质数合数互质数练习题

合集下载

五年级数学互质数题

五年级数学互质数题

五年级数学互质数题数学是一门需要不断学习和探索的学科,随着年级的升高,数学的难度也会逐渐增加。

在五年级的数学学习中,互质数是一个比较重要的概念,它不仅是数学中基础的概念,而且在实际生活中也有很多应用。

一、互质数的定义互质数是指两个或多个正整数的最大公约数为1的数,也就是它们没有除1以外的公因数。

例如,2和3是互质数,因为它们的最大公约数是1,而6和9不是互质数,因为它们的最大公约数是3。

二、互质数的性质1. 任何一个质数和任何一个大于1的整数都是互质数。

2. 任何两个不同的质数都是互质数。

3. 如果两个数中有一个是质数,另一个数不是它的倍数,那么这两个数就是互质数。

4. 如果两个数都是偶数,那么它们不可能是互质数。

5. 如果两个数中有一个是奇数,另一个数是偶数,那么这两个数不可能是互质数。

6. 如果两个数都是奇数,那么它们有可能是互质数。

三、互质数的应用互质数在实际生活中有很多应用,下面列举几个例子。

1. 密码学密码学是一门研究信息安全的学科,它的研究对象是如何保护信息的安全性。

互质数在密码学中有很重要的应用,例如RSA算法就是一种基于互质数的加密算法。

2. 网络通信网络通信是现代社会中不可或缺的一部分,而互质数也在网络通信中发挥着重要的作用。

例如,在网络通信中使用的SSL协议就是基于互质数的加密算法。

3. 程序设计在程序设计中,互质数也有很多应用。

例如,有些程序需要生成随机数,而互质数可以用来生成伪随机数。

四、互质数的练习题1. 判断下列哪对数是互质数。

(1)15和25(2)18和35(3)23和50(4)16和272. 找出下列数中与给定数互质的数。

(1)与10互质的数(2)与15互质的数(3)与21互质的数(4)与35互质的数3. 判断下列哪些数是质数,哪些数不是质数。

(1)17(2)24(3)31(4)40(5)47(6)554. 求下列数的最大公约数。

(1)12和18(2)24和36(3)15和25(4)30和45(5)21和28五、总结互质数是数学中的一个重要概念,在实际生活中也有很多应用。

五年级奥数试题-质数和合数(学生版)

五年级奥数试题-质数和合数(学生版)

第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)1:只有1个因数。

“1”既不是质数,也不是合数。

注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。

树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。

把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。

例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。

具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。

五年级下册数学扩展专题练习:数论.质数与合数(A级)全国通用

五年级下册数学扩展专题练习:数论.质数与合数(A级)全国通用

淘气的数字“3”小3 走路从都不好好走。

他走起路来连蹿带蹦,饿时身体往前走眼睛却往后瞧。

这一次,小3又歪着脑袋一溜烟地往前跑,“咚的一声和一位白胡子老爷爷撞了个满怀。

白胡子老爷爷于;“小3 ,你又到处乱跑,撞了车碰了人多不好。

”小3 不以为然地说:“撞一下没事,到处跑一跑多自地呀!”“没事?从现地起你再撞着谁,异将和谁作一次乘法,不信,你异撞去吧。

”白胡子老爷爷用手指了一下小3,异不见了。

“撞着谁就和谁作一次乘法?嘻嘻,这倒挺好玩,我要撞一撞,试一试。

”小3 说完就往前跑。

远远看见数2坐地一块石头上,小3低头朝数2猛撞过去。

只听“咚”的一声响,地上冒起一股白烟。

白烟过后数2没了,小3也没了,坐地石头上的却是数6,小3呢?原来小3和数2 被一个乘号“×”紧紧箍地一起,变到数6的肚子里去了,2×3=6.数6站起来拍了拍裤子上的土,朝偶数村走去。

小3 一看数6往偶数村走,就着急了。

他喊道:“不对,走错方向了,我不住地偶数村,我是奇数,我住地奇数村。

”数2说;'你嚷嚷什么!谁让你撞我,和我作乘法来着。

任何一个奇数只要和我数2相乘,立刻就变成偶数。

”小3 惊奇地说:“你那么厉害?如果偶数和你作乘法呢?”“偶数和我数2相乘,当然还是偶数。

一句话,任何一个自然数和我相乘,都将变成为偶数。

” 小3 唉求说:“数2帮帮忙,你是偶数,我是奇数,咱俩没关系,咱俩一起使劲,挣脱开这个乘号吧。

” 数2摇摇头说:“不对!谁说咱俩没关系?你好好想一想,你小3 除了是奇数,还是什么数?”课前预习质数合数小3 想了一下说:“我除了是奇数,还是个质数。

你知道什么是质数吗?质数就是除了能被1和它本身整除外,再不能被其他自然数整除的那种自然数。

1除外,1不算质数。

”数2说?“我也是质数呀,和你是一家子。

”“骗人!我有许多质数朋友,比如5、7、11等等都是奇数。

你数2 是偶数,怎么会是质数呢?”“是不是质数,应该用质数的定义来衡量。

小学数学奥数习题---质数和合数

小学数学奥数习题---质数和合数

专题二-----数论第三节质数与合数知识提要:质数与合数(1)一个数除了1和它本身,不再有别的因数,这个数叫做质数(也叫做素数)。

(2)一个数除了1和它本身,还有别的因数,这个数叫做合数。

(3)要特别记住:0和1不是质数,也不是合数。

(4)常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个:除了2其余的质数都是奇数除了2和5,其余的质数个位数字只能是1,3,7或9。

二、质因数与分解质因数(1)质因数:如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。

(2)互质数:公因数只有1的两个自然数,叫做互质数。

(3)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(4)分解质因数的方法:短除法三、部分特殊数的分解111=3×37 1001=7X11X13; 11111=41×271; 10001=73X1371995=3×5×7×19; 1998=2×3×3×3×37: 2007=3×3×2232008=2×2X2×251: 2013=3X11X61 10101=3X7×13X37.例题1(1)在下面的方框中分别填入三个质数,使等式成立ロ+ロ+ロ=52(2)已知长方形的长和宽都是质数,并且周长是36厘米。

这个长方形的面积最大是多少平方厘米?练习1(1)两个质数的和是49,求这两个质数的积是多少?(2)A、B、C为三个质数,A+B=16,B+C=24,且A<B<C,求这三个质数。

(3)三个质数的倒数之和为431/1547,这三个质数的和是多少?例题2已知P,Q都是质数,并且P×11-Q×93=2003,则P×Q等于多少?练习2如果a,b均为质数,且3a+7b=41,则a+b等于多少?例题3把下面的数分解质因数(1)360 (2)539 (3)2635 (4)373练习3请把下面的数分解质因数:(1)2328;(2)12660;(3)22425;(4)374;例题4(1)三个连续自然数的乘积等于39270,那么这三个连续自然数的和等于多少?(2)四个连续自然数的乘积为3024,求这四个数是多少?练习4(1)三个连续自然数的积是32736,求这三个数?(2)四个连续自然数的乘积为43680,求这四个数是多少?例题5(1)算式924×175×140×95的计算结果的末位有多少个连续的0?(2)要使975×935×972×( )这个乘积的最后四位数字都为“0”,则( )内填入的最小值是多少?练习5(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?例题6张老师带领同学们去种树,学生的人数恰好等分成三组,已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵。

质数和合数专项练习50题选择填空(有答案)ok

质数和合数专项练习50题选择填空(有答案)ok

质数和合数50题专项练习(有答案)1.a、b、c是三个不同的质数,且a>b,a+b=c,那么b=()A.2 B.3 C.5 D.其它2.正方形的边长是素数,它的周长和面积一定是()A.奇数B.合数C.素数D.无法确定3.两个连续自然数的积一定是()A.奇数B.偶数C.合数D.质数4.在()内填入适当的质数。

10=()+()10=()×()20=()+()+()8=()×()×()5. 下列说法中不正确的是()A.3和5是互质数B.两个不同的质数的乘积一定是合数C.假分数的倒数一定小于1D.3是15和24的最大公因数6.自然数可以分为()A.整数和0 B.质数和偶数C.质数、合数、0和17.有4、5、7、8这四个数能组成()组互质数.A.3 B.4 C.5 D.68.质数与质数相乘的积一定是()A.质数B.质因数C.不确定D.合数9.宁波开往镇海的公交线路有541路、380路、341路和343路,这些数中质数有()个.A.3个B.4个C.1个D.2个10.最小的质数与最小的合数的和是()A.5 B.6 C.2 D.811.下面各选项,一定为互质数的一组是()A.质数与合数B.奇数与偶数C.质数与质数D.偶数与偶数12. 把24分解质因数是()A.24=1×2×2×2×3 B.24=2×3×4 C.24=2×2×2×313.在1--20以内,连续三个数都是合数的一共有()组.A.0 B.1 C.2 D.314.23和()的乘积是合数.A.1 B.任何自然数C.质数15.下面说法正确的是()A.所有的偶数都是合数B.所有的奇数都是质数C.互质的两个数的公约数只有116.在3,8,12和25四个数中任意取两个数组成一对互质数,一共有()对.A .3B .4C .5D .617.两个质数的乘积一定是( )A .质数B .合数C .奇数D .无法确定18.凡是15的倍数( )A .一定是质数B .都是偶数C .都是奇数D .一定是合数19.20以内差为4的两个质数是( )和( ),( )和( ),( )和( ).20.30以内是合数的奇数有( )个.A .4B .5C .6D .721.今年小明与哥哥的岁数恰好是互质数,并且他们岁数的乘积为144,那么小明和他的哥哥的岁数之和为( ). 22.a 和b 是互质数,它们的最大公约数是( ),最小公倍数是( ).23.一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是( )。

合数与质数典型例题及答案

合数与质数典型例题及答案

合数与质数答案典题探究例1.在横线内填上合适的质数.26=23+312=7+5=13+13=7+19=3+23=2×13.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,据此填空即可.解答:解:26=23+3 12=7+5=13+13=7+19=3+23=2×13故答案为:23,3,13,13,7,19,3,23,2,13,7,5.点评:明确质数的意义,是解答此题的关键.例2.寻找符合条件的数:小于100,并且由3个不同质数相乘得到.考点:合数与质数.专题:数的整除.分析:只要把这个小于100的数,分解质因数即可得出.解答:解:2×3×7=42点评:此题考查了一个数分解质因数的方法.例3.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?考点:合数与质数.专题:数的整除.分析:根据个位数字与十位数字都是质数,可得这个两位质数的个位数字和十位数字只能是:2、3、5、7.解答:4解:因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,所以符合题意的两位数质数有:23,37,53,73,有4个;答:这样的自然数有4个.点评:此题考查了质数的灵活应用,理解十位数字与个位数字都是质数的两位质数是由:2、3、5、7组成的是本题的关键.例4.一个式子有8个空“空格”,在这些“空格”里,填进20以内各不相同的质数,使A是整数,并且尽可能大.A=(2+3+5+11+13+17+19)÷7.考点:合数与质数;整数的除法及应用.分析:根据质数的意义可知,20以内的质数有2、3、5、7、11、13、17、19;它们的和为2+3+5+7+11+13+17+19=77,则算式中除数应用为77的约数,能被77整除的只有7和11,因此A最大为(77﹣7)÷7=10.解答:解:20以内的质数的质数的和为:2+3+5+7+11+13+17+19=77,77=7×11,所以要使A最大,则A=[2+3+5+11+13+17+19]÷7=70÷7=10,即A能取得的最大整数是10.故答案为:2,3,5,11,13,17,19,7.点评:首先根据质数的意义确定20以内的质数并求出它们的和是完成本题的关键.演练方阵A档(巩固专练)一.选择题(共10小题)1.(•龙湖区)2、3、5、7都是()A.奇数B.偶数C.质数考点:合数与质数.分析:自然数中,能被2整除的数为偶数,不能被2整除的数为奇数;自然数中,除了1和它本身外,没有别的因数的数为质数.根据以上定义对题目中的数字进行分析即能得出正确选项.解答:解:根据偶数、奇数及质数的定义可知:在2、3、5、7这四个数字中,2为偶数,3,5,7为奇数,2、3、5、7全是质数.故选:C.点评:通过本题可以看出,2既为质数,同时也是偶数.2.(•新余模拟)一个两位数,个位和十位上的数字都是合数,并且互质,这个两位数最小是()A.89B.28C.49考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,还有别的因数的数为合数.由此可知,小于10的合数有4,6,8,9.即这个两位数由有4,6,8,9中的两个合数组成.又这两个数互质,只有公因数1的两个数为互质数,而这4个数中,9与4,8互质,所以这个两位数最小是49..解答:解:根据合数的意义可知,这个两位数由有4,6,8,9中的两个合数组成,而这4个数中,9与4,8互质,所以这个两位数最小是49.故选:C.点评:首先根据合数的定义确定组成这个两位数的数的取值范围,然后根据互质数的意义确定是完成本题的关键.3.(•石阡县模拟)一个合数至少有()个因数.A.3个B.3个以上C.3个或3个以上考点:合数与质数.专题:数的整除.分析:合数是指一个大于1的自然数,除了1和它本身两个因数外,还有其它的因数,说明一个合数有3个或3个以上的因数.据此做出选择即可.解答:解:一个合数有3个或3个以上的因数.故选:C.点评:此题考查合数的意义,关键是看这个数有几个因数,有3个或3个以上的因数的数一定是合数.4.(•北海)下面()组中的两个数是合数,又是互质数.A.7和8B.10和12C.15和16考点:合数与质数.专题:数的整除.分析:合数是含有1和它本身两个因数外还含有其它因数的数,互质数是只有公因数1的两个数,据此依次分析选择.解答:解:A、7和8是互质数,但7是质数,不是合数,所以不合题意;B、10和12都是合数,但是10和12不是互质数,所以不合题意;C、15和16都是合数,15和16又是互质数,所以符合题意;故选:C.点评:本题主要考查互质数、合数的意义.5.(•汉阳区)一个数如果只有2个因数,那么这个数一定是()A.偶数B.奇数C.质数D.合数考点:合数与质数.专题:整数的认识.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.即质数只有两个因数,即1和它本身.解答:解:根据质数的意义可知,一个数如果只有2个因数,那么这个数一定是质数.故选:C.点评:自然数中,质数只有两个因数,1只有一个因数,零有没因数,合数最少有三个因数.6.(•蕲春县模拟)是一个最简分数,a和c一定是()A.质数B.合数C.互质数D.不一定考点:合数与质数.分析:首先弄清什么样的分数是最简分数,据此解答.解答:解:分数的分子和分母只有公约数1的分数叫做最简分数,由此得一个最简分数的分子和分母一定是互质数.故选C.点评:此题主要考查最简分数的意义及互质数的概念.7.(•黄岩区)一个比l大的数除了1和它本身之外,没有其他的因数,这个数是()A.质数B.合数C.奇数D.偶数考点:合数与质数.专题:数的整除.分析:根据质数和合数的含义:除了1和它本身以外,不含其它因数的数是质数;除了1和它本身外,还含有其它因数的数是合数;据此解答即可.解答:解:由质数的含义可知:一个比l大的数除了1和它本身之外,没有其他的因数,这个数是质数;故选:A.点评:明确质数的含义,是解答此题的关键.8.(•渝北区)下面的数是质数的是()A.1B.2C.4考点:合数与质数.专题:综合判断题.分析:自然数中,除了1和它本身外没有别的因数的数为质数,除了1和它本身外还有别的因数的数为合数.据此对各选项中的数字进行分析即能得出正确选项.解答:解:A、1不是质数也不是合数;B、2是质数;C、4是合数;故选:B.点评:自然数中,质数与合数是根据因数的多少进行定义的.9.(•安岳县模拟)下列叙述正确的是()A.互质的两个数没有公因数B.两个分数大小相等,分数单位也一定相等C.小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例D.两个面积相等的三角形,不一定能拼成一个平行四边形考点:合数与质数;分数的意义、读写及分类;辨识成正比例的量与成反比例的量;三角形的特性.专题:综合判断题.分析:A,根据互质数的意义,公因数只有1的两个数叫做互质数.所以互质的两个数没有公因数.此说法错误.B,两个分数的大小相等,分数单位不一定相同,如:和相等,但是它们的分数单位不同.所以两个分数相等,分数单位也一定相同.此说法错误.C,根据反比列的意义,两种相关联的量,如果它们对应的两个数的积一定,这两种相关联的量成反比列.所以,小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例.此说法错误.D,因为只有两个完全一样的三角形,才能拼成一个平行四边形,两个三角形的面积相等,不一定完全一样,所以,两个面积相等的三角形,不一定能拼成一个平行四边形.此说法正确.解答:解:根据上面的分析知:说法正确的是:两个面积相等的三角形,不一定能拼成一个平行四边形.故选:D.点评:此题考查的目的是理解互质数的意义、分数单位的意义、反比列的意义,明确:只有两个完全一样的三角形,才能拼成一个平行四边形.10.(•华亭县模拟)正方形的边长是质数,它的周长一定是(),它的面积一定是()A.质数B.合数C.既不是质数也不是合数考点:合数与质数;正方形的周长;长方形、正方形的面积.分析:正方形的边长是质数,设这个质数是a,则它的周是4a,它的面积是a2,然后根据约数个数分析,是质数还是合数,据此解答.解答:解:正方形的边长是质数,设这个质数是a,则它的周是4a,4a含有1、2、4、a、2a、4a,含有6个约数,它的面积是a2,a2含有:1、a、a2共计3个约数,即4a和a2含有至少3个约数,所以都是合数;故选:B.点评:本题主要考查质数合数的意义,注意本题设这个质数是a,则它的周长是4a,它的面积是a2,然后根据约数个数分析.二.填空题(共10小题)11.(•台州)的分数单位是,再添上14个这样的分数单位是最小的素数.考点:合数与质数.分析:根据分数的意义和最小的素数(质数)是2来进行分析,然后填出即可.解答:解:的分数单位是.因为:+=2;所以:再添上14个这样的分数单位是最小的素数.故答案为:,14.点评:此题考查分数的认识与质数合数.12.(•浙江)在6、10、18、51这四个数中,51既是合数又是奇数.10和51互质.考点:合数与质数;奇数与偶数的初步认识.分析:合数的含义:在自然数中除了1和它本身外还有其它因数的数;奇数的含义:在自然数中不能被2整除的数叫作奇数;在自然数中,如果两个数的公因数只有1,那么这两个数称为互质数.解答:解:在6、10、18、51这四个数中,合数有:6,10,18,51;奇数有:51;互质的数是:10与51;所以在6、10、18、51这四个数中,51即是合数又是奇数,10与51互质.故答案为:51,10,51.点评:此题主要考查的是合数、奇数和互质数的知识.13.(•万州区)一个质数和比它小的每一个非零自然数都互质.正确.考点:合数与质数.分析:自然数中,除了1和它本身外,没有别的因数的数为质数;假如这个质数与比它小的某个非零自然数不互质,那么这个质数与这个非零自然数就有“除1和其本身之外的”公约数,这个结论和质数的定义相矛盾,即“一个素数肯定与比它小的任意非零自然数互质.”解答:解:根据质数的定义可知,一个质数和比它小的每一个非零自然数都互质的说法是正确的.故答案为:正确.点评:一个质数和比它大的非零自然数中只与它的倍数不互质,除了其倍数外,与其它自然数都互质.14.(•福田区模拟)如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.√.(判断对错)考点:合数与质数.专题:数的整除.分析:在自然数中,只有公因数1的两个数为互质数.根据自然数的排列规律及公因数的意义可知,任何一对大于0的相邻的两个自然数只有公因数1,所以如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.解答:解:根据互质数的意义可知,如果a和b是大于0的相邻的自然数,那么a和b一定是互质数是正确的.故答案为:√.点评:明确任何一对大于0的相邻的两个自然数只有公因数1是完成本题的关键.15.(•芜湖县)有公约数1的两个数叫做互质数.×.(判断对错)考点:合数与质数.专题:数的整除.分析:根据互质数的意义,公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.解答:解:公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.所以有公约数1的两个数叫做互质数.出说法错误.故答案为:×.点评:此题考查的目的是理解掌握互质数的概念及意义.16.(•中山市模拟)质数只有1个因数.错误.(判断对错)考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,没有别的因数的数为质数.由此可知,质数共有2个因数,即1和它本身.解答:解:根据质数的意义可知,质数共有2个因数,即1和它本身.故答案为:错误.点评:自然数中,只有1只有一个因数,即它本身.17.(•上海模拟)既是合数又是偶数的最小自然数是4.考点:合数与质数;奇数与偶数的初步认识.分析:根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解答:解:根据合数、偶数的意义,既是合数又是偶数的最小自然数是4.故答案为:4.点评:解答本题主要明确自然数,合数、质数、奇数、偶数的概念.18.(•贵州模拟)相同两个素数的和等于它们的积,这个素数是2.考点:合数与质数.专题:数的整除.分析:一个自然数如果只有1和它本身两个因数,这样的数叫做质数(素数),在所有的质数中,相同两个素数的和等于它们的积,得出2+2=2×2,所以这个素数是2.解答:解:相同两个素数的和等于它们的积,这个素数是2;故答案为:2.点评:此题考查了质数的含义.19.(•通州区模拟)一个非零自然数,不是质数就是合数.×.(判断对错)考点:合数与质数.专题:综合判断题.分析:根据质数与合数的意义:一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;1既不是质数也不是合数.解答:解:因为,1既不是质数也不是合数,所以,一个非零自然数,不是质数就是合数.此说法是错误的.故答案为:×.点评:解答此题的关键是理解质数、合数的意义.20.(•临川区模拟)最小的质数占最小的合数的50%.考点:合数与质数;百分数的实际应用.专题:综合填空题.分析:最小的质数是2,最小的合数是4,进而用2除以4,计算得出百分数的结果即可.解答:解:最小的质数是2,最小的合数是4,那么:2÷4=0.5=50%.故答案为:50%.点评:明确求一个数占另一个数的百分之几,用除法计算;也考查了最小的质数是2,最小的合数是4.三.解答题(共10小题)21.两个质数的积一定是奇数,如3×5=15、11×83=913×.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,则最小的质数是2;能被2整数的数为偶数.由此可知,2与其它质数的积一定是偶数.解答:解:由于最小的质数是2,则2与其它质数的积一定是偶数.故答案为:×.点评:除了2之外,任意两个质数的积一定是奇数.22.判断27,28,29,30是素数,还是合数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.除了1和它本身外,还有别的因数的数为合数.据此分析即可.解答:解:在27,28,29,30中,素数为29,合数为27,28,30.点评:本题考查了学生对于合数与质数意义的理解与应用.23.写出大于85而小于98的所有素数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1与它本身之外,没有别的因数的数为质数.据此意义完成即可.解答:解:大于85而小于98的所有素数为:89、97.点评:完成本题要注意将大于85而小于98中的数分解质因数,以确定它们因数的个数.24.四个质数的乘积是和的11倍,这样的数和是多少?考点:合数与质数.专题:数的整除.分析:因为四个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b,c,据此解答即可.解答:解:4个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b=2,3,5,c=2,3,5,经过验证这4个质数为2,2,5,112+2+5+11=20答:这样的数和是20.点评:解答本题的关键是:四个质数的乘积是和的11倍,可以推算出期中一个质数是11.25.有一个三位数,百位数字是最小的质数,个位数是一位数中最大的偶数,这个数最小是多少?最大是多少?(直接写数)考点:合数与质数;奇数与偶数的初步认识.专题:整数的认识;数的整除.分析:我们知道最小的质数是2,一位数中最大的偶数是8.所以这个三位数百位上是2,个位上是8,要想最小,十位为0,最大十位为9,据此解答即可.解答:解:由分析可得这个数最小是208;最大是298.答:这个数最小是208;最大是298.点评:本题是考查整数的写法、质数与合数的意义、自然数的意义.26.我校少先队员排队做操,每排人数相等且都在1人以上.想一想,总共有多少人?在正确答案的下面划线.41人43人47人49人.考点:合数与质数.专题:数的整除.分析:由“每排人数相等且都在1人以上”说明总人数能分成几个相同的数,即合数;而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.解答:解:由题意,总人数能分成几个相同的数,而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.答:五(3)班有49人.点评:此题重点考查了合数与质数的概念,并由此解决问题.27.在横线填上合适的质数.10=3+736=17+1991=13×785=17×524=11+13=17+7.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.据此意义将题目中的数分解成两个质数相加的形式即可.解答:解:10=3+736=17+1991=13×785=17×524=11+13=7+17故答案为:3,7;17,19;13,7;17,5;11,13,17,7.点评:如果两个质数的和是奇数,则这两个质数其中一个一定为2.28.写出60的全部因数,其中质数有2、3、5,偶数有2、4、6、10、12、20、30、60.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:先根据找一个数因数的方法,找出60的所有因数,然后根据质数和合数的意义,奇数和偶数的意义进行分类.解答:解:60=1×60=2×30=3×20=4×15=5×12=6×10所以60的因数有1、2、3、4、5、6、10、12、15、20、30、60,在这些因数中,质数有2、3、5;偶数有2、4、6、10、12、20、30、60.故答案为:2、3、5,2、4、6、10、12、20、30、60.点评:熟练掌握找一个数因数的方法,以及正确的对自然数进行分类是解决本题的关键.B档(提升精练)一.选择题(共10小题)1.(•天河区)下面说法正确的是()A.两个质数的和一定是质数B.假分数的倒数都小于1C.分数的大小一定,它的分子和分母成正比例D.面积相等的两个三角形一定能拼成一个平行四边形考点:合数与质数;倒数的认识;分数的基本性质;三角形的周长和面积.专题:综合判断题.分析:根据题意,对各题进行依次分析、进而得出结论.解答:解:A、两个质数的和一定是质数,说法错误,如:3+5=8,8是合数;B、假分数的倒数都小于1,说法错误,如;C、因为:分子÷分母=分数的值(一定),它的分子和分母成正比例;D、因为:面积相等的两个三角形一定能拼成一个平行四边形,说法错误;故选:C.点评:此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.2.(•高台县)下列说法正确的是()A.1既不是质数也不是合数B.最小的合数是2C.负数比正数大考点:合数与质数;正、负数大小的比较.专题:整数的认识.分析:在自然数中,1既不是质数也不是合数;除了1和它本身外,没有别的因数的数为质数,除了1和它本身外,还有别的因数的数为合数;在数轴上,负数位于0的左边,正数位于0的右边,借助数轴比较数的大小,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,正数都比负数大.解答:解:下列说法正确的是:1既不是质数也不是合数.故选:A.点评:根据质数与合数,正数与负数的含义进行解答即可.3.(•泗县模拟)在1~25的自然数中,合数有()A.14B.15C.16考点:合数与质数.专题:压轴题.分析:根据合数的定义即可解决问题.解答:解:在1~25的自然数中合数有:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25,共15个,故选:B.点评:此题考查了合数的定义.4.(•龙海市模拟)在1、2.3、2、6、﹣4、5%、23、9、51中,素数有()个.A.1个B.2个C.3个考点:合数与质数.专题:数的认识.分析:根据质数(又叫素数)的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数(素数).由此解答.解答:解:在1、2.3、2、6、﹣4、5%、23、9、51中,素数有:2,23.答:在这组数中素数有2和23.故选:B.点评:此题考查的目的是使学生理解质数(素数)的意义,明确质数与合数是在非0自然数范围内,根据一个非0自然数因数个数的多少分成质数、合数和1三部分.5.(•萝岗区)两个质数的积一定是()A.奇数B.偶数C.质数D.合数考点:合数与质数.专题:压轴题;数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.最小的质数是2,除了2之外,其它质数都为奇数.根据数的奇偶性可知,2与其它质数相乘的积一定是偶数;除了2之外,其它两个质数相乘的积是奇数,即两个质数的积可能是偶数也可是质数;又在自然数中,除了1和它本身外,还有别的因数的数为合数.两质数相乘的积的因数,除了1和它本身外,还有这两个质数是它的因数,即共有4个因数.一定为合数.解答:解:根据质数的意义及数的奇偶性可知,个质数的积可能是偶数也可是质数;根据合数的意义可知,两质数相乘的积,一定为合数.故选:D.点评:完成本题要注意最小的质数是2,2同时为偶数.6.(•楚州区)所有素数的积是()A.奇数素数B.奇数合数C.偶数合数D.偶数素数考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.则最小的质数是2,除了1和它本身外,还有别的因数的数为合数.由于素数有无数个,则所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.解答:解:所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.故选:C.点评:除了2之外,所有素数为奇数,则除2之外所有素数的积是奇数合数.7.(•玉溪模拟)在下面与3有关的四句话中,正确的一句话是()A.3是一个自然数,它既是质数也是奇数B.一个自然数的末位是3的倍数,这个自然数一定能被3整除C.任何一个偶数都能被2整除,但不能被3整除D.如果m是一个不为零的自然数,那么3和m一定是互质数考点:合数与质数;奇数与偶数的初步认识;找一个数的倍数的方法.专题:数的整除.分析:根据所学的有关知识,将下列四个选项逐一进行分析、判断,即可选择出正确的一项.解答:解:A、根据自然数、质数、奇数的定义可知,3是一个自然数,它既是质数也是奇数,所以此选项说法正确;B、举例说明:如26,末位数字是6,是3的倍数,但是这个自然数26不能被3整除,所以此选项说法错误;C、举例说明:24,是偶数,能被2整除,也能被3整除,所以此选项说法错误;D、互质数是指两个数的最大公因数是1,如果m=21,则3和m的最大公约数是3,所以不是互质数,此选项说法错误.故选:A.点评:此题主要考查质数、倍数、奇数、偶数、互质数的意义及应用,此类问题可以采用举反例的方法进行判断选择.8.(•天河区)两个数既是合数,又是互质数,它们的最小公倍数是90,这两个数分别是()A.9和10B.2和45C.6和15D.30和3考点:合数与质数;求几个数的最小公倍数的方法.专题:数的整除.分析:在自然数中,除了1和它本身外还有别的因数的数为合数.公因数只有1的两个数为互质数.又互质的两个数的最小公倍数一定是这两个互质数相乘的积,据此分析即可.解答:解:由于90=2×45=18×5=15×6=9×10,在这几组数中,2、5不是合数,15与6不互质,符合条件的只有10与9,故选:A.点评:明确互质的两个数的最小公倍数一定是这两个互质数相乘的积并据此分析是完成本题的关键.。

六年级下册数学总复习试题-质数和合数专项练(通用版 含答案)

六年级下册数学总复习试题-质数和合数专项练(通用版 含答案)

六年级下册数学总复习试题-质数和合数专项练一、单选题1.两个连续的自然数(0除外)的积一定是()A. 质数B. 合数C. 奇数D. 偶数2.把30分解质因数应该写成的形式为()A. 30=5×6B. 30=2×3×5C. 30=1×2×3×5D. 2×3×5=303.下面3个数中,( )是素数A. 37B. 57C. 874.一个两位数,个位上和十位上的数都是合数,并且是互质数,这个数最大为()A. 94B. 98C. 995.互质的两个数()A. 都是质数B. 都是合数C. 可能是质数也可能是合数6.把54分解质因数,正确的是()A. 54=2×9×3B. 54=2×27C. 54=2×3×3×3D. 54=3×187.2是:()A. 最小的偶数B. 最小的质数C. 最小的合数8.15分解质因数是()A. 15×15B. 15=3×5C. 3×5=159.两个质数相乘的积一定是()A. 奇数B. 偶数C. 合数10.一个正方形的边长是一个质数,这个正方形的周长一定是()。

A. 合数B. 奇数C. 质数二、判断题11.判断对错10是1、2、5、10的倍数,所以,1、2、5和10都是10的约数.12.判断对错.最小的质数是3.13.判断对错.两个质数的积一定是合数.14.判断下面的话的对错.把105分解质因数,可以写成:105=3×5×715.判断对错.所有的偶数一定是合数,所有的质数一定是奇数.16.判断,正确的填“正确”,错误的填“错误”.质数就是质因数.17.判断对错.所有的非0自然数不是质数就是合数.18.判断对错.大于2的两个质数的乘积是合数.19.判断对错.质数都是奇数.20.判断对错一个质数与比它小的每一个非0的自然数互质三、填空题21.一个四位数,千位上是最小的质数,百位上是最小的合数,十位上既不是质数也不是合数,个位上既是奇数又是合数,这个数是________。

数论练习题

数论练习题

数论练习题一、判断题1、任意两个不同质数必互质。

( )2、若n 是大于1的正整数,且所有不大于n 的质数都不能整除n,则n 是质数。

( )3、若是是奇数,则22b a abc +奇数。

( )4、若),(mod m bc ac ≡,则)(mod m b a ≡。

( )5、使得)8(mod 15≡x 成立的所有自然数为4的倍数。

( )6、三个成等差数列的基本勾股数只有3、4、5。

( )7、一个大于1的整数不是质数就是合数。

( )8、两个数的公因数一定是它们的最大公因数的因数 。

( )9、-27除以6的带余除法算式是-27=-4×6-3。

( )10、。

则,都是整数,且,若bc ac b a c b a , ( ) 11、)(m od )(m od 22m b a m b a ≡≡,则若。

( )12、不定方程264=+y x 的全部整数解为{)(6241Z t tx t y ∈-=+=。

( )13、一个质数P 与一个整数a ,它们要么互质,要么P|a 。

( )14、质数必为奇数,偶数必为合数。

( )15、设b a ,则a 是倍数,b 是约数。

( )16、若b a ,b c 则b ac 。

( )17、二元一次不定方程异号时有当b a c by ax ,,=+无穷多个自然数解。

二、填空题1、(108,42,24)=______,[108,42,24]=_________。

2、1000!末尾有____________个0。

3、[]{}_______3.1______,2=-=4、同余方程)10(mod 68≡x 的解是____________________。

5、模7的剩余类有且只有___________________________,7的非负最小完全剩余系是__________________________。

6、对于给定的模m ,两整数a,b 属于同一剩余类的充要条件是___________。

五年级数学下册《质数和合数》练习题及答案解析

五年级数学下册《质数和合数》练习题及答案解析

五年级数学下册《质数和合数》练习题及答案解析学校:___________姓名:___________班级:________________一、判断题1.任何质数加上1都能成为合数。

( )2.把一根16cm长的铁丝围成一个长是a厘米,宽是b厘米的长方形,若a和b都是质数,则长方形的面积是215cm。

( )3.在全部自然数里,不是质数就是偶数。

( )4.所有的质数一定是奇数,所有的合数都是偶数。

( )5.最小的质数是1,最小的合数是4。

( )二、填空题6.一个两位数,个位上是最小的合数,十位上是3的倍数,这个数最大是( )。

7.6的倍数中,最小倍数是( ),100以内3的最大倍数是( );28的因数中最大的一位数是( );20以内最大的质数是( )。

8.20以内所有质数是( ),其中最大的质数比最小的质数多( )。

9.176是一个( )分数,它的分数单位是( ),它有( )个这样的分数单位,再添上( )个这样的分数单位就是最小的合数。

10.下面的游戏规则公平吗?在后面的括号里填“公平”或“不公平”。

(1)淘气和弟弟玩五子棋,他们设计了一个摸牌方案决定谁先走。

将下面4张扑克牌背面朝上,任意摸一张牌,摸到质数弟弟先走,摸到合数淘气先走。

( )(2)足球比赛中,裁判用抛硬币的方法决定谁先开球。

( )(3)同学们玩跳皮筋,常用“石头、剪刀、布”的方法来决定谁先跳。

( )(4)下象棋时,先掷骰子,朝上的数字比3大,红方先走;比3小,黑方先走。

( )11.( )既不是质数也不是合数,( )是偶数但不是合数。

三、解答题12.三个不同的质数之和是50,写出这三个质数。

13.用数字1,2,3,组成一位数、两位数和三位数,其中哪些是质数,哪些是合数?四、选择题14.两个不同质数的积—定是()。

A.合数B.质数C.奇数D.偶数15.下面()组的两个数互质.A.15和16B.14和21C.39和1316.要使3□15能被3整除,□里最小能填()。

质数与合数的判断方法与题

质数与合数的判断方法与题

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。

”这里所说的“两个数”是指自然数。

“公约数只有 1”,不能误说成“没有公约数。

”判别方法:(1)两个质数一定是互质数。

例如,2与7、13与19。

(2)一个质数如果不能整除另一个合数,这两个数为互质数。

例如,3与10、5与 26。

(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。

如1和9908。

(4)相邻的两个自然数是互质数。

如 15与 16。

(5)相邻的两个奇数是互质数。

如 49与 51。

(6)大数是质数的两个数是互质数。

如97与88。

(7)小数是质数,大数不是小数的倍数的两个数是互质数。

如 7和 16。

(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(9)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。

如85和78。

85-78=7,7不是78的约数,这两个数是互质数。

(10)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。

如 462与 221 462÷221=2……20,20=2×2×5。

2、5都不是221的约数,这两个数是互质数。

(11)减除法。

如255与182。

255-182=73,观察知 73182。

182-(73×2)=36,显然 3673。

73-(36×2)=1,(255,182)=1。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。

如2、3、4。

另一种不是两两互质的。

如6、8、9。

质数与合数一、趣题引入甲、乙、丙三人打靶,每人打三枪,三人各自中靶的环数之积都是60,按个人中靶的总环数由高到低排,依次是甲、乙、丙。

小学奥数:质数与合数(三).专项练习及答案解析

小学奥数:质数与合数(三).专项练习及答案解析

5-3-3.质数与合数(三).题库 教师版 page 1 of1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.模块一、质数合数综合 【例 1】 写出10个连续自然数,它们个个都是合数.【考点】质数合数综合 【难度】2星 【题型】解答【解析】 在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96.我们把筛选法继续运用下去,把考查的范围扩大一些就行了.用筛选法可以求得在113与127之间共有13个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126.同学们可以在这里随意截取10个即为答案.可见本题的答案不唯一.【答案】114,115,116,117,118,119,120,121,122,123【例 2】 老师可以把本题拓展为找更多个连续的合数:找200个连续的自然数它们个个都例题精讲知识点拨知识框架5-3-3.质数与合数(三)是合数.【考点】质数合数综合【难度】3星【题型】解答【解析】如果10个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数L L第10个是11的倍数,那么这10个数就都是合数.又2m+,m+3,L,m+11是11个连续整数,故只要m是2,3,L,11的公倍数,这10个连续整数就一定都是合数.设m为2,3,4,L,11这10个数的最小公倍数.m+2,m+3,m+4,L,m+11分别是2的倍数,3的倍数,4的倍数L L11的倍数,因此10个数都是合数.所以我们可以找出2,3,4L11的最小公倍数27720,分别加上2,3,4L11,得出十个连续自然数27722,27723,27724L27731,他们分别是2,3,4L11的倍数,均为合数.说明:我们还可以写出11!2,11!3,11!411!11L (其++++中n!=1⨯2⨯3⨯L⨯n)这10个连续合数来.同样,L是m个连续的合数.那么200个连续的自然数(m+1)!+2,(m+1)!+3,,(m+1)!+m+1可以是:201!2,201!3,,201!201+++L【答案】201!2,201!3,,201!201L+++【例 3】四个质数2、3、5、7的乘积为,经验证200到220之间仅有一个质数,请问这个质数是。

小学数学奥数习题---质数和合数

小学数学奥数习题---质数和合数
(2)要使975×935×972×( )这个乘积的最后四位数字都为“0”,则( )内填入的最小值是多少?
练习5
(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?
(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?
例题6
张老师带领同学们去种树,学生的人数恰好等分成三组,已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵。问:一共有多少学生?每人种了几棵树?
二、质因数与分解质因数
(1)质因数:如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。
(2)互质数:公因数只有1的两个自然数,叫做互质数。
(3)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(4)分解质因数的方法:短除法
三、部分特殊数的分解
111=3×37 1001=7X11X13; 11111=41×271; 10001=73X1371995=3×5×7×19; 1998=2×3×3×3×37: 2007=3×3×2232008=2×2X2×251: 2013=3X11X61 10101=3X7×13X37.例题1
(1)在下面的方框中分别填入三个质数,使等式成立
ロ+ロ+ロ=52
(2)已知长方形的长和宽都是质数,并且周长是36厘米。这个长方形的面积最大是多少平方厘米?
练习1
(1)两个质数的和是49,求这两个质数的积是多少?
(2)A、B、C为三个质数,A+B=16,B+C=24,且A<B<C,求这三个质数。
(3)三个质数的倒数之和为431/1547,这三个质数的和是多少?
专题二
第三节质数与合数
知识提要:质数与合数

七年级数学竞赛题:质数与合数

七年级数学竞赛题:质数与合数

七年级数学竞赛题:质数与合数一个大于l 的自然数如果只能被1和本身整除,就叫做质数(也叫素数)如果能被l 和本身以外的自然数整除,就叫做合数,自然数1既不是质数也不是合数,叫做单位数,于是自然数可以分为三类:质数、合数和单位数.关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4;2.在所有质数中,只有2这个偶数,其余均为奇数;3.算术基本定理:任意一个大于l 的整数N 能唯一地分解成k 个质因数的乘积(不考虑质因数之问的顺序关系): ‘,2121akk a a P P P N =,这里k P P 21P 、为不同的质数,k a a a 21、为自然数. 定理说明,如果不计质因数的次序,只有一种方法可以把一个合数分解成质因数的连乘积.例1 已知三个质数a 、b 、c 满足以a+b+c+abc=99那么a c c b b a -+-+-的值等于_____________. (2002年江苏省初一年级数学竞赛题)解题思路运用质数性质,结合奇偶性分析,推出a 、b 、c 的值.例2若p 为质数,53+p 仍为质数,则75+p 为( ) (湖北省黄冈市竞赛题)(A)质数 (B)可为质数也可为合数(c)合数 (D)既不是质数也不是合数解题思路 从简单情形人手,实验、归纳与猜想.例3求这样的质数,当它加上10和14时,仍为质数. (上海市竞赛题)解题思路 由于质数的分布不规则,不妨从最小的质数开始进行实验,这样的质数是否唯一?需按剩余类加以深入讨论.例4在l ,0交替出现且以l 打头和结尾的所有整数(如101,10101,1010101……)中有多少质数?并请证明你的论断. (2001年北京市竞赛题) 解题思路 101是质数,对于,n ≥2,这串数形如位12011010101+=n A 的这串数中还有没有质数?关键是对A 进行拆分变形,运用质数合数定义判断.例5 41名运动员所穿运动衣号码是1,2,…40,41这41个自然数,问:(1)能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2)能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举一例;若不能办到,请浣明理由. (北京市竞赛题) 解题思路要使相邻两数的和都是质数,显然它们只能都是奇数,运用奇偶数性质分析.A 级1.若a 、b 、c 、d 为整数,1997))((2222=++d c b a ,则______2222=+++d c b a 2在1,2,3,…n 这n 个自然数中,已知共有p 个质数,q 个合数,k 是个奇数,m 个偶数,则._________)()(=-+-k p m q .3.设a ,b 为自然数,满足1176a=3b ,则a 的最小值为_______.(“希望杯”邀请赛试题)4.已知p 是质数,并且36+p 也是质数,则4811-p 的值为_______.(北京市竞赛题)5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( ).(A)4 (B)8 (C)12 (D)06.所有形如abcabc 的六位数,(a 、b 、c 分别是0~9这10个数之一,可以相同且a ≠O)的最大公约数是( ).(A)1001 (B)101 (C)13 (D)117.当整数n>1时,形如4n +4的数是( ).(A)质数 (B)合数 (C)合数且为偶数 (D)完全平方数8.设x 是正数,<x>表示不超过x 的质数的个数,如(5.1)=3,即不超过5.1的质数有2,3,5共3个,那么<<19>+<93>+(4)×(1)×<8>>的值是( ).(A)12 (B)11 (C)10 (D)99、是否存在两个质数,它们的和等于数1201111个?若存在,请举一例;若不存在,说明理由. 10.写出十个连续的自然数,使得个个都是合数. (上海市竞赛题)11.在黑板上写出下面的数2,3,4,…1994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由. (五城市联赛题)B 级1.若质数m ,n 满足5m+7n=129,则m+n 的值为______.2.已知P 、q 均为质数,并且存在两个正整数m ,n 使得p=m+n,q=m ×n,则m n qp nm q p ++的值为___________.3.自然数a 、b 、c 、d 、e 都大于1,其乘积2000=abcde ,则其和a+b+c+d+e 的最大值为______,最小值为_____。

互质数的练习

互质数的练习

互质数的练习
一、填空:
1、甲=2×5×5,乙=2×5×7,甲和乙的最大公因数是()。

2、36和60相同的质因数有(),它们的积是()。

3、()的两个数,叫做互质数。

4、自然数a÷b=15,那么a和b的最大公因数是()。

5、如果m和n是互质数,那么它们的最大公因数是()
6、在4、9、10和16这四个数中,()和()是互质数,
()和()是互质数,()和()是互质数。

二、按要求各写2组互质数。

(每题各写2组)
1、两个都是质数:
2、两个都是合数:
3、一个是质数,一个是合数:
三、用短除法求下面每组数的最大公因数。

(注意格式完整)
45和6017和5127和72
72和80
四、两条钢条,一根长18米,一根长24米,要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?。

质数合数互质数练习题

质数合数互质数练习题

质数、合数综合训练一、填空题1、一个数,如果只有()和它()两个因数,这样的数叫做()。

2、一个数,如果除了()和它()还有别的(),这样的数叫做()。

3. 一个合数至少有( )个因数4、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

5、20以内的质数有().6、20以内的数中不是偶数的合数有(),不是奇数的质数()。

7、在20以内的质数中,()加上2还是质数。

8、在50以内的自然数中,最大的质数是(),最小的合数是()。

9. 在()内填入适当的质数。

8=()×()×()10=()+()10=()×()20=()+()+()分解质因数65 56 94 76 13510. 写出两个都是质数的连续自然数。

()12. 写出两个既是奇数,又是合数的数。

( )13. 如果有两个质数的和等于24,可以是()+()、()+()或()+()。

14.两个质数的和是19,则这两个质数的积是______.15. 两个质数的和是18,积是65,这两个质数分别是()16、下面是一道有余数的整数除法算式:A÷B=C……R,若B是最小的合数,C是最小的质数,则A 最大是 ( ),最小是( ).17. 一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。

18. 用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

19.王老师家的电话号码是七位数,从高位到低位排列依次是:最小的质数,最小的合数,既不是质数也不是合数,3的最小倍数,最大的一位数,最小的奇数和8的最大的约数。

请你猜一猜,王老师家的电话号码是多少?你能写出这个电话号码的几个约数吗?王老师家的电话号码是(),它的因数有:()。

(你能写几个就写几个)二、判断题,对的在括号里写“√”,错的写“×”。

20、是最小的自然数,也是最小的质数。

……………………()21、1既不是质数也不是合数。

质数和合数练习题五-精选学习文档

质数和合数练习题五-精选学习文档

质数和合数练习题五一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是 ;最小倍数是 ;(2) 9和3的最大公因数是 ;最小公倍数是 ;(3) 9和18的最大公因数是 ;最小公倍数是 ;(4) 11和44的最大公因数是 ;最小公倍数是 ;(5) 8和11的最大公因数是 ;最大公倍数是 ;(6) 1和9的最大公因数是 ;最小公倍数是 ;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是 ;最小公倍数是 ;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是 ;最小公倍数是。

1.在17、18、15、20和30五个数中,能被2整除的数是( );能被3整除的数是( );能被5整除的数是( );能同时被2、3整除的数是( );能同时被3、5整除的数是( );能同时被2、5整除的数是( );能同时被2、3、5整除的数是( )。

2.在20以内的质数中,( )加上2还是质数。

3.如果有两个质数的和等于24,可以是( )+( ),( )+( )或( )+( )。

4. 一个能同时被 2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是( )。

5.在50以内的自然数中,最大的质数是( ),最小的合数是( )。

6.既是质数又是奇数的最小的一位数是( )。

二、判断题1.两个质数相乘的积还是质数。

( )2.成为互质数的两个数,必须都是质数。

( )3.任何一个自然数,它的最大因数和最小倍数都是它本身。

( )4.一个合数至少得有三个因数。

( )5.在自然数列中,除2以外,所有的偶数都是合数。

( )6.12是36与48的最大公因数。

( )三、选择题1.15的最大因数是( ),最小倍数是( )。

①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的( )。

人教版小学数学五年级下册第2单元 质数和合数同步练习(含解析)

人教版小学数学五年级下册第2单元 质数和合数同步练习(含解析)

人教版小学数学五年级下册第2单元 2.3质数和合数同步练习一、单选题1.在2、4、9、43、39、57、21、15这八个数中,合数有()个。

A.5B.6C.7D.82.下列说法中,正确的是()A.最小的自然数是1B.两个不同的素数一定是互素的C.素数一定是奇数D.若a÷b=m,且m为整数,则a能被b整除3.我们知道:4=2+2,6=3+3,8=5+3,10=7+3,12=7+5,14=11+3……那么,是不是所有大于2的偶数,都可以表示为两个质数的和呢?这是数学家______最先提出。

A.陈景润B.欧几里得C.哥德巴赫D.华罗庚4.两个不同质数的乘积一定是()。

A.合数B.质数C.可能是质数,也可能是合数5.a、b和c是三个非零自然数,在a=b×c中,能够成立的说法是()A.b和c是互质数B.b和c都是a的质因数C.b和c都是a的约数D.b定是c的倍数6.两个不同质数相乘的积一定是()。

A.质数B.合数C.奇数D.偶数二、填空题7.28的因数有,其中是质数,是合数;30以内7的倍数有。

8.个是;是个,再加上个就是最小的质数。

9.一个数与它的倒数的和是4.25,这两个数的积是。

10.最小的质数与最小的合数的比是。

11.10以内所有质数的和是,最大的质数和最小的质数的差是。

12.要使0.5:x的比值恰好是最小的质数,x的值应是。

13.两个质数的和是20,积是91,它们的差是。

三、判断题14.合数可能是偶数,也可能是奇数。

()15.分数的分子与分母是两个不同的质数,这样的分数一定是最简分数。

()16.在自然数中,只有2既是质数,又是偶数。

()17.任意两个不同的质数一定只有公因数1。

()18.任意两个质数的积一定是偶数。

()四、解答题19.一个长方形的长和宽的数值都是质数,周长是56厘米,这个长方形的面积大约是多少?20.天天、明明和丁丁的学号都是质数,他们的学号都小于20,并且天天的学号最大,丁丁的学号最小,他们的学号加上6或者减去6,都是质数。

五年级数学培优:质数、合数、分解质因数

五年级数学培优:质数、合数、分解质因数

五年级数学培优:质数、合数、分解质因数1、按照约数个数的多少可以把自然数分为、、。

2、4×7=28,4是28的,7是28的,也是28的。

3、91、25、1、87、61、54、97中,质数有,合数有。

把合数分解质因数:1、一个长方形的面积是130平方厘米,它的长和宽是互质数。

这个长方形的长和宽可能是多少?2、用2520个棱长是1厘米的正方体堆成一个长方体,它的高是12厘米,长和宽都大于高。

它的长和宽各是多少厘米?3、26÷()=()……2,在括号内填入适当的数,使等式成立,共有几种不同的填法?4、在3张牌上分别写上3个最小的连续奇数,如果随意从其中取出至少一张组成一个数,其中有几个是质数?将它们写出来。

5、小聪的姐姐参加了今年的中学数学竞赛,小聪问姐姐:“这次竞赛你得了多少分?获第几名?”姐姐告诉他:“我得的名次和我的岁数及我的分数乘起来是2910,你看我的成绩和名次各是多少?”6、⑴两个质数的和是30,这两个质数的乘积的最小值是多少?⑵两个合数的和是30,这两个合数的乘积的最大值是多少?7、把9、15、28、30、34、55、77、85这八个数平均分成两组,使每组四个数的乘积相等,应该怎样分?通过本次学习,我的收获是。

第一部分必做题1、(☆)两个质数的和是16,这两个质数的积可能是()或()。

2、(☆)前1000个自然数(不包括0)中有168个质数,那么合数的个数有()个。

3、(☆)一个长方体的体积是105立方厘米,它的长、宽、高是三个不同的质数,这个长方体的表面积是()平方厘米。

4、(☆)判断。

⑴一个质数的约数都是质数。

()⑵两个质数相乘的积一定是合数。

()⑶只有合数有质因数,质数没有质因数。

()⑷一个质数加上2以后,结果还是质数,20以内这样的质数有5个。

()⑸质数与质数的和一定是合数。

()5、(☆)有两个合数,这两个合数又是互质数,这样的数有很多个,如果这两个合数的积是一个最大的四位数,这两个合数是()和()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质数、合数综合训练
一、填空题
1、一个数,如果只有()和它()两个因数,这样的数叫做()。

2、一个数,如果除了()和它()还有别的(),这样的数叫做()。

3. 一个合数至少有( )个因数
4、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

5、20以内的质数有().
6、20以内的数中不是偶数的合数有(),不是奇数的质数()。

7、在20以内的质数中,()加上2还是质数。

8、在50以内的自然数中,最大的质数是(),最小的合数是()。

9. 在()内填入适当的质数。

8=()×()×()
10=()+()
10=()×()
20=()+()+()
分解质因数
65 56 94 76 135
10. 写出两个都是质数的连续自然数。

()
12. 写出两个既是奇数,又是合数的数。

( )
13. 如果有两个质数的和等于24,可以是()+()、()+()或()+()。

14.两个质数的和是19,则这两个质数的积是______.
15. 两个质数的和是18,积是65,这两个质数分别是()
16、下面是一道有余数的整数除法算式:A÷B=C……R,若B是最小的合数,C是最小的质数,则A最大是 ( ),最小是( ).
17. 一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。

18. 用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

19.王老师家的电话号码是七位数,从高位到低位排列依次是:最小的质数,最小的合数,既不是质数也不是合数,3的最小倍数,最大的一位数,最小的奇数和8的最大的约数。

请你猜一猜,王老师家的电话号码是多少你能写出这个电话号码的几个约数吗王老师家的电话号码是(),它的因数有:()。

(你能写几个就写几个)
二、判断题,对的在括号里写“√”,错的写“×”。

20、是最小的自然数,也是最小的质数。

……………………()
21、1既不是质数也不是合数。

………………………………()
22、任何一个自然数,不是质数就是合数。

…………………()
23、所有的偶数都是合数。

……………………………………()
24、所有的质数都是奇数。

……………………………………()
25、两个数相乘的积一定是合数。

……………………………()
26、偶数都是合数,奇数都是质数。

…………………………()
27、7的倍数都是合数。

………………………………………()
28、20以内最大的质数乘以10以内最大的奇数,积是171。

()
29、只有两个约数的数,一定是质数。

………………………()
30、两个质数的积,一定是质数。

……………………………()
31、除2以外,所有的偶数都是合数。

………………………()
32、一个合数至多有三个因数。

………………………………( )
33、质数与质数的乘积还是质数。

……………………………( )
34、最小的自然数,最小的质数,最小的合数的和是7。

…()
35.两个质数的乘积一定是合数。

……………………………( )
36、除2外,所有的质数都是奇数。

…………………………( )
37、大于2的偶数都是合数,大于1的奇数都是质数。

……… ( )
38、7的倍数都是合数。

................................()
39、两个数相乘的积一定是合数。

.......................()
四、解决问题。

1、有一包糖果,平均分给3个人,4个人,5个人都正好分完,这包糖果至少有多少颗
2、三个不同质数的和是23,这三个质数的积最大可能是多少
3、爸爸的年龄是芳芳的3倍,爷爷的年龄是爸爸的2倍,爸爸今年33岁,请问,爷孙相差多少岁
3.小明在放暑假的八月份有5天是在姥姥家度过的,这5天其中有一天是合数,其他4天是质数。

第一个质数是合数减1,第二个质数是合数加1,第三个
质数是合数乘2减1,第四个质数是合数乘2加1,请问小明哪几天是在姥姥家度过的好像也就是求这5个数分别是什么?
互质数
1、 1和任意一个自然数都是互质数。

()
2、两个相邻的自然数是互质数。

()
3、两个不相同的质数也是互质数。

()
4、其它的情况就要我们进行一些必要的计算来判断了。

()
5、a和b是互质数它们最小公倍数是124,a和b是( 和)或
( 和 )
6、两个互质数最小公倍数是224,这两个数可能是()和()
错题集:
1、在1、
2、
3、6、8、12和24中,()是12的倍数,()是6的倍数。

2、36的因数有(),这些数中()是质数,()是合数,()是奇数,()是偶数。

3、x是整数,2x+1是()
A.奇数B.质数C.偶数
4、两个数的和是6,积是8;这两个数是质数的是_____,合数的是______.
5、两个数的和是18,积是77:这两个数是质数的是_____,合数的是______.
6、两个数的和是22,差是6:这两个数是质数的是_____,合数的是_____.
7、偶数加奇数再加奇数的合一定是奇数。

...............( )。

相关文档
最新文档