解被动Passive电子元件Q值与D值在电路上的意义
电路q值的计算
电路q值的计算全文共四篇示例,供读者参考第一篇示例:电路的Q值是指品质因数(Quality Factor)。
品质因数是电路的一个重要参数,衡量了电路在特定频率下的能量储存和损耗比例。
在电路领域,Q值通常用来描述电路的频率选择性,也就是电路在特定频率下的性能表现。
Q值越高,表示电路在特定频率下的能量储存越高,损耗越小,频率选择性越好。
Q值的计算方法有很多种,不同类型的电路具有不同的计算方式。
下面将会介绍几种常见电路的Q值计算方法。
1. 电感电路的Q值计算对于串联电感电路,其Q值可以通过下式计算得出:Q = ωL/RQ为品质因数,ω为电路的角频率,L为电感的电感值,R为电路的电阻值。
4. 电路中的Q值应用Q值在电路设计和分析中有着重要的作用,可以帮助工程师评估电路的性能,优化电路设计,提高电路的工作效率和稳定性。
高Q值的电路通常具有较好的频率选择性,能够减少损耗,提高信号传输质量。
第二篇示例:电路的Q值是一个非常重要的参数,它主要用来描述电路的品质因数,即电路在特定频率下的能量损耗情况。
Q值越高,代表电路的能量损耗越小,品质因数越好。
在电子工程领域中,Q值的计算是非常重要的工作,它能够帮助工程师们设计出更加优秀的电路系统。
Q值的计算通常涉及到电路的电阻、电容和电感等元件的参数,其中最常见的是针对谐振电路的计算。
谐振电路是一种能够在特定频率下产生共振的电路,它是许多电子设备中的重要组成部分。
在谐振电路中,Q值可以通过以下公式来计算:Q = ωL/RQ代表电路的品质因数,ω是电路的角频率,L是电路的电感,R 是电路的电阻。
通过这个公式,可以很容易地计算出谐振电路的Q值,从而评估电路的品质因数。
在实际的工程应用中,工程师们通常会根据设计要求和实际情况来选择合适的元件参数,从而优化电路系统的性能。
除了在谐振电路中,Q值的计算在其他类型的电路中也具有重要意义。
在滤波电路中,Q值可以帮助工程师们评估电路的频率选择性能;在放大电路中,Q值可以帮助工程师们评估电路的稳定性和功耗情况。
了解被动电子元件:RLC Q值与D值在电路上的意义
了解被动Passive电子元件Q值与D值在电路上的意义首先,对于被动特性的电子元件,也就是R电阻器,L电感器,及C电容器,正确的思考是:所有电子元件都具有R,L,C的基本特性,只是它工作在某一个使用频率时,才会显现它设计上应有的特性。
有这种思维,才能在电路上避免一些元件参数的变异影响,尤其应用在一些特定的产品设计上。
1.电阻器:在高频率工作时,低值电阻会显现部分电感特性,高值电阻会显现电容特性。
2.电感器:在高频率工作时,所有电感器会显现部分电容特性。
然而在各种频率工作下均会显现电阻特性,这就是我们所熟知的Q值来源。
3.电容器:在高频率工作时,所有电容器会显现部分电感特性。
然而在各种频率工作下均会显现电阻特性,这就是我们所熟知的D值来源。
在学校里,大家都知道Q与D的意义,及其所代表的公式,但是却没有在电路上作出适当的计算,尤其不了解在串联与并联转换间的运用。
以电感器的Q值为例:Q = ωL / Rs = Rp /ωL (Rs为串接电阻,Rp为并接电阻, ω = 2ΠF)在电路上,你可以依照需要计算出Rs或是Rp,再与电路上其他串接或并接阻抗合并计算其实际数值。
有人要问了,Q值高低对于电路有什么影响,计算出Rs与Rp又有何用?当然电感器多数需要和电容器组合工作,才能产生通频带,阻频带,高通及低通的滤波作用,即使电容器可能是电路图上看不到的寄生电容。
以滤波电路为例,Q值= 20相当于5 %的串接阻抗,或是20倍的并接阻抗,那么原来计算的滤波效果,可以评估会减少5 %。
至于用在通频带电路,则为6dB通频带范围为工作频率的1 / 20。
此时所说的工作频率即为电感器与其工作的电容器的谐振电路频率。
在接收机的射频电路及中频电路上经常看到,在谐振电路上并接电阻,就是要降低Q值使接收频带变宽。
至于电感器的电容特性,在高频线圈的规格书中可以看到“自共振频率”项目,以此频率数据与电感器数值,所计算出来的电容量,就是电感器的并接寄生电容量。
常用电子元器件型号命名法与主要技术参数
常用电子元器件型号命名法与主要技术参数电子元器件是电子产品中非常重要的一部分,为了便于识别和使用,每种电子元器件都有相应的型号和技术参数。
本文将介绍常用电子元器件的命名法和主要技术参数,以帮助读者更好地了解电子元器件。
1. 电阻器电阻器通常用来限制电路中的电流,并改变电压和功率。
电阻器的命名法为“R+数字”,数字表示电阻值。
例如,R100表示100欧姆的电阻器。
电阻器的主要技术参数有:电阻值:电阻器的电阻值越大,电路中的电流越小。
功率:功率越大,电阻器发热越多。
精度:电阻器的精度越高,电路中的电流越精确。
温度系数:温度系数可以影响电阻器的电阻值。
2. 电容器电容器通常用来存储能量或阻止电流。
电容器的命名法为“C+数字”,数字表示电容值。
例如,C1μF表示1微法的电容器。
电容器的主要技术参数有:电容值:电容值越大,电容器可以存储的电力越大。
电压:电容器的电压越高,它可以承受的电力也越高。
电容器类型:电容器根据构造材料的不同,分为有机电容器和无机电容器。
3. 二极管二极管通常用来控制电流的方向。
二极管的命名法为“D+数字”,数字表示型号。
例如,D1N4148表示1N4148型号的二极管。
二极管的主要技术参数有:正向工作电压:正向工作电压是二极管正向工作时的最大电压。
反向击穿电压:反向击穿电压是二极管能承受的最大反向电压。
反向电流:反向电流是二极管反向工作时的电流。
4. 晶体管晶体管通常用来放大电流和控制电路。
晶体管的命名法为“Q+数字”,数字表示型号。
例如,Q2N3904表示2N3904型号的晶体管。
晶体管的主要技术参数有:最大工作电压:最大工作电压代表晶体管工作的最大电压。
最大功率:最大功率代表晶体管可以承受的最大功率。
放大系数:放大系数代表晶体管从输入信号到输出信号的增益。
5. 电感器电感器通常用来阻止电路中的交流电流。
电感器的命名法为“L+数字”,数字表示型号。
例如,L100表示100微亨的电感器。
解被动Passive电子元件Q值与D值在电路上的意义
解被动Passive电子元件Q值与D值在电路上的意义首先,对于被动特性的电子元件,也就是R电阻器,L电感器,及C电容器,正确的思考是:所有电子元件都具有R,L,C的基本特性,只是它工作在某一个使用频率时,才会显现它设计上应有的特性。
有这种思维,才能在电路上避免一些元件参数的变异影响,尤其应用在一些特定的产品设计上。
1.电阻器:在高频率工作时,低值电阻会显现部分电感特性,高值电阻会显现电容特性。
2.电感器:在高频率工作时,所有电感器会显现部分电容特性。
然而在各种频率工作下均会显现电阻特性,这就是我们所熟知的Q值来源。
3.电容器:在高频率工作时,所有电容器会显现部分电感特性。
然而在各种频率工作下均会显现电阻特性,这就是我们所熟知的D值来源。
在学校里,大家都知道Q与D的意义,及其所代表的公式,但是却没有在电路上作出适当的计算,尤其不了解在串联与并联转换间的运用。
以电感器的Q值为例:Q = ωL / Rs = Rp /ωL(Rs为串接电阻,Rp为并接电阻, ω = 2ΠF)在电路上,你可以依照需要计算出Rs或是Rp,再与电路上其他串接或并接阻抗合并计算其实际数值。
有人要问了,Q值高低对于电路有什么影响,计算出Rs与Rp又有何用?当然电感器多数需要和电容器组合工作,才能产生通频带,阻频带,高通及低通的滤波作用,即使电容器可能是电路图上看不到的寄生电容。
以滤波电路为例,Q值= 20相当于5 %的串接阻抗,或是20倍的并接阻抗,那么原来计算的滤波效果,可以评估会减少5 %。
至于用在通频带电路,则为6dB通频带范围为工作频率的1 / 20。
此时所说的工作频率即为电感器与其工作的电容器的谐振电路频率。
在接收机的射频电路及中频电路上经常看到,在谐振电路上并接电阻,就是要降低Q值使接收频带变宽。
至于电感器的电容特性,在高频线圈的规格书中可以看到“自共振频率”项目,以此频率数据与电感器数值,所计算出来的电容量,就是电感器的并接寄生电容量。
Q值的定义(精)
Q值的定义:Q值;是衡量电感器件的主要参数.是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比.电感器的Q值越高,其损耗越小,效率越高.电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关.也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯.Q值过大,引起电感烧毁,电容击穿,电路振荡.Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值.品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽.Q=wL/R=1/wRC其中:Q是品质因素w是电路谐振时的角频率(2πf)L是电感R是串的电阻C是电容结合自己的实践,对上面进行一下补充由于在天线端都是采用的是RLC并联谐振电路,是在正弦电流激励下工作的所以在计算电感的品质因数Q值时,R值为整个谐振电路的等效阻值,在计算时候要注意下面的是一个案例,很有指导意义!!!!For optimum performance the antenna Q should not exceed 20 and to achievereliable tuning at 125kHz the antenna inductance should be around 700uH. HigherQ and inductance values will still function but with a reduced range andperformance.The formula for calculating Q = 2*pi*fL / Rant = 549 / Rantwhere f = Resonant frequency, 125 kHz, L = Antenna inductance, 700uHRant = Overall antenna resistance = Rdriver + Ra + (Rcu + Rrf)pi = 3.14159 etcRdriver = 3.5 R (from IC spec) and Ra = 22 R (series resistor in antenna loop)Rcu = Resistance of Copper (coil and cable) andRrf = RF resistive component (eddy current losses etc)By measurement at 125kHz, (Rcu + Rrf) = approx 6RTherefore Rant = 3.5 + 22 + 6 = 31.5 Ohms, Q = 549 / 31.5 = 17Max peak antenna current (with 22R series resistor),Iant max = 4Vdd / pi*Rant = 20 / pi*31.5 = 200maMax peak antenna voltage, Uant max = Iant max . (2*pi*fL) = 110v1.电感线圈的串、并联每一只电感线圈都具有一定的电感量。
(完整版)Q值的定义(精)
Q值的定义:Q值;是衡量电感器件的主要参数.是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比.电感器的Q值越高,其损耗越小,效率越高. 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。
也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯.Q值过大,引起电感烧毁,电容击穿,电路振荡.Q很大时,将有VL=VC>〉V的现象出现。
这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象。
而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值.品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽.Q=wL/R=1/wRC其中:Q是品质因素w是电路谐振时的角频率(2πf)L是电感R是串的电阻C是电容结合自己的实践,对上面进行一下补充由于在天线端都是采用的是RLC并联谐振电路,是在正弦电流激励下工作的所以在计算电感的品质因数Q值时,R值为整个谐振电路的等效阻值,在计算时候要注意下面的是一个案例,很有指导意义!!!!For optimum performance the antenna Q should not exceed 20 and to achievereliable tuning at 125kHz the antenna inductance should be around 700uH。
HigherQ and inductance values will still function but with a reduced range andperformance。
The formula for calculating Q = 2*pi*fL / Rant = 549 / Rantwhere f = Resonant frequency,125 kHz,L = Antenna inductance,700uHRant = Overall antenna resistance = Rdriver + Ra + (Rcu + Rrf)pi = 3。
Q值定义
影响Q值的其它因素
1.泛音次数
2.表面抛光
3.材料的杂质和缺陷
4.安装应力
5.焊接应力
6.温度
7.电极几何形状和类型
8.片子的几何形状(外形、尺寸比)
9.激励电平
10.外壳中的气体(压力、气体种类)
11.干扰模
12.离子辐射
Q值
Q值是衡量电感器件的主要参数。电感器的Q值越高,其信号损耗越小,效率越高。Q值过大,引起电感烧毁,电容击穿,电路振荡
Q值和电镀的关系
1.镀层的厚度
2.材质的疏松3.药水Βιβλιοθήκη 成份4.表面的质密性(粗糙度)
电感器的q值越高其损耗越小效率越电感器品质因数的高低与线圈导线的直流电阻线圈骨架的介质损耗及铁心屏蔽罩等引起的损耗等有关
Q值是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。
影响
Q值过大,引起电感烧毁,电容击穿,电路振荡。Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量。通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。Q=wL/R=1/wRC其中: Q是品质因素;w是电路谐振时的电源频率;L是电感;R是串的电阻;C是电容
电容的Q值和D值是什么?Q值和D值有什么作用?
电容的Q值和D值是什么?Q值和D值有什么作用?在做射频的时候,选择电感电容时特别关注他们的Q值,那什么是Q值呢?Q值是什么意思,它为什么重要?品质因数Q:表征一个储能器件(如电感线圈、电容等)、谐振电路所储能量同每周损耗能量之比的一种质量指标。
元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。
或Q=无功功率/有功功率,或称特性阻抗与回路电阻之比。
Q值越高,损耗越小,效率越高;Q 值越高,谐振器的频率稳定度就越高,因此,能够更准确。
如何理解Q值和ESR值评估高频贴片电容器的一个重要性能指标是品质因素Q,或者是与其相关的等效串联电阻(ESR)。
理论上,一个“完美”的电容器应该表现为ESR为零欧姆、纯容抗性的无阻抗元件。
不论何种频率,电流通过电容时都会比电压提前正好90度的相位。
实际上,电容是不完美的,会或多或少存在一定值的ESR。
一个特定电容的ESR随着频率的变化而变化,并且是有等式关系的。
这是由于ESR的来源是导电电极结构的特性和绝缘介质的结构特性。
为了模型化分析,把ESR当成单个的串联寄生元。
过去,所有的电容参数都是在1MHz的标准频率下测得,但当今是一个更高频的世界,1MHz的条件是远远不够的。
一个性能优秀的高频电容给出的典型参数值应该为:200MHz ,ESR=0.04Ω;900MHz,ESR=0.10Ω;2000MHz,ESR=0.13Ω。
Q值是一个无量纲数,数值上等于电容的电抗除以寄生电阻(ESR)。
Q值随频率变化而有很大的变化,这是由于电抗和电阻都随着频率而变。
频率或者容量的改变会使电抗有着非常大的变化,因此Q值也会跟着发生很大的变化。
定义电容的品质因数,也就是Q值,也就是电容的储存功率与损耗功率的比:Qc=(1/ωC)/ESRQ值对高频电容是比较重要的参数。
自谐振频率(Self-Resonance Frequency)由于ESL的存在,与C一起构成了一个谐振电路,其谐振频率便是电容的自谐振频率。
电感特性参数及含义
电感器特性参数及意义.表征电感器电器特性的参数,主要有:L、Q、DCR、SRF、IDC,检验其机械特性的方法主要有抗拉压、抗震压、抗冲击、耐高温、耐低温.L: (电感):电流通过导体时,产生符合右手螺旋定则的磁场,这种现象叫电磁感应,简称电感.电感的特性为:不允许电流做瞬间的变化。
电感器(Inductor),凡能产生电感作用的器件统称为电感器;一般电感由线圈构成的,所以又统称电感线圈,为了增加电感量和Q值,并缩小体积,通常在线圈中加入铁粉芯。
电感值,国际单位为:亨利,其英文表示H. 常用单位为: 毫亨(mH) 微亨(μH)表征线圈产生感生电动势的能力.L的定义式为: L=dψ/di (微分表达式)意义: 磁通量相对于电流的变化率.L的计算公式:L=AL*N2L=4πuiN2Ae/le*108Al=4πui*Ae/le*108L:电感值(H)Al:电感系数( nH/ N2)N:线圈匝数(turns)Ae:磁芯有效横截面积(cm2)Le:磁路长度(或平均长度, cm)ui:磁芯材料的初始磁导率.实用经验公式:L1/N12= L2/N22→L1= N12/ N22*L2该经验公式在磁力线尚未饱和时准确度很高,发生磁饱和以后, 该公式失去效用.Q(quality factor):Q值是电感器的质量系数,用来表征电感器储存能量与消耗能量之间的关系.其数学表达式如下:Q值=贮存能量/消耗能量=XL/R=2πf*L/RXL:感抗(Ω)R:电阻(Ω)f:频率(Hz)L:电感值(H)从Q值的定义式中,很明显可以看出: Qd值越高越好,在数字通信电路中,Q值的大小直接影响着数据的传输速度.决定Q值高低的变量有三个, 即是R: 电阻(Ω) f: 频率(Hz) L: 电感值(H) .在稳恒电路中,电感器贮存的磁场能量为:E=½*L*I2E: 能量(J) L: 电感(H) I: 电流(A)上式的意义在于: 它很清楚地告诉我们,在大电流通过时,只有那些L值降低不大的电感器才可以贮存足够多的磁场能量. 这对于我们如何选用磁芯很有帮助.DCR:(Direct Current Resistance) 直流电阻值是构成线圈本身导体的电阻.若已知线径.线长和线材电阻率,则可直接计算其DCR值.DCR=ρ*4L/πd²(Ω)ρ:线材电阻率(Ω*m) L:线长(m) d: 线的直径(m)*.* 需要特别指出的是: DCR的测量值随温度的不同而不同,温度升高时,DCR也增大. 这是因为温度升高时,(所有金属)自由电子的无规则运动速度加快,电子之间的碰撞更加剧烈,使得金属材料的电阻率增大. 所以在测量DCR时必须等线圈恢复至常温.*.* 一般情况下,DCR的标注值以20℃时的测量值为标准.温度每上升1℃,其DCR 值增加0.4%.我们一般希望DCR值越小越好,因为多数情况下,DCR越小,电感器越不容易发热,能够承受更大的电流. 但也偶有特殊.SRF:(Self Resonant Frequency)自共振频率:所有的电感器在其绕组之间存在着电容性,称为分布电容.随频率升高时,电感器的感抗(X L).交流电阻值(R)同时升高,但频率高过某一个极限时,电感器的感抗急剧降低直至消失,而在特性上表现为电容性负载,使电感器发生这种现象的频率点(XL=0),称为该电感器的自共振频率点,即为在此频率之前,电感表现为感性,L>0,在此频率之后表现为容性L<0.电路的设计者在设计电子电路时,特别是高频电路时已经考虑到电路的正常工作频率,从而提出SRF一定要大于某一个限制值,以确保电路正常工作.影响电感器SRF值的因素有:磁芯材质,线径,圈数(L值)IDC:(Rated Current)电流限制值,一般从两个方面考评:一是基于电感值(L)的降低幅度,,标示为IDC1;二是基于正常工作时电感器线圈的温升,标示为IDC2.IDC1:表征磁芯的耐电流特性,在电流增加时,磁芯是否达到饱和状态.发生磁饱和时,L 值急剧下降,失去正常作用,一般情况下,IDC1限值是在L值降低幅度小于等于10%确定的.IDC2:表征线圈可以承受电流的能力,在电流增加时线圈是否会产生大量的热而烧毁. 线圈产生热,是因为线圈本身有电阻, 电流通过时其热功率符合下列表达式:P=I2R当其产生的热量大于其表面能够散发的热量时,线圈温度便会升高. 温度升高时,其表面的散热能力逐步增强,这样一来,总能找到一个温度点,使得线圈产生的热量刚好等于其表面散失的热量,此时,线圈的温度不再升高,开始维持平稳,关键的是我们如何控制这个温度点,使之不至于烧毁线圈.上式中, I适当时, 线圈的温度不需要升高太多(≦40℃)便可以达到热平衡, 这就是我们要寻找的IDC2.也就是线圈能够正常工作时所允许通过的电流限值.考虑一个电感器,除以上5个基本特性参数外,还应考虑到它的使用可靠性.这一点是设计工程师们必须想到的.电感器的使用环境(温度,湿度等)是否恶劣, 是否有酸碱性物质,是否有受摩擦,撞击等外应力的可能性,这些问题考虑之后,决定是否要加装套管,外壳等保护性装臵.样品制作及注意事项为更好地完成制样这一工作,下面是一些样品制作注意事项,供参考。
半导体参数意义
半导体参数意义2004-1-23一、半导体二极管参数符号及其意义CT---势垒电容Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数。
在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流)。
锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流)。
在额定功率下,允许通过二极管的最大正向脉冲电流。
发光二极管极限电流。
IH---恒定电流、维持电流。
Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流。
在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(A V)---反向平均电流IR(In)---反向直流电流(反向漏电流)。
在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。
参数符号及意义
参数符号及意义.txt∞-一人行,必会发情二人行,必会激情三人行,必有奸情就不会被珍惜。
真实的女孩不完美,完美的女孩不真实。
得之坦然,失之淡然,顺其自然,争其必然。
场效应管参数符号及意义Cds---漏-源电容Cdu---漏-衬底电容Cgd---栅-源电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率PIN--输入功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数) VGG---栅极(直流)电源电压(外电路参数) Vss---源极(直流)电源电压(外电路参数) VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数双极型晶体管符号及意义Cc---集电极电容Ccb---集电极与基极间电容Cce---发射极接地输出电容Ci---输入电容Cib---共基极输入电容Cie---共发射极输入电容Cies---共发射极短路输入电容Cieo---共发射极开路输入电容Cn---中和电容(外电路参数)Co---输出电容Cob---共基极输出电容.在基极电路中,集电极与基极间输出电容Coe---共发射极输出电容Coeo---共发射极开路输出电容Cre---共发射极反馈电容Cic---集电结势垒电容CL---负载电容(外电路参数)Cp---并联电容(外电路参数)BVcbo---发射极开路,集电极与基极间击穿电压BVceo---基极开路,CE结击穿电压BVebo--- 集电极开路EB结击穿电压BVces---基极与发射极短路CE结击穿电压BV cer---基极与发射极串接一电阻,CE结击穿电压D---占空比fT---特征频率fmax---最高振荡频率.当三极管功率增益等于1时的工作频率hFE---共发射极静态电流放大系数hIE---共发射极静态输入阻抗hOE---共发射极静态输出电导h RE---共发射极静态电压反馈系数hie---共发射极小信号短路输入阻抗hre---共发射极小信号开路电压反馈系数hfe---共发射极小信号短路电压放大系数hoe---共发射极小信号开路输出导纳IB---基极直流电流或交流电流的平均值Ic---集电极直流电流或交流电流的平均值IE---发射极直流电流或交流电流的平均值Icbo---基极接地,发射极对地开路,在规定的VCB反向电压条件下的集电极与基极之间的反向截止电流Iceo---发射极接地,基极对地开路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流Iebo---基极接地,集电极对地开路,在规定的反向电压VEB条件下,发射极与基极之间的反向截止电流Icer---基极与发射极间串联电阻R,集电极与发射极间的电压VCE为规定值时,集电极与发射极之间的反向截止电流Ices---发射极接地,基极对地短路,在规定的反向电压VCE条件下,集电极与发射极之间的反向截止电流Icex---发射极接地,基极与发射极间加指定偏压,在规定的反向偏压VCE下,集电极与发射极之间的反向截止电流ICM---集电极最大允许电流或交流电流的最大平均值.IBM---在集电极允许耗散功率的范围内,能连续地通过基极的直流电流的最大值,或交流电流的最大平均值ICMP---集电极最大允许脉冲电流ISB---二次击穿电流IAGC---正向自动控制电流Pc---集电极耗散功率PCM---集电极最大允许耗散功率Pi---输入功率Po---输出功率Posc---振荡功率Pn---噪声功率Ptot---总耗散功率ESB---二次击穿能量rbb'---基区扩展电阻(基区本征电阻)rbb'Cc---基极-集电极时间常数,即基极扩展电阻与集电结电容量的乘积rie---发射极接地,交流输出短路时的输入电阻roe---发射极接地,在规定VCE、Ic或IE、频率条件下测定的交流输入短路时的输出电阻RE---外接发射极电阻(外电路参数)RB---外接基极电阻(外电路参数)Rc ---外接集电极电阻(外电路参数)RBE---外接基极-发射极间电阻(外电路参数)RL---负载电阻(外电路参数)RG---信号源内阻Rth---热阻Ta---环境温度Tc---管壳温度Ts---结温Tjm---最大允许结温Tstg---贮存温度td----延迟时间tr---上升时间ts---存贮时间tf---下降时间ton---开通时间toff---关断时间VCB---集电极-基极(直流)电压VCE---集电极-发射极(直流)电压VBE---基极发射极(直流)电压VCBO---基极接地,发射极对地开路,集电极与基极之间在指定条件下的最高耐压VEBO---基极接地,集电极对地开路,发射极与基极之间在指定条件下的最高耐压VCEO---发射极接地,基极对地开路,集电极与发射极之间在指定条件下的最高耐压VCER---发射极接地,基极与发射极间串接电阻R,集电极与发射极间在指定条件下的最高耐压VCES---发射极接地,基极对地短路,集电极与发射极之间在指定条件下的最高耐压VCEX---发射极接地,基极与发射极之间加规定的偏压,集电极与发射极之间在规定条件下的最高耐压Vp---穿通电压.VSB---二次击穿电压VBB---基极(直流)电源电压(外电路参数)Vcc---集电极(直流)电源电压(外电路参数)VEE---发射极(直流)电源电压(外电路参数)VCE(sat)---发射极接地,规定Ic、IB条件下的集电极-发射极间饱和压降VBE(sat)---发射极接地,规定Ic、IB条件下,基极-发射极饱和压降(前向压降)VAGC---正向自动增益控制电压Vn(p-p)---输入端等效噪声电压峰值V n---噪声电压Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容双极型晶体管符号及意义IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流.IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流).在额定功率下,允许通过二极管的最大正向脉冲电流.发光二极管极限电流.IH---恒定电流、维持电流.Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流.在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流).在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR 时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流.IRM---反向峰值电流IRR---晶闸管反向重复平均电流IDR---晶闸管断态平均重复电流IRRM---反向重复峰值电流IRSM---反向不重复峰值电流(反向浪涌电流)Irp---反向恢复电流Iz---稳定电压电流(反向测试电流).测试反向电参数时,给定的反向电流Izk---稳压管膝点电流OM---最大正向(整流)电流.在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM---稳压二极管浪涌电流IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率.硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间Tj---结温Tjm---最高结温ton---开通时间toff---关断时间tr---上升时间trr---反向恢复时间ts---存储时间tstg---温度补偿二极管的贮成温度a---温度系数λp---发光峰值波长△λ---光谱半宽度η---单结晶体管分压比或效率VB---反向峰值击穿电压Vc---整流输入电压VB2B1---基极间电压VBE10---发射极与第一基极反向电压VEB---饱和压降VFM---最大正向压降(正向峰值电压)VF---正向压降(正向直流电压)△VF---正向压降差VDRM---断态重复峰值电压VGT---门极触发电压VGD---门极不触发电压VGFM---门极正向峰值电压VGRM---门极反向峰值电压VF(AV)---正向平均电压Vo---交流输入电压VOM---最大输出平均电压Vop---工作电压Vn---中心电压Vp---峰点电压VR---反向工作电压(反向直流电压)VRM---反向峰值电压(最高测试电压)V(BR)---击穿电压Vth---阀电压(门限电压)VRRM---反向重复峰值电压(反向浪涌电压) VRWM---反向工作峰值电压V v---谷点电压Vz---稳定电压△Vz---稳压范围电压增量Vs---通向电压(信号电压)或稳流管稳定电流电压av---电压温度系数Vk---膝点电压(稳流二极管)VL ---极限电压二极管参数符号及意义CT---势垒电容Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流).在额定功率下,允许通过二极管的最大正向脉冲电流.发光二极管极限电流.IH---恒定电流、维持电流.Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流.在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流).在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR 时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流.IRM---反向峰值电流IRR---晶闸管反向重复平均电流IDR---晶闸管断态平均重复电流IRRM---反向重复峰值电流IRSM---反向不重复峰值电流(反向浪涌电流)Irp---反向恢复电流Iz---稳定电压电流(反向测试电流).测试反向电参数时,给定的反向电流Izk---稳压管膝点电流IOM---最大正向(整流)电流.在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM---稳压二极管浪涌电流IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率.硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间Tj---结温Tjm---最高结温ton---开通时间toff---关断时间tr---上升时间trr---反向恢复时间ts---存储时间tstg---温度补偿二极管的贮成温度a---温度系数λp---发光峰值波长△λ---光谱半宽度η---单结晶体管分压比或效率VB---反向峰值击穿电压Vc---整流输入电压VB2B1---基极间电压VBE10---发射极与第一基极反向电压VEB---饱和压降VFM---最大正向压降(正向峰值电压)VF---正向压降(正向直流电压)△VF---正向压降差VDRM---断态重复峰值电压VGT---门极触发电压VGD---门极不触发电压VGFM---门极正向峰值电压VGRM---门极反向峰值电压VF(AV)---正向平均电压Vo---交流输入电压VOM---最大输出平均电压Vop---工作电压Vn---中心电压Vp---峰点电压VR---反向工作电压(反向直流电压)VRM---反向峰值电压(最高测试电压)V(BR)---击穿电压Vth---阀电压(门限电压)VRRM---反向重复峰值电压(反向浪涌电压)VRWM---反向工作峰值电压V v---谷点电压Vz---稳定电压△Vz---稳压范围电压增量Vs---通向电压(信号电压)或稳流管稳定电流电压av---电压温度系数Vk---膝点电压(稳流二极管)VL ---极限电压CT---势垒电容Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)---正向平均电流IFM(IM)---正向峰值电流(正向最大电流).在额定功率下,允许通过二极管的最大正向脉冲电流.发光二极管极限电流.IH---恒定电流、维持电流.Ii--- 发光二极管起辉电流IFRM---正向重复峰值电流IFSM---正向不重复峰值电流(浪涌电流)Io---整流电流.在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)---正向过载电流IL---光电流或稳流二极管极限电流ID---暗电流IB2---单结晶体管中的基极调制电流IEM---发射极峰值电流IEB10---双基极单结晶体管中发射极与第一基极间反向电流IEB20---双基极单结晶体管中发射极向电流ICM---最大输出平均电流IFMP---正向脉冲电流IP---峰点电流IV---谷点电流IGT---晶闸管控制极触发电流IGD---晶闸管控制极不触发电流IGFM---控制极正向峰值电流IR(AV)---反向平均电流IR(In)---反向直流电流(反向漏电流).在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR 时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流.IRM---反向峰值电流IRR---晶闸管反向重复平均电流IDR---晶闸管断态平均重复电流IRRM---反向重复峰值电流IRSM---反向不重复峰值电流(反向浪涌电流)Irp---反向恢复电流Iz---稳定电压电流(反向测试电流).测试反向电参数时,给定的反向电流Izk---稳压管膝点电流IOM---最大正向(整流)电流.在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM---稳压二极管浪涌电流IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率二极管参数符号及意义(中)PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率.硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率IZSM---稳压二极管浪涌电流IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流iF---正向总瞬时电流iR---反向总瞬时电流ir---反向恢复电流Iop---工作电流Is---稳流二极管稳定电流f---频率n---电容变化指数;电容比Q---优值(品质因素)δvz---稳压管电压漂移di/dt---通态电流临界上升率dv/dt---通态电压临界上升率PB---承受脉冲烧毁功率PFT(AV)---正向导通平均耗散功率PFTM---正向峰值耗散功率PFT---正向导通总瞬时耗散功率Pd---耗散功率PG---门极平均功率PGM---门极峰值功率PC---控制极平均功率或集电极耗散功率Pi---输入功率PK---最大开关功率PM---额定功率.硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间Tj---结温Tjm---最高结温ton---开通时间toff---关断时间tr---上升时间trr---反向恢复时间ts---存储时间tstg---温度补偿二极管的贮成温度a---温度系数λp---发光峰值波长△λ---光谱半宽度η---单结晶体管分压比或效率VB---反向峰值击穿电压Vc---整流输入电压VB2B1---基极间电压VBE10---发射极与第一基极反向电压VEB---饱和压降VFM---最大正向压降(正向峰值电压)VF---正向压降(正向直流电压)△VF---正向压降差VDRM---断态重复峰值电压VGT---门极触发电压VGD---门极不触发电压VGFM---门极正向峰值电压VGRM---门极反向峰值电压VF(AV)---正向平均电压Vo---交流输入电压VOM---最大输出平均电压Vop---工作电压Vn---中心电压Vp---峰点电压VR---反向工作电压(反向直流电压)VRM---反向峰值电压(最高测试电压)V(BR)---击穿电压Vth---阀电压(门限电压)VRRM---反向重复峰值电压(反向浪涌电压)VRWM---反向工作峰值电压V v---谷点电压Vz---稳定电压△Vz---稳压范围电压增量Vs---通向电压(信号电压)或稳流管稳定电流电压av---电压温度系数Vk---膝点电压(稳流二极管)VL ---极限电压CT---势垒电容Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv---偏压结电容Co---零偏压电容Cjo---零偏压结电容Cjo/Cjn---结电容变化Cs---管壳电容或封装电容Ct---总电容CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC---电容温度系数Cvn---标称电容IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流二极管参数符号及意义(下)Pi---输入功率PK---最大开关功率PM---额定功率.硅二极管结温不高于150度所能承受的最大功率PMP---最大漏过脉冲功率PMS---最大承受脉冲功率Po---输出功率PR---反向浪涌功率Ptot---总耗散功率Pomax---最大输出功率Psc---连续输出功率PSM---不重复浪涌功率PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻RBB---双基极晶体管的基极间电阻RE---射频电阻RL---负载电阻Rs(rs)----串联电阻Rth----热阻R(th)ja----结到环境的热阻Rz(ru)---动态电阻R(th)jc---结到壳的热阻r δ---衰减电阻r(th)---瞬态电阻Ta---环境温度Tc---壳温td---延迟时间tf---下降时间tfr---正向恢复时间tg---电路换向关断时间tgt---门极控制极开通时间。
Q值的意义
电路中的平均功率可以写成: 电路中的平均功率可以写成:
只有电流平行分量对平均功率有贡献,叫有 只有电流平行分量对平均功率有贡献, 功电流。垂直分量叫无功电流。 功电流。垂直分量叫无功电流。
输电导线中的电阻或电源内阻上产生的焦耳损耗与用电器中总电流的平方成正比, 输电导线中的电阻或电源内阻上产生的焦耳损耗与用电器中总电流的平方成正比,如 果用电器的 ϕ ≠ 0,总电流即可分为有功电流和无功电流。功率因数 ϕ越大,有功分 ,总电流即可分为有功电流和无功电流。功率因数cos 越大, 量越大,输电线的作用就是将能量送到用电器中使用和消耗, 量越大,输电线的作用就是将能量送到用电器中使用和消耗,因而只有有功电流是有 用的部分。无功分量把能量输送给用电器后又输送回来,完全是无益的循环。 用的部分。无功分量把能量输送给用电器后又输送回来,完全是无益的循环。但是电 流中无论哪个分量在输电线中都有焦耳损耗, 流中无论哪个分量在输电线中都有焦耳损耗,如果说有功电流的焦耳损耗不可避免的 那无功电流应设法消除。此外导线中电阻和电源内阻上的压降也与总电流成正比, 话,那无功电流应设法消除。此外导线中电阻和电源内阻上的压降也与总电流成正比, 为了保证用电器上有一定的电压,也要减小导线上的电压损失, 为了保证用电器上有一定的电压,也要减小导线上的电压损失,也要求减小无功电流 分量。所以要提高功率因数。 分量。所以要提高功率因数。
Q值越高表示各种损耗(P有功)越小。 值越高表示各种损耗( 越小。 值越高表示各种损耗
2011-3-13 9
六、谐振电路的品质因数Q值 谐振电路的品质因数 值
电路中, 在LCR电路中,电阻是耗能元件,它把电、磁能转化为热;电感和电容是储 电路中 电阻是耗能元件,它把电、磁能转化为热; 能元件,它们时而把电、磁能储存起来,时而放出,彼此交换能量而不消耗。 能元件,它们时而把电、磁能储存起来,时而放出,彼此交换能量而不消耗。 在一个周期T里电阻元件中损耗的能量为 在一个周期 里电阻元件中损耗的能量为 谐振电路中电感和电容储存的能量为
品质因数-Q值的物理意义及其计算方法
品质因数-Q值的物理意义及其计算方法1、Q值的定义:Q值是衡量电感器件的主要参数.是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比.电感器的Q值越高,其损耗越小,效率越高.电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关.也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯.Q值过大,引起电感烧毁,电容击穿,电路振荡.Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值.品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽.Q=wL/R=1/wRC其中:Q是品质因素w是电路谐振时的角频率(2πf)L是电感R是串的电阻C是电容结合自己的实践,对上面进行一下补充由于在天线端都是采用的是RLC并联谐振电路,是在正弦电流激励下工作的所以在计算电感的品质因数Q值时,R值为整个谐振电路的等效阻值,在计算时候要注意下面的是一个案例,很有指导意义!!!!For optimum performance the antenna Q should not exceed 20 and to achievereliable tuning at 125kHz the antenna inductance should be around 700uH. HigherQ and inductance values will still function but with a reduced range andperformance.The formula for calculating Q = 2*pi*fL / Rant = 549 / Rantwhere f = Resonant frequency, 125 kHz, L = Antenna inductance, 700uHRant = Overall antenna resistance = Rdriver + Ra + (Rcu + Rrf)pi = 3.14159 etcRdriver = 3.5 R (from IC spec) and Ra = 22 R (series resistor in antenna loop)Rcu = Resistance of Copper (coil and cable) andRrf = RF resistive component (eddy current losses etc)By measurement at 125kHz, (Rcu + Rrf) = approx 6RTherefore Rant = 3.5 + 22 + 6 = 31.5 Ohms, Q = 549 / 31.5 = 17Max peak antenna current (with 22R series resistor),Iant max = 4Vdd / pi*Rant = 20 / pi*31.5 = 200maMax peak antenna voltage, Uant max = Iant max . (2*pi*fL) = 110v1.电感线圈的串、并联每一只电感线圈都具有一定的电感量。
解答LCR测试仪上显示的D和Q是什么-LP与LS有什么区别
解答LCR测试仪上显示的D和Q是什么/LP与LS
有什么区别
LCR测试仪凭借其功能直接、操作简便的测试方法并得到广泛使用,通常使用LCR测试仪进行准确测试各种元件的参数,具有很稳定的效果,从而在保障着生产性的质量,节省企业开支,得到广泛使用。
LCR测试仪当中,经常会显示D和Q,然而许多人不知道什幺意思,还有在LCR测试仪的参数当中有LP与LS之分,也不知道其区别在哪里,下面则对这两个问题进行解答。
LCR测试仪上显示的D是损耗值正切角,Q是品质因数。
两个量的定义如下:
1、损耗值正切角:
如果对一个电容加上一个电压,除了对电容充电的电流外还有漏掉的电流(电容的漏电流),漏电流被消耗成了热能,因此表示为电阻上的电流。
漏电流与纯电容的充电电流之比就是电容损耗角正切值
2、品质因数:。
电容的abcd矩阵 -回复
电容的abcd矩阵-回复电容的ABCD参数矩阵是一种电路分析方法,用于描述电容在不同频率下的响应特性。
ABCD矩阵提供了一个方便的工具,可以帮助我们分析和设计各种电路中的电容元件。
首先,让我们从电容的基本特性开始。
电容是一种被用来存储和释放电能的被动元件。
它由两个导体之间的绝缘材料组成,例如空气、铝电解膜或聚对苯二甲酸酯。
当电流通过电容器时,电容器会储存电能。
电容的储能能力取决于其两个电极之间的电压差以及电容器的物理特性。
电容的储能能力可以通过其电容值(单位是法拉)来表示。
较大的电容值表示电容器能够存储更多的电能。
而电容在不同频率下的电压-电流响应特性可以通过电容的ABCD参数矩阵来描述。
ABCD矩阵是一种描述网络元件传输特性的数学工具,由四个元素组成,分别是A、B、C和D。
A和D是描述电容器的端口电压对应的传输特性的参数,而B和C则是描述电容器的电流对应的传输特性的参数。
为了理解ABCD矩阵,让我们考虑一个简单的电路示例。
设想我们有一个只包含电容的电路,其输入电压为Vin,输出电压为Vout。
在这个电路中,ABCD矩阵的元素可由下式给出:Vout = AVin + BIdIout = CVin + DId其中,Vin和Iin分别是电路入口的电压和电流。
Vout和Iout则是电路出口的电压和电流。
A、B、C和D是描述电路元件传输特性的参数,与所使用的电容元件的参数有关。
在这个示例中,我们只考虑了一个电容元件。
因此,ABCD矩阵的元素由电容的特性决定。
对于这个电容元件,我们有以下关系:A = 1,B = sC,C = 1/Cs,D = 1这里,s是频率的角度(rad/s),C是电容的值(法拉)。
由于这个简单电路中只有一个电容元件,我们的ABCD矩阵只有一个元素。
对于其他复杂的电路,ABCD矩阵可以是一个2x2、3x3或更大的矩阵,它们与电路中的元件数目和连接方式相关。
通过使用ABCD矩阵,我们可以轻松地分析电容在不同频率下的响应特性。
dq阻抗 转换为序阻抗
dq阻抗转换为序阻抗【提纲】一、引言随着电力系统的快速发展,电力设备的保护与控制越来越依赖于复杂的电气原理。
在电力系统中,DQ阻抗是一个重要的概念,它与序阻抗密切相关。
本文将介绍DQ阻抗转换为序阻抗的方法,以及其在电力系统中的应用。
二、DQ阻抗的定义与特点DQ阻抗是指在双端口网络中,端口电压与电流的比值。
它包括直流分量(D分量)和交流分量(Q分量)。
D分量反映了设备的电阻特性,Q分量则反映了设备的电感特性。
DQ阻抗具有以下特点:1.D分量与电阻成正比,Q分量与电感成正比;2.D分量不受系统频率的影响,Q分量随频率的增加而增加;3.D分量与电压相位无关,Q分量与电压相位有关。
三、转换为序阻抗的意义在电力系统中,序阻抗是一个更为重要的参数。
它是指在三相系统中,电压与电流的比值,可以反映系统的稳定性和故障特性。
将DQ阻抗转换为序阻抗,有助于更好地分析电力系统的运行状态,为设备的保护与控制提供依据。
四、序阻抗的计算方法序阻抗的计算方法如下:1.计算DQ阻抗的幅值和相位;2.计算三相电压的幅值和相位;3.根据序网络原理,将DQ阻抗分解为正序、负序和零序分量;4.计算正序、负序和零序分量之间的相位差;5.根据相位差,计算序阻抗的幅值和相位。
五、实例分析以一个三相四线系统为例,假设DQ阻抗的幅值为ZDQ=10Ω,相位为0°;三相电压的幅值为U=100V,相位分别为0°、-120°、120°。
通过计算,得到序阻抗的幅值为Z1=5Ω,Z2=15Ω,Z0=20Ω,相位分别为0°、-30°、30°。
六、应用场景DQ阻抗转换为序阻抗的应用场景主要包括:1.电力系统的稳定性分析;2.故障检测与保护;3.电气设备的运行状态评估;4.电力系统的设计与优化。
七、总结DQ阻抗转换为序阻抗是电力系统中一项重要的技术,它有助于更好地分析系统的运行状态,为电力设备的保护与控制提供依据。
p-q变换与d-q变换的理解与推导解读
一、 p-q 变换与d-q 变换的理解与推导1. 120变换和空间向量120坐标系是一个静止的复数坐标系。
120分量首先由莱昂(Lyon )提出,所以亦成为莱昂分量。
下面以电流为例说明120变换。
a i 、b i 、c i 为三相电流瞬时值,120坐标系与abc 坐标系之间的关系为[1]:⎪⎩⎪⎨⎧++=++=++=02210212021i i a ai i i ai i a i i i i i c b a 式中a 和2a 分别为定子绕组平面内的120°和240°空间算子,︒=120j ea ,︒=2402j e a ,上式的逆变换为:⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=++=*)(31)(31)(31012221c b a c b a c b a i i i i i ai i a i i i a ai i i 可以看出,120变换在形式上与矢量对称分量变换很相似,不过这里的c b a i i i 、、是瞬时值而不是矢量,21i i 、是瞬时复数值,所以120变换亦称为瞬时值对称分量变换。
由于是瞬时值之间的变换,所以120变换对瞬态(动态)和任何电流波形都适用,而矢量对称分量法仅适用于交流稳态和正弦波的情况。
另外,由于a 和2a 是空间算子,所以1i 和2i 是空间向量而不是时域里的矢量;所以瞬时值对称分量和矢量对称分量具有本质上的区别。
另外,从上式可知,2i 等于1i 的共轭值,所以2i 不是独立变量。
用矩阵表示时,可写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0211120i i i C i i i c b a ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c b a i i i C i i i 120021 (1-1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11111221120a aaa C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111113122120a a a a C 此变换矩阵为等幅变换①。
①如何理解式(1-1)中的变换矩阵是等幅值变换???所谓等幅值变换,是指原三相电流形成的总的磁动势(MMF :Magnetic Motive Force )和变换后的电流形成的磁动势MMF 幅度一样。
d类电感的作用
d类电感的作用D类电感的作用1. 什么是D类电感?D类电感,也称为漏感电感,是一种常用的电子元件。
它由一个线圈制成,线圈中间没有磁心。
2. D类电感的工作原理D类电感主要是利用电磁感应原理工作。
当一定电流通过D类电感时,线圈中会产生磁场。
同时,当电流发生变化时,磁场也会发生变化。
这种磁场的变化会导致D类电感两端产生感应电势,从而反过来影响电流的变化。
3. D类电感的主要作用D类电感在电子电路中具有以下几个主要作用:•过滤作用:D类电感可以起到滤波作用,将输入电路中的高频噪声滤除,从而提高电路的信噪比。
•稳压作用:D类电感在直流电路中可以稳定电压,避免电压的突变。
•阻抗匹配作用:D类电感能够使得电子器件与电源之间阻抗匹配,从而有效提高系统的效果。
•储能作用:D类电感可以将电流转化为磁场能量存储起来,当需要时再释放出来,提供电路的动能。
4. D类电感的应用领域由于其独特的工作原理和多功能的作用,D类电感被广泛应用于各个领域,包括但不限于以下几个方面:•电源供应:D类电感可以用于电源系统中的滤波、稳压等功能。
•音频系统:D类电感可以用于音频放大电路中,提供稳定的电流输出。
•通信设备:D类电感可以用于通信设备中的滤波、匹配等作用。
•汽车电子:D类电感可以用于汽车电子系统中的能量储存、电路保护等功能。
5. 总结综上所述,D类电感作为一种重要的电子元件,在滤波、稳压、阻抗匹配和储能等方面发挥着重要作用。
它的广泛应用领域使得 D 类电感成为现代电子技术中不可或缺的组成部分。
6. D类电感的选择和使用注意事项在选择和使用D类电感时,需要注意以下几个方面:•电感值选择:根据具体应用需求,选择适合的电感值。
通常,电感值越大,对于低频信号的滤波效果越好,但也会增加元件体积和成本。
•电流和电压要求:根据电路中的电流和电压要求,选择合适的D 类电感。
确保电感的额定电流和电压能够满足电路的工作要求。
•阻抗匹配:在进行阻抗匹配时,需要确保D类电感的阻抗与其他电子器件和电源之间能够匹配,以提高系统效果。
电容 阻抗 dq
电容阻抗 dq
电容是一种电子元件,它的主要作用是储存电荷。
在交流电路中,电容的阻抗是一个重要的参数,它可以影响电路的性能和稳定性。
本文将介绍电容的阻抗和dq方法。
一、电容的阻抗
电容的阻抗是指电容对交流电的阻碍程度。
它的大小与电容的容值和频率有关。
在直流电路中,电容的阻抗为无穷大,相当于开路。
而在交流电路中,电容的阻抗可以用以下公式计算:
Zc = 1 / (jωC)
其中,Zc为电容的阻抗,j为虚数单位,ω为角频率,C为电容的容值。
可以看出,电容的阻抗与频率成反比,容值成正比。
当频率越高时,电容的阻抗越小,电容对电路的阻抗越小,反之亦然。
二、dq方法
dq方法是一种用于控制电机的方法,它可以将三相交流电转换为两个独立的dq轴,从而方便控制电机的转速和转向。
dq轴分别代表电机
的磁场和转子位置,它们的变化可以通过控制电机的电流来实现。
在dq方法中,电容的阻抗也是一个重要的参数。
由于电容的阻抗与频率有关,因此在控制电机时需要根据电机的转速来调整电容的容值,以保证电容的阻抗与电机的转速匹配。
同时,还需要考虑电容的损耗和寿命等因素,选择合适的电容型号和参数。
总之,电容的阻抗是电路中一个重要的参数,它可以影响电路的性能和稳定性。
在控制电机时,dq方法可以将三相交流电转换为两个独立的dq轴,从而方便控制电机的转速和转向。
选择合适的电容型号和参数可以提高电路的效率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Passive Q D
首先,对于被动特性的电子元件,也就是R电阻器,L电感器,及C电容器,正确的思考是:所有电子元件都具有R,L,C的基本特性,只是它工作在某一个使用频率时,才会显现它设计上应有的特性。
有这种思维,才能在电路上避免一些元件参数的变异影响,尤其应用在一些特定的产品设计上。
1.电阻器:在高频率工作时,低值电阻会显现部分电感特性,高值电阻会
显现电容特性。
2.电感器:在高频率工作时,所有电感器会显现部分电容特性。
然而在各
种频率工作下均会显现电阻特性,这就是我们所熟知的Q值来源。
3.电容器:在高频率工作时,所有电容器会显现部分电感特性。
然而在各
种频率工作下均会显现电阻特性,这就是我们所熟知的D值来源。
在学校里,大家都知道Q与D的意义,及其所代表的公式,但是却没有在电路上作出适当的计算,尤其不了解在串联与并联转换间的运用。
以电感器的Q值为例:Q = ωL / Rs = Rp /ωL (Rs为串接电阻,Rp为并接电阻, ω = 2ΠF)
在电路上,你可以依照需要计算出Rs或是Rp,再与电路上其他串接或并接阻抗合并计算其实际数值。
有人要问了,Q值高低对于电路有什么影响,计算出Rs与Rp又有何用?当然电感器多数需要和电容器组合工作,才能产生通频带,阻频带,高通及低通的滤波作用,即使电容器可能是电路图上看不到的寄生电容。
以滤波电路为例,Q值= 20相当于5 %的串接阻抗,或是20倍的并接阻抗,那么原来计算的滤波效果,可以评估会减少5 %。
至于用在通频带电路,则为6dB通频带范围为工作频率的1 / 20。
此时所说的工作频率即为电感器与其工作的电容器的谐振电路频率。
在接收机的射频电路及中频电路上经常看到,在谐振电路上并接电阻,就是要降低Q 值使接收频带变宽。
至于电感器的电容特性,在高频线圈的规格书中可以看到“自共振频率”项目,以此频率数据与电感器数值,所计算出来的电容量,就是电感器的并接寄生电容量。
在实用上如果工作频率为自共振频率的1 / 10,寄生电容量减为原有的1 / 10,容抗值增为10倍,也就是电感器的实际电感量减少10 %,对于谐振或滤波频率点的影响为5 %, 即为频率提升5 %。
(备注:频率为LC的开平方变化量)
这边顺便提供一个判断电感器的高频特性简易方法,在使用数位LCR表时(当然Q表更好,对于小厂及设计公司是梦想吧),以200KHz与100KHz不同频率测试时,所得到的电感量差距越小,表示寄生电容量较低,越适合高频使用。
另外也许你会发现,真正的高频电感器所测得的电感量数值会较大,那可是正确的,因为在低频工作时,寄生电容没有作用,寄生电容在高频时才会使原有电感量减低为正确数值。
现在要谈到电容器,话就更长了。
所有电子元件甚至把主动元件都给纳进去,种类最多且特性最复杂,而且工程师最不了解,在产品上发生最多问题的,应该就是电容器了。
哎呀,我看另外再弄个专题,否则又是离题扯远了。
电容器先把它
区分为高频及低频工作两种,在高频的跟电感器一样,也是使用Q值计算。
其公式如下:
Q = 1 /ωC Rp = Rs /ωC(Rs为串接电阻,Rp为并接电阻,ω = 2ΠF)
其实上面这个公式可以不理它,因为一般与电感器谐振或是滤波组合的电容器,它的Q值都相当高(一般在300-1000,至少是电感器的10倍),与电感器相比可以忽略不计。
至于在低频工作的,就必须使用D值计算,这个D值数字其实就是Q值的倒数。
(D = 1 / Q)再把上面的公式拉下来用:D = 1 / Q =ωC Rp = Rs /ωC 电容器在低频工作时,一般主要是作为滤波用途,此时的D值与电感器的Q值具有相同意义,也就是D值与电容量所计算出来的串接并接电阻值,会影响滤波的效果。
这边也要提到一些电路上的例子。
由于现代元件小型化的要求,一些电容器的容量增加使得D值变大,再加上温度造成的漏电量,使得并联阻值更低影响电路功能。
因此一般的概念是D值越小越好,但是D值小往往会造成大电容器的冲击电流(Surge),使得电源电路受损。
最后还是要补充一下电阻部分,虽然它的重要性不高。
高电阻的导通电流很低,两端的电压降形成的电荷累积,与电容器的特性完全相同,当然在高频工作时产生寄生容量。
至于低电阻产生的大电流导通,所产生的微量磁场,是不是和电感器极为类似。
当然实际影响就得看它本身的原料特性啦,不属于我们电子成品技术人员的领域了。
(故事再吹嘘下去,有可能会让老师傅死的很难看,就此罢了)。