第10讲 磁场和复合场

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科: 物理年级:高三

本周教学内容:第10讲磁场和复合场

考纲要求

1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。

2.深刻理解磁感应强度、磁感线、磁通量的物理含义。

3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限B

I平行和垂直两类)。

4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运

动类问题(即B与v平行和垂直两类)。

知识结构

热点导析

1.磁场的主要内容

磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和

难点。

2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别

磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电

荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。电磁场可共存于同一空间。

3.有关方向定则

通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、圆形电流和螺线管等受力方向用左手定则来判定。不能简单理解为来和安培定则,求力

F、V各量间因果关系辩清晰,I为原因,为产生的结果用左手定则,而应把、、

B

的用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。

判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。

4.磁通量和磁力矩

单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。若在线圈中通有电流I,则在磁场中转过90°后所受磁力矩分别为BIS 和nBIS。

5.带电粒子在复合场中受力及运动

首先带电粒子在复合场中运动规律广泛应用于近代物理的许多实验装置中,如回旋加速器、质谱仪、磁流体发电机、电磁流量计、速度选择器等。

其次,应明确:研究复合场中带电粒子的运动规律首先要分析初速度和运动过程中加速度(受力)情况。在受力分析的过程中应将重力(是否考虑)、电场力、洛仑兹力等作为力学中按性质来命名的力首先进行讨论。

再次,应明确:不管带电粒子做的是圆周运动还是一般曲线运动,洛仑兹力永远不做功,但洛仑兹力的变化与否可间接影响到重力、电场力等力的做功情况。

最后,因为电磁学物理量及单位比较复杂,而且数值往往相差悬殊,因此计算有关结果时,应先进行字母运算,简化后最后再代入数据。也可这样讲,力学问题的基本思路和求解方法在本单元中广泛适用。

典型例析

【例1】如图5-10-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以()

A.将a、c端接在电源正极,b、d端接在电源负极

B.将b、d端接在电源正极,a、c端接在电源负极

C.将a、d端接在电源正极,b、c端在电源负极

D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端

【解析】 本题为1997年上海高考试题

将a 接正极b 接负极,电流方向为M →N ,c 接正极d 接负极,由右手螺旋定则可知,线圈上端为N 极。由左手定则判定MN 向外运动,A 正确。

b 接在正极时电流方向为N →M ,d 接正极由右手螺旋定则可知线圈下端为N 极,因此由左手定则可判断MN 向外运动,B 正确。

a 接正极电流方向为M →N ,d 接正极可知线圈下端为N 极,由左手定则可判定MN 向里运动,C 错误。

MN 中与线圈中虽然通的都是交流电,但由于ab 与cd 是并联接在电源上,当电流为M →N 时,线圈中电流为c →d ,而当电流为N →M 时,线圈中电流为d →c ,由以上判定A 、B 的方法可判定D 正确。

【说明】 该题属于右手螺旋定则与左手定则结合应用的题,这在一些题中经常出现,先由右手螺旋定则判定磁场方向,再由左手定则判定受力方向。

【例2】 一劲度系数为k 的轻质弹簧,下端挂有一匝数为n 的矩形线框abcd 。bc 边长为l 。线框的下半部处在匀强磁场中,磁感强度大小为B ,方向与线框平面垂直,在图5-10-2中,垂直于纸面向里,线框中通以电流I ,方向如图所示。开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B ,线框达到新的平衡。在此过程中线框位移的大小Δx ,方向 。

【解析】 本题为1999年广东高考试题

设线圈的质量为m ,当通以图示电流时,弹簧的伸长量为x 1,线框处于平衡状态,所以kx 1=mg-nBIl 。当电流反向时,线框达到新的平衡,弹簧的伸长量为x 2,由平衡条件可知kx 2=mg+nBIl 。

∴k(x 2-x 1)=k Δx=2nBIl ∴Δx=k

nBIl 2 电流反向后,弹簧的伸长是x 2>x 1,位移的方向应向下。

【说明】 本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。

【例3】 如图5-10-3所示,一平行板电容器间的水平匀强电场中,用丝线在固定O 点悬挂一个质量为1g 的带电小球,静止在竖直偏左30°角的OA 位置,现把小球提到B 点使线水平伸直,然后放开,让小球绕D 点摆动,求

(1)小球摆到最低点时线上的拉力。

(2)小球摆过最低点时,还能向右摆动的角度(g=10ms -2)?

【解析】 由题可知小球带负电,由小球静止于A 点可知

小球受向下mg ,向左Eq ,沿丝线接力T

由平衡条件可知:Eq=mgtan30°=3

3mg 对小球由B →A →C 过程中应用动能定理 mgl-Eql=2

1mv 2C -0 对小球在C 处在竖直方向应用向心力公式 T-mg=m L

v c 由①②③得:T=(3-

332)mg=1.8×10-2N 设小球还能向右摆α角至D 点

对小球由B →A →C →D 应用动能定理

mglcos α-Eq(1+1sin α)=0

由①④得cos α=3

3(1+sin α) ∴α=30°

【说明】 本题为典型的重力场和匀强电场组成的复合场问题。对该非匀速圆周运动过程,机械能守恒不再适用,动能定理为道选解法。对其中某一位置的法线方向,可使用动力学向心力公式解答。如本题所示的复合场仍为匀强场,也可直接采用合场的办法来求解第(2)问。OA 即为合场方向,B 与D 对OA 左右对称。所以∠AOD=60°,∠COD=30°。若本题修改后∠AOB >90°,则丝线还会有松驰过程,还需考虑丝线张紧瞬间法向速度的损失问题。

【例4】 如图5-10-4所示,在xOy 平面上,a 点坐标为(0,l ),平面内一边界通过a 点和坐标原点O 的圆形匀强磁场区域,磁场方向垂直纸面向里,有一电子(质量为m ,电量为e )从a 点以初速度v 0平行x 轴正方向射入磁场区域,在磁场中运动,恰好在x 轴上的b 点(未标出)射出磁场区域,此时速度方向与x 轴正方向头角为60°,求

相关文档
最新文档