五年级奥数题练习题80道
小学五年级奥数试题(含答案)
小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。
2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。
答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。
总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。
不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。
希望大家能够通过不断的练习和思考,提高自己的数学水平。
五年级奥数题及答案
五年级奥数题及答案五年级奥数题及答案⼀、复杂计算题:1、(873×477-198)÷(476×874+199)2、2000×1999-1999×1998+1998×1997-1997×1996+…+2×13、297+293+289+…+209复杂计算题答案:1、(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=12、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
3、297+293+289+…+209解:(209+297)*23/2=5819⼆、整除问题:三个连续⾃然数的乘积是210,求这三个数.整除问题答案:∵210=2×3×5×7 ∴可知这三个数是5、6和7。
三、容积问题:测量你的试卷(取整厘⽶数.),长厘⽶,宽厘⽶.若把它的四个⾓各剪去⼀个边长为4厘⽶的正⽅形后,做成⼀个⾼4厘⽶的长⽅体纸盒,它的容积是多少?容积问题解答:容积:(长-8)×(宽-8)×4四、多少棵树问题:正⽅形操场四周栽了⼀圈树,每两棵树相隔5⽶。
甲⼄⼆⼈同时从⼀个⾓出发,向不同的⽅向⾛去(如下图),甲的速度是⼄的2倍,⼄在拐了第⼀弯之后的第5棵树与甲相遇。
操场四周⼀共栽了多少棵树? 解答:由于甲速是⼄速的2倍,所以⼄在拐了第⼀弯时,甲正好拐了两个弯,即两个⼈开始同时沿着最上边⾛。
⼄⾛过了5棵树,也就是⾛过了5个间隔,所以甲⾛过了10个间隔,四周⼀共有(5+10)×4=60个间隔,根据植树问题,⼀共栽了60棵树。
小学五年级奥数题100道及答案(完整版)
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级数学奥数题100道及答案(完整版)
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
小学五年级奥数题及答案大全
小学五年级奥数题及答案大全小学五年级奥数题及答案大全一51. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12 张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54 ,12]=108,所以每移动108 张牌,又回到原来的状况。
又因为每次移动12 张牌,所以至少移动108÷12=9(次)。
52. 爷爷对小明说:“我现在的年龄是你的7 倍,过几年是你的6倍,再过若干年就分别是你的 5 倍、4 倍、3倍、2 倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70 岁,小明10 岁。
提示:爷爷和小明的年龄差是6,5,4,3,2 的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60 岁)53. 某质数加6或减6得到的数仍是质数,在50 以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
54. 在放暑假的8 月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1 ,这个合数加上1 ,这个合数乘上2 减去 1 ,这个合数乘上2 加上 1 。
问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1) , (a+1), (2a-1) , (2a+1)。
因为(a-1)与(a+1)是相差2的质数,在1〜31 中有五组:3,5;5 ,7;11 ,13;17 ,19;21 ,31 。
经试算,只有当a=6 时,满足题意,所以这五天是8 月5,6,7,11 ,13 日。
55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。
求这两个整数。
解:3,74;18 ,37。
提示:三个数字相同的三位数必有因数111。
因为111=3×37 ,所以这两个整数中有一个是37 的倍数( 只能是37 或74) ,另一个是 3 的倍数。
小学五年级数学奥数题100道附完整答案
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
2024年五年级上册常考的88道奥数题
20、某数除以87,商5余5,这个数除以5的商是多少?
21、有三根钢管,分别长200,240和360厘米。现在要把这三根钢管截成尽可能长而且又相等的小段,一共能截成多少段?
22、两根铁丝分别长65米和91米,用一根木尺分别去丈量它们,都恰好量完而无剩余。这根木尺最多有多长?
11、两个整数相除,商是4,余数是8。已知被除数比除数大59,求被除数。
12、一个整数除以15余2,被除数、商和余数的和是100,求被除数和商。
13、减数、被减数与差三者之和除以被减数,商是多少?
14、甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是多少?
15、两个自然数相除,商是4,余数是15,被除数、除数、商、余数之和是129。请写出这个带余数的除法算式。
68、如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
69、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
70、甲乙辆车同时从a、b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a、b两地相距多少千米?
23、将22块橡皮和33支铅笔平均分给参加打扫教室卫生的同学,结果橡皮多1块,铅笔少2支,参加打扫卫生的同学有多少名?
24、甲数比乙数大5,乙数比丙数也大5,三个数的乘积是6384,求这三个数。
25、某质数加6或减6得数?并将它们写出来。
26、一袋糖不足60块,如果把它平均分给几个孩子,则每人恰好分得6块;如果只分给这几个孩子中的'男孩,则每个男孩恰好分得10块。这几个孩子中有几个女孩?
五年级上册奥数题80道,及答案(题,字数少)
五年级上册奥数题80道,及答案(题,字数少)
让孩子可以在空余时间做做题目,开拓思维,下面是五年级奥数题及答案,希望对大
家有帮助。
1.一圆形跑道周长米,甲、乙两人分别从直径两端同时出发,若反向而行1分钟相遇,若同向而行5分钟甲可以追上乙,求甲、乙两人的速度?
2.甲乙两人同时从两地启程,并肩而行,距离就是千米。
甲每小时行6千米,乙每小
时行4千米,甲带着一条狗,狗每小时行10千米。
这只狗同甲一道启程,遇到乙的'时候,它就调头朝着甲这边走,遇到甲的时候,它又调头朝着乙这边走。
直至两人碰面时,这只
狗一共走了多少千米?
1.甲乙两人速度和:÷2÷1=米/分,同向时,如果甲速度快,甲要比乙多跑半圈才能
追上乙,所以,甲乙两人的速度差:÷2÷5=30米/分
所以甲的速度:(+30)÷2=90米/分后
2.÷(6+4)=10小时
10×10=千米
答:这只狗一共跑了千米。
五年级奥数题及答案通用13篇
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
(完整)小学五年级奥数题100道带答案有解题过程
(完整)小学五年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一个数的3倍加上6,再减去9,结果是12,求这个数。
解:先从结果逆推,12加上9得到21,再减去6得15,最后除以3得到这个数是5。
思路:按照运算的逆顺序逐步还原。
2.有五个连续自然数的和是100,这五个连续自然数分别是多少?解:设中间的数为x,则这五个数依次是x-2,x-1,x,x+1,x+2,它们的和为5x=100,解得x=20,所以这五个连续自然数是18,19,20,21,22。
思路:利用连续自然数的特点设中间数简化计算。
3.一个长方形的周长是30厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米,根据周长公式可得(x+2x)×2=30,解得x=5,长为10厘米,面积为5×10=50平方厘米。
思路:根据周长公式列方程求解长和宽,再计算面积。
4.甲乙两数的和是25,甲数比乙数的2倍大1,求甲乙两数分别是多少?解:设乙数为x,则甲数为2x+1,根据和是25可列方程x+2x+1=25,解得x=8,甲数为17。
思路:通过设未知数表示甲乙两数,依据和的关系列方程。
5.一个三角形的面积是36平方厘米,底是9厘米,求高是多少厘米?解:根据三角形面积公式,面积×2÷底=高,即36×2÷9=8厘米。
思路:运用三角形面积公式的变形来求解高。
6.有一堆苹果,平均分给8个人,每人分5个后还剩下3个,这堆苹果一共有多少个?解:8×5+3=43个。
思路:先算出分出去的苹果数再加上剩余的。
7.小明和小红同时从相距500米的两地相向而行,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?解:根据相遇时间=路程÷速度和,500÷(60+40)=5分钟。
思路:运用相遇问题的公式求解。
小学五年级奥数题集锦
小学五年级奥数题集锦及答案1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
(word完整版)五年级奥数题100题(附答案)
五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
五年级奥数题100道及答案
五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。
2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。
3. 一个数的3倍是45,这个数是多少?答案:这个数是15。
4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。
5. 一个数加上12等于36,这个数是多少?答案:这个数是24。
6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。
7. 一个数的4倍是64,这个数是多少?答案:这个数是16。
8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。
9. 一个数的5倍是100,这个数是多少?答案:这个数是20。
10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。
11. 一个数的6倍是72,这个数是多少?答案:这个数是12。
12. 一个数减去15得到30,这个数是多少?答案:这个数是45。
13. 一个数的7倍是49,这个数是多少?答案:这个数是7。
14. 一个数的8倍是64,这个数是多少?答案:这个数是8。
15. 一个数的9倍是81,这个数是多少?答案:这个数是9。
16. 一个数的10倍是100,这个数是多少?答案:这个数是10。
17. 一个数的11倍是121,这个数是多少?答案:这个数是11。
18. 一个数的12倍是144,这个数是多少?答案:这个数是12。
19. 一个数的13倍是169,这个数是多少?答案:这个数是13。
20. 一个数的14倍是196,这个数是多少?答案:这个数是14。
21. 一个数的15倍是225,这个数是多少?答案:这个数是15。
22. 一个数的16倍是256,这个数是多少?答案:这个数是16。
23. 一个数的17倍是289,这个数是多少?答案:这个数是17。
小学五年级奥数应用题100道及答案解析
小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。
同时点燃后,平均每分钟都烧掉2 厘米。
多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。
则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。
56 - 2x = 3×(36 - 2x),解得x = 13 。
2. 鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。
因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。
3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。
40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。
4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。
5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。
答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。
x + x + 4 + x + 8 = 105 ,解得x = 31 。
6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。
几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。
最新五年级数学奥数题专项练习(超全含答案)
十七变换和操作(B)年级班姓名得分一、填空题1.对于324和612,把第一个数加上3,同时把第二个数减3,这算一次操作,操作_____次后两个数相等.2. 对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3…,1998如此操作,最后得到的一位数是7的数一共有_____个.3. 在1,2,3,4,5,…,59,60这60个数中,第一次从左向右划去奇数位上的数;第二次在剩下的数中,再从左向右划去奇数位上的数;如此继续下去,最后剩下一个数时,这个数是_____.4. 把写有1,2,3,…,25的25张卡片按顺序叠齐,写有1的卡片放在最上面,下面进行这样的操作:把第一张卡片放到最下面,把第二张卡片扔掉;再把第一张卡片放到最下面,把第二张卡片扔掉;…按同样的方法,反复进行多次操作,当剩下最后一张卡片时,卡片上写的是_____.5. 一副扑克共54张,最上面的一张是红桃K.如果每次把最上面的4张牌,移到最下面而不改变它们的顺序及朝向,那么,至少经过_____次移动,红桃K才会出现在最上面.6. 写出一个自然数A,把A的十位数字与百位数字相加,再乘以个位数字,把所得之积的个位数字续写在A的末尾,称为一次操作.如果开始时A=1999,对1999进行一次操作得到19992,再对19992进行一次操作得到199926,如此进行下去直到得出一个1999位数为止,这个1999位数的各位数字之和是_____.7. 黑板上写有1987个数:1,2,3,…,1986,1987.任意擦去若干个数,并添上被擦去的这些数的和被7除的余数,称为一个操作.如果经过若干次这种操作,黑板上只剩下了两个数,一个是987,那么,另一个数是_____.8.下图中有5个围棋子围成一圈.现在将同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,然后将原来的5个拿掉,剩下新放入的5个子中最多能有_____个黑子.9.6再重复这一过程5次,_____.10. 在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作,那么最多经过_____次操作,黑板上就会出现2.二、解答题11.甲盒中放有1993个白球和1994个黑球,乙盒中放有足够多个黑球.现在每次从甲盒中任取两球放在外面,但当被取出的两球同色时,需从乙盒中取出一个黑球放入甲盒;当被取出的两球异色时,便将其中的白球再放回甲盒,这样经过3985次取、放之后,甲盒中剩下几个球?各是什么颜色的球?12.如图是一个圆盘,中心轴固定在黑板上,开始时,圆盘上每个数字所对应的黑板处均写着0,然后转动圆盘,每次可以转动 90的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置.将圆盘上的数加到黑板上对应位置的数上,问:经过若干次后,黑板上的四个数是否可能都是1999? 13. 有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.14. 如图,圆周上顺次排列着1、2、3、……、12这十二个数,我们规定:相邻的四个数a1、a2、a3、a4顺序颠倒为a4、a3、a2、a1,称为一次“变换”(如:1、2、3、4变为1、1、2变为2、1、12、11).9、1、00 10 0 2 3493 522、3、……8、10、11、12(如图)?请说明理由. ———————————————答案——————————————————————1. 48每操作一次,两个数的差减少6,经(612-324)÷6=48次操作后两个数相等.2. 222由于操作后所得到的数与原数被9除所得的余数相同,因此操作最后为7的数一定是原数除以9余7的数,即7,16,25,…,1996,一共有(1996-7)÷9+1=222(个)3.32第一次操作后,剩下2,4,6,…,60这30个偶数;第二次操作后,剩下4,8,12,…,60这15个数(都是4的倍数);第三次操作后,剩下8,16,24,…,56这7个数(都是8的倍数);第四次操作后,剩下16,32,48这3个数;第五次操作后,剩下一个数,是32.4. 19第一轮操作,保留1,3,5,…,25共13张卡片;第二轮保留3,7,11,15,19,23这6张卡片;第三轮保留3,11,19这3张卡片;接着扔掉11,3;最后剩下的一张卡片是19.5. 27次因为[54,4]=108,所以移动108张牌,又回到原来的状况.又因为每次移动4张牌,所以至少移动108÷4=27(次).6. 66按照操作的规则,寻找规律知,A=1999时得到的1999位数为:1999266864600…0.其各位数字和为1+9+9+9+2+6+6+8+6+4 +6=667. 0黑板上的数的和除以7的余数始终不变.(1+2+3+…+1987)7=282154又1+2+3+…+1987=219881987⨯=1987⨯994=1987⨯142⨯7是7的倍数.所以黑板上剩下的两个数之和为7的倍数.又987=7⨯141是7的倍数,所以剩下的另一个数也应是7的倍数,又这个数是某些数的和除以7的余数,故这个数只能是0.8. 4个提示:因为5个子不可能黑白相间,所以永远不会得到5个全是黑子.9. 5103记第i次操作后,圆周上所有数的和为ai,依题意,得ai+1=2ai+ai=3ai.又原来三数的和为a0=1+2+4=7,所以a1=3a0=21,a2=3a1=63,a3=3a2=189,a4=3a3=567,a5=3a4=1701,a6=3a5=510 3,即所有数的和为5103.10. 2如果写的是奇数,只需1次操作;如果写的是大于2的偶数,经过1次操作变为奇数,再操作1次变为2.11. 由操作规则知,每次操作后,甲盒中球数减少一个,因此经过3985次操作后,甲盒中剩下1993+1994-3985=2个球.每次操作白球数要么不变,要么减少2个.因此,每次操作后甲盒中白球数的奇偶性不变;即白球数为奇数.因此最后剩下的2个球中,白球1个,故另一个必为黑球.12. 每次加上的数之和是1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍.因此,无论如何操作,黑板上的四个数不可能都是1999.13. 要把三堆石子都取光是不可能的.按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数.而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.所以,三堆石子都取光是办不到的.14. 能、12三个数3次这样的两次变换,10、11、12三个数又被顺时针移动了六个位置,变为下图,图中十二个数的顺序符合题意.题目:客、货两车分别从A 、B 两地同时相对开出,已知客、货两车的速度比是4 :5.两车在途中相遇后继续行驶。
小学五年级奥数题库100道及答案(完整版)
小学五年级奥数题库100道及答案(完整版)题目1:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 120,所以被减数= 60。
又因为减数是差的3 倍,设差为x,则减数为3x,所以4x = 60,x = 15,即差等于15。
题目2:有三个连续的偶数,它们的和比其中最大的一个偶数大18,这三个连续偶数分别是多少?答案:设中间的偶数为x,则这三个连续偶数分别为x - 2,x,x + 2。
它们的和为3x。
根据题意可得3x - (x + 2) = 18,解得x = 10。
所以这三个连续偶数分别是8、10、12。
题目3:两个数相除,商是4,余数是10,被除数、除数、商和余数的和是174,被除数是多少?答案:设除数为x,则被除数为4x + 10。
由题意可得4x + 10 + x + 4 + 10 = 174,解得x = 30。
所以被除数为4×30 + 10 = 130。
题目4:一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形,原来长方形的面积是多少平方厘米?答案:设正方形的边长为x 厘米。
则原来长方形的长为(x - 2)厘米,宽为(x - 5)厘米。
可列方程:x ²- (x - 2)(x - 5) = 60,解得x = 10。
原来长方形的长为8 厘米,宽为5 厘米,面积为40 平方厘米。
题目5:甲、乙两数的和是162.8,乙数的小数点向右移动一位就等于甲数,求甲、乙两数各是多少?答案:乙数的小数点向右移动一位就等于甲数,说明甲数是乙数的10 倍。
设乙数为x,则甲数为10x,10x + x = 162.8,解得x = 14.8,甲数为148。
题目6:有一堆苹果,如果平均分给 4 个小朋友,剩下2 个;如果平均分给5 个小朋友,也剩下2 个。
这堆苹果至少有多少个?答案:求出4 和5 的最小公倍数为20,再加上2,这堆苹果至少有22 个。
小学80道奥数题(附答案)
小学奥数题80道一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数题练习题
五年级奥数题练习一
1、晶晶每天早上步行上学,如果每分钟走60米,则要迟到5分钟,如果每分钟走75米,则可提前2分钟到校.求晶晶到校的路程?
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
3、A、B两辆汽车同时从甲、乙两站相对开出,两车第一次在距甲站32公里处相遇,相遇后两车继续行驶,各自到达乙、甲两站后,立即沿原路返回,第二次在距甲站64公里处相遇,甲、乙两站间相距多少公里?
4、周长为400米的圆形跑道上,有相距100米的
A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑
的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?
5、老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时,求甲、乙两城间的距离。
6、速度为快、中、慢的三辆汽车同时从同一地点出发,沿同一公路追赶前面一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时24公里,中速车每小时20公里,那么慢车每小时行多少公里?
7、在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?
五年级奥数题练习二
1、小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
3、甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?
4、甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
5、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
6、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一
辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?
7、甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
五年级奥数题练习三
1、五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。
原来每人存款多少?
2、把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。
这堆货物一共有多少箱?
3、老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。
这批树苗一共有多少棵?
4、汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提
前2小时到达了乙地。
甲、乙两地相距多少千米?
5、小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟。
他家离学校有多远?
6、加工一批零件,原计划每天加工80个,正好按期完成任务。
由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。
他们实际加工零件多少个?
7、甲、乙二人加工一批帽子,甲每天比乙多加工10个。
途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?
8、甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米。
途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半。
A、B两地相距多少千米?
9、甲、乙两人承包一项工程,共得工资1120元。
已知甲工作了10天,乙工作了12天,且甲5
天的工资和乙4天的工资同样多。
求甲、乙每天各分得工资多少元?
10、用汽车运一堆煤,原计划8小时运完。
实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨。
原计划8小时运多少吨煤?。