止位:是一个字符数据的结束标志,可以是1位、1.5位、2位的高电平;空闲位:处于逻辑“1”状态,表示当前线路上没有数据传送。

uart的基本编程步骤

uart的基本编程步骤

uart的基本编程步骤UART(通用异步收发传输)是一种常见的串行通信协议,用于在微控制器和外部设备之间进行数据传输。

下面是UART的基本编程步骤:1. 初始化UART,首先,你需要在微控制器上初始化UART模块。

这通常涉及设置波特率(通信速率)、数据位、停止位和校验位等参数。

这些参数的设置取决于你的具体应用需求和外部设备的要求。

2. 配置引脚,UART通常使用两个引脚进行数据传输,一个用于发送(TX),一个用于接收(RX)。

你需要在微控制器上配置这些引脚,并确保它们与外部设备正确连接。

3. 发送数据,要发送数据,你需要将要发送的数据加载到UART发送缓冲区。

一旦数据被加载,UART模块将自动开始发送数据。

你需要确保发送的数据符合UART的规范,并且在发送数据之前,需要检查发送缓冲区是否为空,以避免数据丢失。

4. 接收数据,接收数据与发送类似,你需要设置接收缓冲区,并在接收到数据后从中读取数据。

同样,你需要检查接收缓冲区是否有新的数据可用,以避免数据丢失。

5. 中断处理(可选),在一些情况下,你可能需要使用中断来处理UART的发送和接收。

这可以帮助你及时响应数据的到来或发送完成等事件。

6. 错误处理,最后,你需要考虑如何处理可能出现的错误,比如数据丢失、校验错误等。

这可能涉及到错误标志的检查和相应的处理流程。

总的来说,UART的基本编程步骤包括初始化UART模块、配置引脚、发送数据、接收数据、中断处理(可选)和错误处理。

在实际编程中,你需要根据具体的微控制器型号和外部设备的通信协议要求来进行相应的设置和处理。

基于FPGA的UART通信接口电路设计

基于FPGA的UART通信接口电路设计

基于FPGA的UART通信接口电路设计张蕾【摘要】随着煤矿设备自动化程度的不断提高,对信号的传输也提出了越来越高的要求.本文设计了一种基于现场可编程门阵列(field programmable gate array,FPGA)的RS232接口电路.首先,分析了FPGA在设计通用串行收发器(universal asynchronous receiver and transmitter,UART)接口电路中的优势.该接口电路主要分为UART接收子模块、波特率发生器、先进先出(first in first out,FIFO)模块、UART发送子模块、通信校验模块等.然后,基于Xilinx公司的FPGA平台,使用Verilog HDL语言编写并实现了整个系统,给出了完整的电路结构框图及实验结果.实验结果验证了所设计RS232接口电路的有效性.【期刊名称】《山西焦煤科技》【年(卷),期】2011(035)008【总页数】3页(P18-20)【关键词】通用串行收发器(UART);可编程门阵列(FPGA);过采样;先进先出(FIFO)【作者】张蕾【作者单位】山西煤炭进出口集团有限公司,山西太原 030006【正文语种】中文【中图分类】TD65目前,我国的煤矿设备自动化程度不断提高,井下作业对信号传输的要求也愈趋严格。

本文研究的通用串行收发器(universal asynchronous receiver and transmitter,UART)可通过串行线传输并行数据,其本质功能是作为控制器和串行设备间的编码转换装置,在基于RS232、RS485等标准协议的通信系统中广泛应用[1-3],非常适合矿井通信系统。

常用的单片机、DSP控制器等一般都集成有专用的UART外设,极大地方便了基于RS232等协议的通信系统设计。

但这类预先固化好的系统也存在一定的不足,如工作模式不够灵活,数据位数固定、通信的波特率一般限制在几个固定的数值,可扩展性较小。

基于FPGA的UART设计的Verilog实现程序

基于FPGA的UART设计的Verilog实现程序

module clkdiv (clk,clkout);input clk; //系统时钟output clkout; //采样时钟输出reg clkout;reg [24:0] cnt;//分频进程always @(posedge clk)beginif(cnt == 24'd162)beginclkout <= 1'b1;cnt <= cnt + 24'd1;endelse if(cnt == 24'd324)beginclkout <= 1'b0;cnt <= 24'd0;endelsebegincnt <= cnt + 24'd1;endendendmodule/*******************发送模块********************************/ module urattx(clk,datain,wrsig,idle,tx);input clk; //UART时钟input [7:0] datain; //需要发送的数据input wrsig; //发送命令,上升沿有效output idle; //线路状态指示,高为线路忙,地为线路空闲output tx; //发送数据信号reg idle,tx;reg send;reg wrsigbuf,wrsigrise;reg presult;reg [7:0] cnt; //计数器parameter paritymode = 1'b0;//检测发送命令是否有效always @(posedge clk)beginwrsigbuf <= wrsig;wrsigrise <=(~wrsigbuf)&wrsig;endalways @(posedge clk)beginif(wrsigrise && (~idle)) //当发送命令有效且线路为空闲时,启动新的数据发送进程beginsend <=1'b1;endelse if(cnt == 8'd176) //一帧资料发送结束beginsend <=1'b0;endendalways @(posedge clk)beginif(send <=1'b1)begincase(cnt)8'd0: //产生起始位begintx <= 1'b0;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd16:begintx <= datain[0]; //发送数据0位presult <= datain[0]^paritymode;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd32:begintx <= datain[1]; //发送数据1位presult <= datain[1]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd48:begintx <= datain[2]; //2presult <= datain[2]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd64:begintx <= datain[3]; //3presult <= datain[3]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd80:begintx <= datain[4]; //4presult <= datain[4]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd96:begintx <= datain[5]; //5presult <= datain[5]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd112:begintx <= datain[6]; //6presult <= datain[6]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd128:begintx <= datain[7]; //7presult <= datain[7]^presult;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd144:begintx <= presult; //发送奇偶校验位presult <= datain[0]^paritymode;idle <= 1'b1;cnt <= cnt + 8'd1;end8'd160:begintx <=1'b1; //发送停止位idle <=1'b1;cnt <=cnt +8'd1;end8'd176:begintx <=1'b1;idle <=1'b0; //一帧资料发送结束cnt <= cnt + 8'd1;enddefault:begincnt<=cnt +8'd1;endendcaseendelsebegintx <= 1'b1;cnt <= 8'd0;idle <=1'b0;endendendmodule。

webservice接口开发【基于FPGA的UART接口开发】

webservice接口开发【基于FPGA的UART接口开发】

webservice接口开发【基于FPGA的UART接口开发】设计背景串口即通用异步收发器(UART,Universal Asynchronous ReceiverTransmitter)。

串行通信具有传输线少、成本低、可靠性高等优点,所以系统间互联常采用RS-232接口方式,一般该接口由UART专用芯片来实现。

但UART接口芯片一般引脚较多,内含许多辅助模块和一些辅助功能,在实际使用时往往用不到这些功能,因此若采用UART专用芯片,必将使电路变得复杂,PCB面积增大,从而导致成本增加,系统的稳定性和可靠性降低。

基本的UART 通信只需要两条信号线(RXD和TXD),接收与发送是全双工形式,其中TXD是UART的发送端,RXD是UART的接收端。

由于FPGA的功能日益强大,开发周期短、可重复编程等优点也越来越明显,可以在FPGA芯片上集成UART功能模块,从而简化电路,缩小PCB面积,提高系统可靠性。

此外,FPGA的设计具有很高的灵活性,可以方便地进行升级和移植。

设计要求本接口作为一个关于内容保护系统的电路板的一部分,主要用于和计算机进行通信,也可与其他带UART接口的电路板进行通信。

对数据传输速率要求不高,传输距离也不要求很长,但传输数据要求准确可靠。

该接口可用来监控电路内部状态,将FPGA内部信息通过串口输出至计算机,以达到辅助调试电路的目的。

另外,电路板上的FPGA外挂有串行Flash,可通过串口对Flash进行调试,将Flash中的数据输出至计算机,并可将数据通过串口写入Flash中。

简而言之,该接口是作为计算机与电路板的一个可靠的双向数据传输通道。

UART的实现原理UART是异步通信方式,通信的发送方和接收方各自有独立的时钟,传输的速率由双方约定。

本设计采用最常用的每秒9600波特的传输速度。

UART的通信协议十分简单,以低电平作为起始位,高电平作为停止位,中间可传输5~8比特数据和1比特奇偶校验位,奇偶校验位的有无和数据比特的长度由通信双方约定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

// UART_FPGA.v 顶层模块,实现由ARM控制FPGA读取串口数据,经过ARM返回给FPGA串口发送出去;`timescale 1ns/1nsmodule UART_FPGA(//EMIF PINinput wire [10:0] EADDR_pin /* synthesis syn_noclockbuf = 1 */,inout wire [15:0] EDATA_pin ,input wire EnOE_pin /* synthesis syn_noclockbuf = 1 */,input wire EnWE_pin /* synthesis syn_noclockbuf = 1 */,input wire EnGCS1_pin /* synthesis syn_noclockbuf = 1 */,output wire EINT2_pin ,//LED_runoutput wire LED_run_pin ,//UARToutput wire UART_TXD0 ,input wire UART_RXD0 /* synthesis syn_noclockbuf = 1 */,//test signaloutput wire TXD_test,output wire RXD_test,output reg TXD_start,output wire EINT2_test,output wire TXD_over_test,output wire uart_send_WR,//FPGA SYSTEM PINinput wire nRESET_pin /* synthesis syn_noclockbuf = 1 */,input wire CLK_50M_pin);wire [15:0] write_data;//-------------------DSP ARM uart to EMIF---------------------- reg [7:0] ARM_DSP_data;wire [7:0] DSP_ARM_data;reg uart_send_WR_reg;//reg [7:0] T_data;//reg [1:0] TXD_start_cnt;wire [7:0] R_data;wire R_ready;reg [2:0] UART_INT_cnt;wire TXD_over;wire [1:0] baud_select;reg [12:0] baud_devide;//wire clkrec;parameter baud_9600 = 5208; //50M/9600 parameter baud_19200 = 2604;parameter baud_38400 = 1302;parameter baud_115200 = 434;assign TXD_test = UART_TXD0;assign RXD_test = UART_RXD0;assign EINT2_test = EINT2_pin;assign TXD_over_test=TXD_over;/*--------------Program start-------------------*//*----------baud select------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_devide <= 'h1FFF;endelsebegincase ( baud_select )'d0 : baud_devide <= baud_9600 ;'d1 : baud_devide <= baud_19200 ;'d2 : baud_devide <= baud_38400 ;'d3 : baud_devide <= baud_115200 ;endcaseendend/*----------INT generator------------*/always @( negedge nRESET_pin or posedge R_ready )beginif( !nRESET_pin )beginARM_DSP_data <= 8'd0;endelsebeginARM_DSP_data <= R_data;endendalways @( negedge nRESET_pin or negedge R_ready or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginUART_INT_cnt <= 3'd5;endelse if( !R_ready )beginUART_INT_cnt <= 3'd0;endelse if( UART_INT_cnt < 3'd5 )beginUART_INT_cnt <= UART_INT_cnt + 1'b1;endassign EINT2_pin = ( UART_INT_cnt >= 3'd1 && UART_INT_cnt <= 3'd4 ) ? 1'b0 : 1'b1 ;/*---------------DSP to ARM data---------------*/always@(negedge nRESET_pin or posedge CLK_50M_pin) //当接收了一个数据后,把数据加1后发回PC机,注意串口一个一个数据发beginif( !nRESET_pin )beginuart_send_WR_reg <= 1'b0;TXD_start <= 1'b0;endelse if( uart_send_WR_reg != uart_send_WR )beginif( TXD_over )beginTXD_start <= 1'b1;uart_send_WR_reg <= uart_send_WR;endendelsebeginTXD_start <= 1'b0;endend//----------------EMIF read ,fpga TO ARM---------------------------EMIF_R EMIF_R_M(.EADDR_pin (EADDR_pin ),.EDA TA_pin (EDA TA_pin ),.EnOE_pin (EnOE_pin ),.EnGCS1_pin (EnGCS1_pin ),.write_data (write_data ),.ARM_DSP_data (ARM_DSP_data ),.nRESET_pin (nRESET_pin )// .CLK_50M_pin (CLK_50M_pin )//----------------EMIF write,ARM to fpga---------------------------EMIF_W EMIF_W_M(.EADDR_pin (EADDR_pin ),.EDA TA_pin (EDATA_pin ),.EnWE_pin (EnWE_pin ),.EnGCS1_pin (EnGCS1_pin ),//uart.DSP_ARM_data (DSP_ARM_data ),.uart_send_WR (uart_send_WR ),.write_data (write_data ),.baud_select (baud_select ),//LED run.LED_run_pin (LED_run_pin ),.nRESET_pin (nRESET_pin )// .CLK_50M_pin (CLK_50M_pin ) );UART_rec UART_rec_M (//input.RXD (UART_RXD0 ),.baud_devide (baud_devide ),//output.R_data (R_data ),.R_ready (R_ready ),//FPGA sys pin.nRESET_pin (nRESET_pin ),.CLK_50M_pin (CLK_50M_pin));UART_txd UART_txd_M (//input.TXD_start (TXD_start ),.T_data (DSP_ARM_data ),.baud_devide (baud_devide ),//output.TXD (UART_TXD0 ),.TXD_over (TXD_over ),//FPGA sys pin.nRESET_pin (nRESET_pin ),.CLK_50M_pin (CLK_50M_pin));Endmodule// UART_rec.v`timescale 1ns/1nsmodule UART_rec (//inputRXD,baud_devide,//outputR_data,R_ready,//FPGA sys pinnRESET_pin,CLK_50M_pin);input wire RXD;input wire [12:0] baud_devide;output reg [7:0] R_data;output reg R_ready;input wire nRESET_pin;input wire CLK_50M_pin;reg [1:0] RXD_sync;reg [2:0] RXD_cnt;reg RXD_bit;reg [3:0] rec_bit_cnt;//reg [8:0] baud_16_reg;reg [12:0] baud_cnt;reg [8:0] baud_16_cnt;wire baud_tick_16;wire baud_tick;wire [11:0] baud_devide_2;wire [8:0] baud_devide_16;/*----------Program start------------*/assign baud_devide_2 = baud_devide / 2;assign baud_devide_16 = baud_devide / 16;/*--------------baud 16 devided clk used in sample-----------*/ always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_16_cnt <= 'd0;endelsebeginif( baud_16_cnt < baud_devide_16 )beginbaud_16_cnt <= baud_16_cnt + 1'b1;endelsebeginbaud_16_cnt <= 'd0;endendendassign baud_tick_16 = ( baud_16_cnt == baud_devide_16 );//--------baud clk used in receiving data-------always @( negedge nRESET_pin or posedge CLK_50M_pin )beginif( !nRESET_pin )beginbaud_cnt <= 'd0;endelsebeginif( !R_ready )beginif( baud_cnt < baud_devide - 1'b1 )beginbaud_cnt <= baud_cnt + 1'b1;endelsebeginbaud_cnt <= 'd0;endendelsebeginbaud_cnt <= 'd0;endendendassign baud_tick = ( baud_cnt == baud_devide_2 );/*-----------jitter filter--------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin )beginif( !nRESET_pin )beginRXD_sync <= 2'd0;endelsebeginRXD_sync <= {RXD_sync[0], RXD};endendalways @( negedge nRESET_pin or posedge baud_tick_16 ) beginif( !nRESET_pin )beginRXD_cnt <= 3'd7;endelsebeginif( RXD_sync[1] && RXD_cnt != 3'd7 )beginRXD_cnt <= RXD_cnt + 1;endelsebeginif( ~RXD_sync[1] && RXD_cnt != 3'd0 )beginRXD_cnt <= RXD_cnt - 1;endendendendalways @( negedge nRESET_pin or posedge baud_tick_16 ) beginif( !nRESET_pin )beginRXD_bit <= 1'b1;endelsebeginif( RXD_cnt == 3'd7)beginRXD_bit <= 1'b1;endelse if( RXD_cnt == 3'd0 )beginRXD_bit <= 1'b0;endendend/*---------------receive data cnt---------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginR_ready <= 1'b1;rec_bit_cnt <= 4'd0;endelsebeginif( R_ready )beginrec_bit_cnt <= 4'd0;if( !RXD_bit )beginR_ready <= 1'b0;endendelse if( baud_tick )beginif( rec_bit_cnt < 4'd9 )beginrec_bit_cnt <= rec_bit_cnt + 1'b1;R_ready <= 1'b0;endelsebeginrec_bit_cnt <= 4'd0;R_ready <= 1'b1;endendendendalways @( negedge nRESET_pin or posedge baud_tick ) beginif( !nRESET_pin )beginR_data <= 8'd0;endelse if( !R_ready )beginif( rec_bit_cnt == 0 )beginR_data <= 8'd0;endelsebeginif( rec_bit_cnt >= 4'd1 && rec_bit_cnt<= 4'd8 )R_data[rec_bit_cnt - 1'b1 ] <= RXD_bit;endendendendmodule// UART_TXD.v`timescale 1ns/1nsmodule UART_txd (//inputbaud_devide,TXD_start,T_data,//outputTXD,TXD_over,//FPGA sys pinnRESET_pin,CLK_50M_pin);input wire TXD_start;input wire [7:0] T_data;input wire [12:0] baud_devide;output reg TXD;output reg TXD_over;input wire nRESET_pin;input wire CLK_50M_pin;//regs & wireswire baud_tick;//reg baud_ctrl;reg [3:0] T_state;reg [7:0] T_data_reg;reg [12:0] baud_cnt;/*----------Program start---------------*//*-----------------Baud generator------------------------*/assign baud_tick = ( baud_cnt == baud_devide - 1'b1 );always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_cnt <= 'd0;endelse if( baud_cnt < baud_devide - 1'b1 )beginbaud_cnt <= baud_cnt + 1'b1;endelsebeginbaud_cnt <= 'd0;endend/*----------transmit state machine---------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginT_state <= 4'd0;endelsebegincase(T_state)4'd0: if(TXD_start) T_state <= 4'd1;4'd1: if(baud_tick) T_state <= 4'd2; // 开始位04'd2: if(baud_tick) T_state <= 4'd3; // bit 04'd3: if(baud_tick) T_state <= 4'd4; // bit 14'd4: if(baud_tick) T_state <= 4'd5; // bit 24'd5: if(baud_tick) T_state <= 4'd6; // bit 34'd6: if(baud_tick) T_state <= 4'd7; // bit 44'd7: if(baud_tick) T_state <= 4'd8; // bit 54'd8: if(baud_tick) T_state <= 4'd9; // bit 64'd9: if(baud_tick) T_state <= 4'd10; // bit 74'd10: if(baud_tick) T_state <= 4'd0; // 停止位1default: if(baud_tick) T_state <= 4'd0;endcaseendendalways @(negedge nRESET_pin or posedge baud_tick ) beginif( !nRESET_pin )beginTXD <= 1'b1;T_data_reg <= 8'd0;endelsebegincase(T_state)// 4'd0: TXD <= 1'b1;4'd1: beginTXD <= 1'b0;T_data_reg <= T_data;end4'd2: TXD <= T_data_reg[0];4'd3: TXD <= T_data_reg[1];4'd4: TXD <= T_data_reg[2];4'd5: TXD <= T_data_reg[3];4'd6: TXD <= T_data_reg[4];4'd7: TXD <= T_data_reg[5];4'd8: TXD <= T_data_reg[6];4'd9: TXD <= T_data_reg[7];4'd10: TXD <= 1'b1;default: TXD <= 1'b1;endcaseendend//assign TXD = TXD;always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginTXD_over <= 1'b0;endelsebeginif( T_state ==4'd0 )TXD_over <= 1'b1;elseTXD_over <= 1'b0;endendendmodule。

相关文档
最新文档