有理数加减法的混合运算-去括号法则

合集下载

六年级春季班第6讲:有理数的混合运算-教师版

六年级春季班第6讲:有理数的混合运算-教师版

有理数的混合运算是初中数学六年级下学期第1章第2节的内容.重点是熟练有理数混合运算的顺序,以及掌握去括号的方法,难点是灵活运用各种运算律进行简便准确的运算.1、 有理数的混合运算(1)运算顺序:先乘方,后乘除,再加减;同级运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号.(2)去括号:括号前带负号,去括号后括号内各项要变号,即()a b a b -+=-- ,()a b a b --=-+. (3)各种运算定律和运算法则都适用于有理数运算.【例1】 计算:()115555-+÷⨯. 【难度】★【答案】25-. 【解析】原式=11055-÷⨯=125-⨯=25-. 【总结】本题考查有理数的运算能力,注意掌握运算顺序和去括号法则.【例2】 计算:()2154832-÷+-⨯. 【难度】★【答案】652. 【解析】原式=1116515921518322222-+⨯=-+==. 【总结】本题考查有理数的混合运算,熟练掌握运算法则是解题关键. 有理数的混合运算 内容分析 例题解析知识精讲【例3】 计算:()225339⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦. 【难度】★【答案】-11. 【解析】原式259()9()651139=⨯-+⨯-=--=-. 【总结】本题考查有理数的乘法,利用运算定律可以使计算更加简便.【例4】 计算:23121111113382⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫---÷-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.【难度】★★ 【答案】72. 【解析】原式=2325834402728277[()()()(()()339292782782-⨯⨯-=-⨯-=-⨯-=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例5】 计算:11110.252346⎧⎫⎡⎤⎛⎫-----+-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.【难度】★★【答案】0. 【解析】原式111111111[(()()04231242444=-----+=---+=---=. 【总结】本题考查有理数运算法则,依次从小、中、大括号计算.【例6】 计算:643517.852171353⎛⎫⎛⎫-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭. 【难度】★★ 【答案】998130-. 【解析】原式176301633299(17)()()68201713151013130=-+⨯--⨯-=---=-. 【总结】此类题目可以采用交换律、分配律、结合律等,主要目的就是能够做到整除,便 于计算.【例7】 计算:424211113333⎛⎫⎛⎫⎛⎫-÷--÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【难度】★★【答案】2-.【解析】原式424211()3311233=-⨯-⨯=--=-. 【总结】本题考查有理数的乘方运算.【例8】 计算:()()444222131773⎛⎫-⨯-⨯⨯-⨯ ⎪⎝⎭. 【难度】★★【答案】2. 【解析】原式1882()(3)7()(37)27321=-⨯-⨯=-⨯-⨯=. 【总结】本题考查有理数混合运算.【例9】 计算:()34152********⎛⎫⎛⎫⨯-+⨯--- ⎪ ⎪⎝⎭⎝⎭. 【难度】★★【答案】1310. 【解析】原式1131311521010=-++==. 【总结】本题考查有理数混合运算.【例10】 计算:()2111411 1.35332353⎡⎤⎛⎫⎛⎫⎛⎫--+⨯-⨯-⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 【难度】★★【答案】8711270. 【解析】原式16131621613628711()(5)()(5)91061596015270=-+⨯⨯-⨯=-+⨯-⨯=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例11】 计算:2213825325⎡⎤⎛⎫⎛⎫÷⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【难度】★★【答案】140-. 【解析】原式2211(8)(153)414414022=⨯⨯--=-=-. 【总结】本题考查有理数的混合运算,注意运算的顺序和运算符号的判定.【例12】 计算:()2271158413505127113417512⎡⎤⎛⎫⨯+÷++--⨯⨯ ⎪⎢⎥⎝⎭⎣⎦. 【难度】★★ 【答案】533. 【解析】原式2256425553011671151233=⨯++⨯⨯=+=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例13】 计算:()3111413832354453⎡⎤⎛⎫⎛⎫--+⨯⨯--⨯-÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 【难度】★★ 【答案】7415. 【解析】原式1121374119(1)31935555=⨯⨯+⨯=⨯⨯=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减.【例14】 计算:()()4233920.125-⨯⨯-.【难度】★★【答案】162 【解析】原式4321(6)2()1628=-⨯⨯-=. 【总结】本题主要考查有理数的乘方运算,注意法则的准确运用.【例15】 计算:()()()3.75 4.2336125 2.80.423-⨯⨯-+⨯-⨯.【难度】★★【答案】423.【解析】原式 3.75 4.2336125 2.80.423 4.23(3.7536125 2.80.1)=⨯⨯-⨯⨯=⨯⨯-⨯⨯ 4.23(3.754912540.70.1) 4.23=⨯⨯⨯-⨯⨯⨯=⨯=. 【总结】本题考查乘法分配律的运用.【例16】 计算:2255977979⎛⎫⎛⎫+÷+ ⎪ ⎪⎝⎭⎝⎭. 【难度】★★【答案】13. 【解析】原式6565555555(()13()()1379797979=+÷+=⨯+÷+=. 【总结】本题主要考查有理数的运算,注意有括号时先算括号里面的.【例17】 计算:23453456137137⨯+⨯++⨯. 【难度】★★【答案】15313. 【解析】原式6126930754215313713713713=+++=+=. 【总结】本题考查有理数混合运算.【例18】 计算:3971225.229113171451010-⨯⨯÷÷÷. 【难度】★★【答案】1.92. 【解析】原式12614811910112521212 1.92551037171425-⨯⨯⨯⨯⨯=-=. 【总结】本题考查有理数运算法则和乘法交换律的综合运用.【例19】 计算:131415415161344556⨯+⨯+⨯. 【难度】★★【答案】123. 【解析】原式435465(40)(50)(60)301401501123344556=+⨯++⨯++⨯=+++++=. 【总结】本题的关键是将算式中的带分数进行合适的分解,然后进行巧算.【例20】 计算:()2492154.66 5.34505694378⎛⎫-⨯-÷+⨯+÷⨯ ⎪⎝⎭. 【难度】★★ 【答案】209-. 【解析】原式=4444204.66 5.3450( 4.66 5.345)99999-⨯-⨯+⨯+=⨯--+=-. 【总结】本题是有理数的混合运算的题目,主要考查了学生对有理数的混合运算法则的掌握 情况,让学生学会运用法则来解题,提高学生的解题能力.【例21】 计算:()()2221111131313192222⎛⎫+⨯-+⨯-+-⨯+-⨯ ⎪⎝⎭. 【难度】★★【答案】11 【解析】原式1111119(11)29112222=++⨯-+-+-=+=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例22】 计算:()()351155731436121827127118+-⨯+--⨯. 【难度】★★【答案】38 【解析】原式115573436251436381827127118=+--++++=+-+=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减.【例23】 计算:237970.71 6.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷. 【难度】★★【答案】1.4. 【解析】原式1333980.7 6.6 2.20.7 3.31177117=⨯-⨯-⨯+⨯+⨯ 1393 3.380.7()(6.6 2.2) 1.4111177⨯=⨯+-⨯++=. 【总结】此题考查的是有理数的混合运算,有理数的运算律,乘法分配律的应用.掌握有理 数的混合运算的法则和运算律并灵活运用时解题的关键,在此题中直接进行乘除运算显然很 麻烦,根据各个加数中的数的特点,分成两组逆用乘法分配律简化计算.【例24】 计算:()()()22324323295521651321690+⨯⨯-+÷+. 【难度】★★★【答案】185. 【解析】原式91821310894(41)131083610818166513516906513130131305⨯⨯⨯+⨯=⨯+⨯+=+=+=⨯. 【总结】本题考查了有理数的混合运算,属于基本题型,要熟练掌握.【例25】 计算:()()()()()2423320.2522830.33210--⨯+⨯÷⎡⎤-⨯+---÷-⎣⎦. 【难度】★★★【答案】1013-. 【解析】原式13416213210480.9(98)(10)0.9 1.7 2.613-⨯+⨯÷-+===-=--++÷---. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例26】 计算:4324320.410.310.710.810.0410.0310.0710.081+++. 【难度】★★★【答案】11110.【解析】原式=432432432(0.04110)(0.03110)(0.07110)1010101010111100.0410.0310.071⨯⨯⨯+++=+++=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【例27】 计算:1994199499319921995994⨯-⨯.【难度】★★★【答案】1995994.【解析】原式19941993100119921994100119941001(19931992)=⨯⨯-⨯⨯=⨯⨯- =1994×1001=1995994.【总结】这道题考查的是整数四则混合运算的简便计算,发现19931993=1993×1001, 19941994=1994×1001是解题关键,本题中的数由于数据较大,数位较多,计算结果要细心, 数清数的位数.【例28】 计算:()()22111093444010.52224144433⎛⎫⎡⎤-⨯+÷-÷⨯-⨯-- ⎪⎣⎦⎝⎭. 【难度】★★★【答案】289. 【解析】原式81180109444(2)028********+=-⨯⨯-⨯⨯-⨯=. 【总结】本题考查的是有理数的运算能力,注意计算顺序和去括号法则.【例29】 计算:()1010.5 5.214.69.2 5.2 5.4 3.7 4.6 1.5-÷⨯-⨯+⨯-⨯⎡⎤⎣⎦.【难度】★★★【答案】9.3【解析】原式=10-10.5÷(5.2×14.6-9.2×5.2-5.4×3.7+4.6×1.5)=10-10.5÷[5.2×(14.6-9.2)-5.4×3.7+4.6×1.5]=10-10.5÷(5.2×5.4-5.4×3.7+4.6×1.5)=10-10.5÷(5.4×1.5+4.6×1.5) =10-0.7=9.3【总结】解题关键是掌握小数乘除法的计算方法以及四则混合运算的顺序.【例30】 计算:4.29430430 4.274294292304.293⨯-⨯-. 【难度】★★★【答案】1990.【解析】原式 4.294301001 4.2742910012304.293⨯⨯-⨯⨯=- 1001(4.29430 4.27429)2304.293⨯⨯-⨯=- 4294.292304.29=-=【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【习题1】 计算:()2411236⎡⎤--⨯--⎣⎦. 【难度】★【答案】16. 【解析】原式1711(29)1666=--⨯-=-+=. 【总结】本题考查有理数运算法则.【习题2】 计算:()()()3351418325217⎛⎫⎡⎤---⨯+-÷-+ ⎪⎣⎦⎝⎭. 【难度】★★【答案】2.【解析】原式1741(27)(325)1212217=-+⨯+-÷-+=-++=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.随堂检测【习题3】 计算:422511185418222⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⨯-⨯--⨯-+÷-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭. 【难度】★★ 【答案】109. 【解析】原式511510[(2516)]41822189=⨯--⨯-+==. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【习题4】 计算:()()()()203233616-⨯-⨯-+-⨯.【难度】★★【答案】0【解析】原式236660=-⨯+=.【总结】本题考查有理数运算法则.【习题5】 计算:()()235.78 3.510.70.211⎡⎤+-÷⨯⎣⎦. 【难度】★★【答案】12100.【解析】原式(5.78 3.510.49)0.008118.80.0081112100=+-÷⨯=÷⨯=.【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【习题6】 计算:211350.62513136658⎛⎫⨯++÷- ⎪⎝⎭. 【难度】★★ 【答案】52. 【解析】原式5191855291550.625()3665886688=⨯++÷-=⨯+⨯-150554882=-=. 【总结】本题的关键是先将小数化为分数后找到式中相同的数,然后进行巧算.【习题7】 计算:33332542258125164816⨯+⨯+⨯. 【难度】★★【答案】5109. 【解析】原式333(325)4(225)8(125)164816=+⨯++⨯++⨯ 130031*********=+++++=. 【总结】本题关键是把三个带分数化成整数加上一个真分数,再利用乘法分配律进行简化.【习题8】 计算:()()2221134313450.01 3.45524⎛⎫-+÷--÷ ⎪⎝⎭. 【难度】★★【答案】134500. 【解析】原式222221132177(431)3451345(1)345 3.45345524524=-+÷+÷=-++÷=÷=134500. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【习题9】 计算:63.85(52) 1.257317(1) 1.1739⨯-÷+÷⨯. 【难度】★★★【答案】145. 【解析】原式153.85 1.258.25 1.251473473125() 1.1() 1.173977⨯÷÷===+÷⨯+⨯. 【总结】对繁分数的化简,分子分母同时计算,能约分的要约分,达到化简的目的.【习题10】 计算:()()322220.217012231440126327⎛⎫⎛⎫÷-⨯+⨯÷- ⎪ ⎪⎝⎭-⎝⎭. 【难度】★★★【答案】0 【解析】原式222230.008112()12101262704970=⨯-⨯⨯-⨯⨯⨯ 222290.08112()1200704970=--=⨯=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【作业1】 计算:()35414772⎛⎫⎛⎫⎛⎫-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【难度】★ 【答案】418-. 【解析】原式5711414574888-⨯⨯-=--=-. 【总结】本题考查有理数混合运算法则.【作业2】 计算:()()()222322323⨯-+-⨯+-+.【难度】★【答案】49【解析】原式1236149=++=.【总结】本题考查有理数运算.课后作业【作业3】 计算:()()22131352404354⎡⎤⎛⎫-⨯⨯-⨯--÷-⨯ ⎪⎢⎥⎝⎭⎣⎦. 【难度】★★【答案】0【解析】原式3(1515)0=-⨯-+=.【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【作业4】 计算:()4211322272⨯+-⨯÷. 【难度】★★【答案】2【解析】原式312=-=.【总结】本题考查有理数的混合运算,注意法则的准确运用.【作业5】 计算:22755411353845235⎡⎤⎛⎫⨯+÷⨯-⨯-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【难度】★★【答案】2330. 【解析】原式1421323()15518530=+-⨯=. 【总结】本题考查有理数的混合运算,注意法则的准确运用.【作业6】 计算:()2232422 2.516348355⎛⎫⎛⎫-⨯⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 【难度】★★【答案】39.351 【解析】原式32161253128164039.3518325528125=-⨯⨯+⨯=-+=【作业7】 计算:()()21115160.0125387.524571615⨯-⨯-÷⨯+--. 【难度】★★ 【答案】1409225. 【解析】原式1161175161614098805721515225=⨯+⨯⨯⨯-=. 【总结】本题考查有理数的混合运算,注意法则的准确运用.【作业8】 计算:82390.8518180.85177717⎛⎫-⨯+⨯-⨯-⨯ ⎪⎝⎭. 【难度】★★ 【答案】367140-. 【解析】原式823998230.8518180.850.85()18()177717171777=-⨯+⨯-⨯+⨯=⨯-+⨯- 111183670.8518177207140=⨯-⨯=--=-. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.【作业9】 计算:()()()321145550.125813131313⎛⎫⎛⎫-⨯+-⨯--⨯+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭. 【难度】★★ 【答案】413. 【解析】原式32114101445()0.125813131313131313=-⨯-++⨯⨯=-+=. 【总结】本题考查有理数的四则运算法则,能简便计算就简便计算.【作业10】 计算:()7577.5351326 4.035139618⎛⎫⨯-⨯+-+-⨯ ⎪⎝⎭. 【难度】★★★ 【答案】131318. 【解析】原式75713(7.535 4.035)213()9618=⨯--⨯⨯+-22171313 3.51345311392918=⨯-⨯=-=. 【总结】本题考查有理数的四则运算法则,先乘除,后加减,如果有括号就先算括号内再算 括号外,同一级运算注意符号,能简便计算就简便计算.。

有理数的加减混合运算

有理数的加减混合运算

3 7 1 3 1.125 1.25 4 2 4 8 7
1 4 7) 2 1 ( 3 . 75 1 . 25 ) ( 1 解:原式= 8 8 7
1 5 6 2 7
1 2 1 7
1 1 7
分数与小数相 加,灵活考虑将 小数化成分数 或将分数化成 小数后再相加.
1.若|a-6|+|b+5|=0,则-a+b-2=______ 2.若|m|=5, |n|=7,则|m+n|=___________ 3.若|x|=3, |y|=5, 且x+y<0,则x-y的值为 _____
9.计算 (1)(-5)-(+5)-(-9) (2)5.3-2.6-3.8+7.4-4.5
5 2 (3)(0.25) ( ) ( 0.5) 6 3 1 1 1 1 ( 4) ( ) ( ) ( ) ( 0.2) ( ) 2 3 4 6
1 1 11 2 1 7 2 6 3
-6-4+2+5 (2)(-6)-(+4)-(-2)-(-5)=____________
1 3 4 6.把 4 4 5 改写成只有加法运算的和的
形式是
1 3 4 ( ) ( ) 4 4 5
例2.计算(-5)-(-3)+(-4)-(-1)
解:原式=-5+3-4+1
=-5-4+3+1
有理数的加减混合运算
——加减法统一成加法
去括号法则: 当括号前面是“+”时,去掉括号和它前面的 “+”,括号内各数的符号都不改变. 当括号前面是“-”时,去掉括号和它前面的 “-”,括号内各数的符号都改变(相反数). 简记:正不变,负都变 2.去掉下列各式的括号,写成省略加号的代数 和的形式,并把它读出来. 1、1+ (-3-5)-(-6-10) 2、 [(-4)-(+7)]-(-5); 3、3-[(-3)-12]

口诀有理数的加法运算

口诀有理数的加法运算

有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

【注】“大”减“小”是指绝对值的大小。

合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b - a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

人教版七年级上册 1.3.4 有理数的加减混合运算

人教版七年级上册 1.3.4 有理数的加减混合运算
把下列算式改写为省略括号和加号的形式:
(1)(-72)-(-37)-(-22)-17 =-72+37+22-17; (2)(-40)-(+27)+19-24-(-32) =-40-27+19-24+32. 学生讨论探索规律后回答:
规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”.
1
1
A.-5
B.5
C.-1
D.1
4.计算:(-1.6)+(-2.4)-(-7.7)=___3_._7___.
5.某件商品的原价为38.9元,先跌了3.7元,后又涨价5.3元, 则这一商品的最终价格是___4_0_.5___元.
随堂练习
6.计算:(1)1 4
+
-
3 4
-
1 2
;
(2)
-
9 4
编号 差值(kg)
1 -0.08
2 +0.09
3 +0.05
4 -0.05
5 +0.08
6 +0.06
探究新知
核心知识点一: 有理数的加减混合运算
小丽和小彬做游戏:每人抽取4张卡 片,如果抽到黄色就加上卡片上的数 字,如果抽到的是红色,就减去卡片 上的数字.最后分别计算各自四个数字 结果,结果大的获胜.
例1 计算:(-2)+(+30)-(-15)-(+27). 解:(方法一:减法变加法)
原式=(-2)+(+30)+(+15)+(-27)(减法转化成加法) =[(-2)+(-27)]+[(+30)+(+15)] (按有理数加法法则计算) =(-29)+(+45) =16. (方法二:去括号法)

有理数的减法及加减混合运算

有理数的减法及加减混合运算

有理数的减法及加减混合运算1、教材知识详解【知识点11有理数减法法则减去一个数,等于加上这个数的相反数,即a-b=a+(-b),这里a、b表示任意有理数。

步骤:(1)变减为加(改变运算符号)(2)把减数变为他的相反数(改变性质符号)(3)按照加法运算的步骤去做。

【例1】计算(1)(—3)—(—5);(2)O—7;(3)7.2—(—4.8);【知识点2】有理数加减混合运算的方法和步骤第一步:运用减法法则将有理数混合运算中的减法转化成为加法;第二步:再运用加法法则、加法交换律、加法结合律进行运算。

【例2】计算:(1) - (2)+--(+-)-(---)3462 6 3 12【知识点3】代数和1把省略了加号的几个有理数的和的式子叫做这几个数的代数和.2.运用代数和进行有理数加减法混合运算的基本步骤:(1) .转化,将算式统一为有理数的加法运算;(2) .省略加号和括号;(3) .运用加法的运算律和法则进行运算.【例3】(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)=-4+18+3-13-2=-4-13-2+18+3=-19+21■3"/5、7/8、1/19、【例4】(——) ----- (+-)+-+()6 4 32 125_7_8+_[_196^4^32~↑276 12 19 T【知识点4】去括号法则1“去掉前面带有加号(或正号)的括号”的法则:当括号前面是“+”时,去掉括号和它前面的“+”,括号内各数的符号都不改变;m+(.a+b -c )=m+a+b-c 【例5】2+-÷∣---4+-842.“去掉前面带有减号(或负号)的括号”的法则:当括号前面是时,去掉括号和它前面的“・”,括号内各数的符号都要改变; m-Ca+b -c )=m-a-b+c 【练习】 一、选择题1 .已知两个数的和为正数,贝) A.一个加数为正,另一个加数为零B.两个加数都为正数C.两个加数一正一负,且正数的绝对值大于负数的绝对值D.以上三种都有可能2 .若两个数相加,如果和小于每个加数,那么( )A.这两个加数同为正数B.这两个加数的符号不同C.这两个加数同为负数D.这两个加数中有一个为零/5、7=( ----- ) ----- F ,8、1 /19、 (——)÷-+(.——) 32 123 .下列运算过程正确的是( )A.(-3)+(-4)=-3+-4B.(-3)+(-4)=-3+44 .如果室内温度为21C,室外温度为一7C,那么室外的温度比室内的温度低( )5 .设。

六年级第二学期数学第二课 有理数的加减法

六年级第二学期数学第二课 有理数的加减法

预备年级第二学期数学第二课 有理数的加减法知识要点:1、有理数的加减法的运算法则2、有理数的加法与减法的互逆关系3、利用运算律进行有理数的加减法的简便运算4、去括号法则:括号前是正号,去括号时括号内的各个加数的符号不变;括号前是负号,去括号时括号内的各个加数的符号都改变符号。

5、符号“—”有两重性:如在53-中“—”是运算符号——减号;在3+(-5)中“—”是性质符号——负号。

例题讲解:例1、如果我们规定盈利为正,那么亏损为负。

如盈利-120元就是亏损120元。

一家商店2005年上半年盈利1.2万元,下半年盈利1.8万元;2006年上半年盈利-0.3万元,下半年盈利0.8万元;2007年上半年盈利-0.4万元,下半年盈利-0.2万元。

那么这家商店每年是盈利还是亏损?盈利或亏损各多少万元?例2计算:(1)()()1525-+- (2)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-4332 (3)⎪⎭⎫⎝⎛-+5182.7(4)5-(-5) (5) ⎪⎭⎫⎝⎛--3210 (6)⎪⎭⎫ ⎝⎛---103352例3计算:(1)()()17152335-++-+ (2)⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-++512834.2375.0(3)()21432743---⎪⎭⎫⎝⎛-(4)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛--432126117例4已知一辆小货车从A 地出发,先向东行驶5千米,卸货后再向西行驶23千米装上另一批货物,然后又向东行驶10千米后停下来,问小货车最后停在何处?例5一天早晨的气温是-2℃,中午气温上升8℃,傍晚气温又下降5℃,问傍晚的气温是多少?例6已知点A 、B 、C 在数轴上对应的数分别是a 、b 、c 化简c b c a b a +++++CO B A练习1、计算:()=+-03 ,=⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-4131 ,=+⎪⎭⎫ ⎝⎛-312211 。

2、判断下列两数和的符号:()⎪⎭⎫ ⎝⎛-+-3255: ():0001.0+-;819918⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+()78-+-;3、计算:()()()=-+-++31316 ;=++⎪⎭⎫ ⎝⎛-326513328 ;()()=-+-+5.767.4 ;()=⎪⎭⎫ ⎝⎛-+-+4119925.2 ;=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+25.065211431;=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+4161534361;=⎪⎭⎫ ⎝⎛---433535; =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---8121434、在下列各式的空格中填入适当的数,是使等式成立。

(完整版)初一有理数的运算法则

(完整版)初一有理数的运算法则

一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。

有括号时、先算小括号里面的运算,再算中括号,然后算大括号。

在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。

4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。

第四讲 有理数的减法及加减混合运算讲义

第四讲 有理数的减法及加减混合运算讲义

第五讲 有理数的减法及加减混合运算【学习目标】理解有理数的减法法则,并能熟练的进行有理数的加减混合运算【知识归纳】有理数减法法则 减去一个数,等于加上这个数的相反数,即)(b a b a -+=-, 这里a 、b 表示任意有理数。

步骤:(1)变减为加,把减数的相反数变成加数;(2)按照加法运算的步骤去做。

有理数加减法混合运算步骤:①减法转化成加法;②省略加号括号;(括号前面正号,去括号时括号内符号不变;括号前是符号,去括号时括号内所有符号都变成原来的相反数)③运用加法交换律(这里既交换又结合,交换时应连同数字前的符号一起交换); ④按有理数加法法则计算.【例题精讲】例1计算(1)(-3)-(-5); (2)0-7; (3)7.2-(-4.8);例2计算:(1)-11-7-9+6 (2)(+4.7)-(-8.9)+(+7.5)-(-6)(3)111()()6312+-+-- (4)13513462-+-+例3.把()131515432+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+写成省略加号的和的形式,并把它读出来。

【练习巩固】一、选择题:1.下列交换加数的位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5B.1311131134644436-+--=+--C. 1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.72.如果│a+b │=│a │+│b │成立,那么( )A .a ,b 同号B .a ,b 为一切有理数C .a ,b 异号D .a ,b 同号或a ,b 中至少有一个为零3.若│a │=7,│b │=10,则│a+b │的值为( )A .3B .17C .3或17D .-17或-34.下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数5.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A.12.25元B.-12.25元C.12元D.-12元6.有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -7.一个数加上-12得-5,那么这个数为( )A.17B.7C.-17D.-78.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个9.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A.20B. 119C.120D.319二、填空题:10.比-18小5的数是 ,比-18小-5的数是11.若│x+2│+│y-5│=0,则x-2y=_________12.有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6有理数加减法的混合运算(2)
-------去括号法则
计算:
1 ቤተ መጻሕፍቲ ባይዱ(1 6) 3 37
仔细观察算式的 结构特点,怎样
做更简便呢?
观察这个算式,按照运算顺序的 规定,应当怎样计算?
计算:
1 (1 6) 3 37
解:原式 1 1 6 337
0 6 7
6 7
解:原式 1 (1 6) 3 37
-1 )=
2
-3-
1 2
× (2)3+(-5+2.8)=3-5-2.8
√ (3)8-(-3+5)=8+3-5
例2. 应用去括号法则进行简便运算:
(1) 3 ( 1 4 1) 43 4
拓展练习:

5 4

7

3



1 4

5 3

你有什么收获
说一说
去括号法则
计算:
去括号法则
1 (2 6) 3 37
括号前面是“+ ”号时,去掉 括号和 它前面的 “+ ”,括号内
解:原式 1 (2 6) 3 37
126 337
各数 的 符号 都 不改变 ;
字母表达式:
m +( a + b –c )
1 6 13 77
= m + a+b-c
一、口算
(1)3 – 5 ;
(2)3 – ( – 5);
(3)( – 3) + 5; (4)( – 3.4) – ( –5);
(5)–6 –( –6); (6) – 7.2 – 0.9;
(7)0 – ( –7) ; (8 )( – 6) + 6;
(9)9
+( –11);
(10

-
2 5
+

+2
7 ( 25) 21 21
18 6 21 7
去括号法则
1 (1 6) 1 1 6 3 3 7 337
括号前是“-”号时,去掉括号和 它前面的“- ”,
括号内各数 符号 的都 要改变 ;
字母表达式:
m -( a + b –c ) = m - a - b + c
去括号法则
括号前是“+ ”号,去掉括号和它前面的 “+ ”号,括号内各数的符号都不改变; 括号前是“-”号,去掉括号和它前面的 “-”号,括号内各数的符号都要改变;
例1:
(1) 11 (1 4) 22
(2) 3 (2 1 5) 5
1、试一试:判断下列各式是否正确?
× (1) -(3
三、把下列各算式写成省略括加号的代数和的形式. (1)(-40)-(+5)-(-3)-(+6) (2)(-15)+(-3)-(+7)-(-8)-11 (3)1.2-(-2.1)+0.2-(+0.5)
(4) ( 5) 7 ( 8) 1 ( 19) 6 4 3 2 12
北京版教材 七年级上册
1 4

二、选择题 1、下列说法中下正确的是(B ) A、两个数的差一定小于被减数 B、若两个数的差为0,则这两数必相等 C、零减去一个数一定得负数 D、一个负数减去一个负数结果仍是负数
2、选择,下列说法正确的是( C )。 A,减去一个数等于加上这个数; B,0减去一个数仍得这个数; C,a-b=a+(-b); D,两个数的差一定比被减数小。
相关文档
最新文档