热力学与统计物理课后习题答案第一章
热力学与统计物理学课后习题及解答
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。
解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。
解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量。
热力学统计物理答案精品资料
第一章热力学的基本规律1.1 试求理想气体的体胀系数, 压强系数和等温压缩系数。
解:已知理想气体的物态方程为pV nRT ,(1)由此易得T1 VV T1 pp T1 V V pTpVnR 1 ,pV TnR 1 ,pV T1nRT1 .Vp2p(2)(3)(4)1.2 证明任何一种具有两个独立参量T , p的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:ln V =αdTκdpT如果1, T1,试求物态方程。
T p解:以 T , p 为自变量,物质的物态方程为V V T , p ,其全微分为V Vdp.(1)dV dTT p p T全式除以 V ,有dV1VdT 1Vdp.V V T V pp T根据体胀系数和等温压缩系数T 的定义,可将上式改写为dVT dp.(2)dTV上式是以 T ,p 为自变量的完整微分,沿一任意的积分路线积分,有ln VdT T dp .(3)若1 ,T1 ,式( 3)可表为 TplnV1 1 (4)dTdp .Tp选择图示的积分路线,从 (T 0 , p 0 ) 积分到 T , p 0 ,再积分到( T , p ),相应地体积由 V 0 最终变到 V ,有ln V =ln Tln p,V 0 T 0p 0即pV p 0V 0 C (常量),TT 0或p VC. T(5)式(5)就是由所给1 , T1求得的物态方程。
确定常量 C 需要进一步的Tp实验数据。
1.8 满足pV n C 的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量C n为C n nC V n 1解:根据式( 1.6.1 ),多方过程中的热容量C n lim QT nT 0U V.(1)pTT n n对于理想气体,内能U 只是温度 T 的函数,UC V ,T n所以C n C VV(2)p.T n将多方过程的过程方程式 pV n C 与理想气体的物态方程联立,消去压强p 可得TV n 1C1(常量)。
最新热力学与统计物理课后习题答案第一章备课讲稿
1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力统计学第一章答案
(1)第一章热力学的基本规律1.1试求理想气体的体胀系数,压强系数和等温压缩系数解:已知理想气体的物态方程为1.2证明任何一种具有两个独立参量T,p 的物质,其物态方程可 由实验测得的体胀系数及等温压缩系数,根据下述积分求得:lnV =a dT K dp如果 —,T 1,试求物态方程T P解:以T, p 为自变量,物质的物态方程为V V T, p ,其全微分为VVdVdTdp.T pP T全式除以V ,有dV 1 V1 V ,dTdp.V V T pV p TpV n RT,由此易得1 V V TnR P PV 1〒,1 P nR 1P T V PVT ,1 V1 nRT 1 V P T V2Pp(1)(2)(3)(4)pV CT.(5)根据体胀系数和等温压缩系数T的定义,可将上式改写为上式是以T, p 为自变量的完整微分,沿一任意的积分路线积分,lnV dTTdp .若 1, T 1,式(3)可表为T P1 1lnV -dT dp .T p选择图示的积分路线,从(T 。
,p 。
)积分到T, p 。
,再积分到(相应地体积由V 。
最终变到V ,有f V C (常量),dV VdT T dp.(2) 有(3)(4)ln V=ln TV 。
T 。
In _p P 。
式(5)就是由所给 丄,T 1求得的物态方程。
确定常量C 需要T P进一步的实验数据。
1.3 在0O C 和1p n 下,测得一铜块的体胀系数和等温压缩系数分 别为 4.85 10 5K 1和 T7.8 107p n 1.和T可近似看作常量,今使铜 块加热至10o C 。
问:(a )压强要增加多少P n 才能使铜块的体积维持不变? (b )若压 强增加100 P n ,铜块的体积改变多少?鈔解:(a )根据1.2题式(2),有强差dp 之间的关系。
如果系统的体积不变,dp 与dT 的关系为dp 一dT.T在和T可以看作常量的情形下,将式(2)积分可得将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统 在初态和终态的压强差和温度差满足式(3)。
热力学统计物理 课后习题 答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果PTT 1,1==κα,试求物态方程。
解: 体胀系数 p T V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=dp dT VdVT κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫⎝⎛-=dp p dT T V 11ln 则有 C pTV +=lnln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫⎝⎛∂∂=,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=∆。
热力学统计物理 课后习题 答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果PTT 1,1==κα,试求物态方程。
解: 体胀系数p T V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数TT p V V ⎪⎪⎭⎫⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,= 其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=dp dT VdVT κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫⎝⎛-=dp p dT T V 11ln 则有 C pTV +=lnln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂=,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当温度由T1降至T2时,其张力的增加为)T -(T -Y A £12α=∆。
热力学与统计物理课后习题答案
T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T
∵
( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H
热统习题解答(全]
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
《热力学与统计物理》第四版(汪志诚)课后题答案
和等温压缩系数
T
的定义,可将上式改写为
dV dT T dp. V
上式是以
(2)
T, p
为自变量的完整微分,沿一任意的积分路线积分,有
lnV dT T dp .
(3)
若
1 1 , T T p
,式(3)可表为
1 1 lnV dT dp . p T
根据克劳修斯不等式式1134有是热机从温度为的热源吸取的热量吸热为正放热将热量重新定义可将式1改写为是热机从热源吸取的热量是热机在热源放出的热量假设热机从其中吸取热量的热源中热源的最高温度为在热机向其放出热量的热源中热源的最低温度为必有abcaab定义为热机在过程中吸取的总热量为热机放出的总热量则式4可表为根据热力学第一定律热机在循环过程中所做的功为热机的效率为116理想气体分别经等压过程和等容过程温度由升至假设是常数试证明前者的熵增加值为后者的在等压过程中温度由升到时熵增加值在等容过程中温度由升到时熵增加值117温度为的1kg水与温度为的恒温热源接触后水温达到
pn
,铜块的体积改变多少?
解:(a)根据1.2题式(2),有
dV dT T dp. V
上式给出,在邻近的两个平衡态,系统的体积差 体积不变,
(1)
dV
,温度差
dT
和压强差
dp
之间的关系。如果系统的
dp
与
dT
的关系为
dp
dT . T
在
和
T
(2)
可以看作常量的情形下,将式(2)积分可得
所以
L L2 L 2 L0 dL0 L3 0 b 2 bT 1 2 L0 L2 dT 1 L0 L 1 dL0 1 L3 0 . L L0 dT T L3 1 2 L2 0 2 bT 3 L3 0 L0 L
热力学与统计物理课后习题答案第一章
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα=== ?(2) 11,V p nR p T pV Tβ=== ?(3) 2111.T T V nRT V p V p pκ=-=--= ? ? ???????? (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -?如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p=+ ? ?(1)全式除以V ,有11.p TdV V V dT dp V V T V p =+ ? ?根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-? (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ??=- (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p - 即00p V pV C T T ==(常量),或.p V C T=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=?=?T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理(第四版汪志诚)答案及习题解答
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.p V C T=(5) 式(5)就是由所给11,T Tpακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热统习题解答(全)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
热力学与统计物理课后习题答案第一章复习课程
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
《热力学与统计物理》第四版(汪志诚)课后题答案
和
Y
是T 的函数,对J仅有微弱的依赖关系,如果温度变化范
围不大,可以看作常量,假设金属丝两端固定。试证明,当温度由
1
J YA T2 T1
降至
2
时,其张力的增加为
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T
如果 解:以
1 1 , T T p
,试求物态方程。
T, p
为自变量,物质的物态方程为
V V T , p ,
其全微分为
V V dV dp. dT T p p T
全式除以
(1)
V
,有
dV 1 V 1 V dp. dT V V T p V p T
(3)
T
1 V 1 nRT 1 . V p T V p 2 p
(4)
1.2 证明任何一种具有两个独立参量 系数
T, p
的物质,其物态方程可由实验测得的体胀系数
及等温压缩
,根据下述积分求得:
lnV = αdT κT dp
L L0
0.5, 1.0, 1.5
A 1 106 m 2 , 0 5 104 K 1
,试计算当
分别为
和
2.0
时的
J, Y,
值,并画出
J, Y,
对
L L0
的曲线.
解:(a)根据题设,理想弹性物质的物态方程为
L L2 0 J bT 2 , L0 L
热力学与统计物理第一章部分习题讲解
习题讲解:6. (a)327m 的空气质量1m 为1 1.292734.83m kg=⨯==34830g定容热容量可由所给定压比热容得PV C C γ=维持体积不变,将空气由0C加热至20C,所需热量V Q 为()5121 1.17610V V Q m C T T cal =-=⨯(b)维持压强不变, 将空气由0C加热至20C ,所需热量P Q 为()5121 1.65810P P Q m C T T cal =-=⨯(c)若容器有裂纹,加热过程中气体将从裂缝漏出,使容器内空气质量发生变化,根据理想气体的物态方程m P V R Tm+=,m +为空气的平均摩尔质量,在压强和体积不变的情形下,容器内空气的质量与温度成反比,以11,m T 表示气体在初态的质量和温度,m 表示温度为T 时气体的质量,有11m T m T = 故所需热量 21T P T Q C mdT =⎰211121115ln1.59610T P T P dT m T C T T m T C T cal===⨯⎰1.13(1) t=0℃的lmol 理想气体,等温地从0V 膨胀到100V ,求对外所做的功W; (2) C t oi 0=的1mol 理想气体,绝热地从0V 膨胀到100V ,求终温f t 。
解: (1)10103ln 10 5.210V V V V R T W pdV dV R T JV====⨯⎰⎰(2) 由绝热过程方程pV γ=常数,及物态方程RTpV =,得到1TVγ-=常数。
所以,1()i f i fV T T V γ-=KT f 59=,故有CT t of f 214273-=-=20.根据克劳修斯不等式,有0i iiQ T ≤∑(1)式中i Q 是热机从温度为i T 的热源吸收的热量(吸热i T 为正,放热i T 为负)。
将热量重新定义,可将(1)改写为j k jkjkQ Q T T -≤∑∑。
式中j Q 是热机从热源j T 吸取的热量。
热力学与统计物理第一章部分习题讲解
习题讲解:6. (a)327m 的空气质量1m 为1 1.292734.83m kg=⨯==34830g定容热容量可由所给定压比热容得PV C C γ=维持体积不变,将空气由0C加热至20C,所需热量V Q 为()5121 1.17610V V Q m C T T cal =-=⨯(b)维持压强不变, 将空气由0C加热至20C ,所需热量P Q 为()5121 1.65810P P Q m C T T cal =-=⨯(c)若容器有裂纹,加热过程中气体将从裂缝漏出,使容器内空气质量发生变化,根据理想气体的物态方程m P V R Tm+=,m +为空气的平均摩尔质量,在压强和体积不变的情形下,容器内空气的质量与温度成反比,以11,m T 表示气体在初态的质量和温度,m 表示温度为T 时气体的质量,有11m T m T = 故所需热量 21T P T Q C mdT =⎰211121115ln1.59610T P T P dT m T C T T m T C T cal===⨯⎰1.13(1) t=0℃的lmol 理想气体,等温地从0V 膨胀到100V ,求对外所做的功W; (2) C t oi 0=的1mol 理想气体,绝热地从0V 膨胀到100V ,求终温f t 。
解: (1)10103ln 10 5.210V V V V R T W pdV dV R T JV====⨯⎰⎰(2) 由绝热过程方程pV γ=常数,及物态方程RTpV =,得到1TVγ-=常数。
所以,1()i f i fV T T V γ-=KT f 59=,故有CT t of f 214273-=-=20.根据克劳修斯不等式,有0i iiQ T ≤∑(1)式中i Q 是热机从温度为i T 的热源吸收的热量(吸热i T 为正,放热i T 为负)。
将热量重新定义,可将(1)改写为j k jkjkQ Q T T -≤∑∑。
式中j Q 是热机从热源j T 吸取的热量。
热力学与统计物理答案汪志诚
热力学与统计物理答案(汪志诚) 第一章热力学的基本规律1.1 热力学系统的平衡态及其描述1.什么是热力学系统?热力学系统有哪些分类?答:热力学系统是指由大量相互作用的粒子组成的集合体,可以用一些宏观物理量来描述其状态。
热力学系统可以分为孤立系统、封闭系统和开放系统。
2.什么是热力学平衡态?热力学平衡态有哪些性质?答:热力学平衡态是指在没有外界影响的情况下,系统的宏观性质不随时间变化的状态。
热力学平衡态具有均匀性、各向同性和稳定性等性质。
3.如何描述热力学系统的状态?常用的状态参量有哪些?答:热力学系统的状态可以用一组状态参量来描述,常用的状态参量有体积、温度、压力和熵等。
1.2 热力学第零定律温度1.热力学第零定律的内容是什么?如何理解?答:热力学第零定律的内容是:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
这个定律说明了温度是描述热力学系统状态的一个重要参量,也是进行热交换的驱动力。
2.什么是温度?温度有哪些性质?答:温度是描述热力学系统状态的一个宏观参量,表示系统的冷热程度。
温度具有可加性和可比较性等性质,可以用温度计来测量。
3.温度与微观粒子运动的关系是什么?答:温度与微观粒子运动的关系可以通过麦克斯韦-玻尔兹曼分布来描述。
在一定温度下,系统中微观粒子的速度分布服从麦克斯韦-玻尔兹曼分布,粒子的平均动能与温度成正比。
1.3 热力学第一定律能量守恒定律1.热力学第一定律的内容是什么?如何理解?答:热力学第一定律的内容是:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。
这个定律说明了能量守恒和转换的规律,即能量既不会凭空产生也不会凭空消失,只会从一种形式转换成另一种形式。
2.什么是内能?内能有哪些性质?答:内能是指热力学系统中所有微观粒子的动能和势能之和。
内能是一个状态函数,具有可加性和单调性等性质。
热力学·统计物理答案 第一章(完整资料).doc
【最新整理,下载后即可编辑】第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV =VnRTP P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=αT PVRn T P P V /1)(1==∂∂=βP P nRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα= 1Tpκ=,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp pVdT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少np 才能使铜块体积不变?(2若压强增加100np ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n 错习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
热力学统计物理课后习题答案
1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。
诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。
解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。
1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。
线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。
一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。
解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
问:(a )压强要增加多少n p 才能使铜块的体积维持不变?(b )若压强增加100n p ,铜块的体积改变多少?解:(a )根据1.2题式(2),有.T dVdT dp Vακ=- (1) 上式给出,在邻近的两个平衡态,系统的体积差dV ,温度差dT 和压强差dp 之间的关系。
如果系统的体积不变,dp 与dT 的关系为.Tdp dT ακ=(2) 在α和T κ可以看作常量的情形下,将式(2)积分可得()2121.Tp p T T ακ-=- (3) 将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。
但是应当强调,只要初态()1,V T 和终态()2,V T 是平衡态,两态间的压强差和温度差就满足式(3)。
这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。
本题讨论的铜块加热的实际过程一般不会是准静态过程。
在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。
将所给数据代入,可得52174.851010622.7.810n p p p --⨯-=⨯=⨯因此,将铜块由0C 加热到10C ,要使铜块体积保持不变,压强要增强622n p(b )1.2题式(4)可改写为()()21211.T VT T p p V ακ∆=--- (4) 将所给数据代入,有57144.8510107.8101004.0710.VV ---∆=⨯⨯-⨯⨯=⨯ 因此,将铜块由0C 加热至10C ,压强由1n p 增加100n p ,铜块体积将增加原体积的44.0710-⨯倍。
1.4 简单固体和液体的体胀系数α和等温压缩系数T κ数值都很小,在一定温度范围内可以把α和T κ看作常量. 试证明简单固体和液体的物态方程可近似为()()000(,),01.T V T p V T T T p ακ=+--⎡⎤⎣⎦解: 以,T p 为状态参量,物质的物态方程为(),.V V T p =根据习题1.2式(2),有.T dVdT dp Vακ=- (1) 将上式沿习题1.2图所示的路线求线积分,在α和T κ可以看作常量的情形下,有()()000ln,T VT T p p V ακ=--- (2) 或()()()()0000,,.T T T p p V T p V T p eακ---= (3)考虑到α和T κ的数值很小,将指数函数展开,准确到α和T κ的线性项,有()()()()0000,,1.T V T p V T p T T p p ακ=+---⎡⎤⎣⎦ (4)如果取00p =,即有()()()00,,01.T V T p V T T T p ακ=+--⎡⎤⎣⎦ (5)1.5 描述金属丝的几何参量是长度L ,力学参量是张力J ,物态方程是(),,0f J L T =实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为1JL L T α∂⎛⎫=⎪∂⎝⎭ 等温杨氏模量定义为TL J Y A L ∂⎛⎫=⎪∂⎝⎭ 其中A 是金属丝的截面积,一般来说,α和Y 是T 的函数,对J 仅有微弱的依赖关系,如果温度变化范围不大,可以看作常量,假设金属丝两端固定。
试证明,当温度由1T 降至2T 时,其张力的增加为()21J YA T T α∆=--解:由物态方程(),,0f J L T = (1)知偏导数间存在以下关系:1.J L TL T J T J L ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 所以,有.L J TJ L J T T L AL YLAY αα∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭=-⋅=- (3)积分得()21.J YA T T α∆=-- (4)与1.3题类似,上述结果不限于保持金属丝长度不变的准静态冷却过程,只要金属丝的初态是平衡态,两态的张力差()()21,,J J L T J L T ∆=-就满足式(4),与经历的过程无关。
1.6一理想弹性线的物态方程为2020,L L J bT L L ⎛⎫=- ⎪⎝⎭其中L 是长度,0L 是张力J 为零时的L 值,它只是温度T 的函数,b 是常量. 试证明:(a )等温扬氏模量为20202.L bT L Y A L L ⎛⎫=+ ⎪⎝⎭在张力为零时,03.bTY A=其中A 是弹性线的截面面积。
(b )线胀系数为330033011,2L L LT L αα-=-+ 其中0001.dL L dTα=(c )上述物态方程适用于橡皮带,设31300K, 1.3310N K ,T b --==⨯⋅62410110m ,510K A α---=⨯=⨯,试计算当LL 分别为0.5,1.0,1.5和2.0时的,,J Y α值,并画出,,J Y α对LL 的曲线. 解:(a )根据题设,理想弹性物质的物态方程为2020,L L J bT L L ⎛⎫=- ⎪⎝⎭(1) 由此可得等温杨氏模量为22002200221.T L L L J L bT L Y bT A L A L L A L L ⎛⎫⎛⎫∂⎛⎫==+=+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(2)张力为零时,003,.bTL L Y A==(b )线胀系数的定义为1.JL L T α∂⎛⎫=⎪∂⎝⎭ 由链式关系知1,L TJ L L T J α∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)而20002220020302,21,L T L L dL J L L b bT T L L L L dTL J bT L L L ⎛⎫⎛⎫∂⎛⎫=-+-- ⎪⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎛⎫∂⎛⎫=+ ⎪ ⎪∂⎝⎭⎝⎭所以23000222300003200330021111.212L L dL L L L b bT L L L L dT dL L L L L dT T L bT L L L α⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭=-=-⎛⎫++ ⎪⎝⎭(4)(c )根据题给的数据,,,J Y α对LL 的曲线分别如图1-2(a ),(b ),(c )所示。
1.7 抽成真空的小匣带有活门,打开活门让气体冲入,当压强达到外界压强0p 时将活门关上,试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来在大气中的内能0U 之差为000U U p V -=,其中0V 是它原来在大气中的体积,若气体是理想气体,求它的温度与体积。
解:将冲入小匣的气体看作系统。
系统冲入小匣后的内能U 与其原来在大气中的内能0U 由式(1.5.3)0U U W Q -=+ (1)确定。
由于过程进行得很迅速,过程中系统与外界没有热量交换,0.Q = 过程中外界对系统所做的功可以分为1W 和2W 两部分来考虑。
一方面,大气将系统压入小匣,使其在大气中的体积由0V 变为零。
由于小匣很小,在将气体压入小匣的过程中大气压强0p 可以认为没有变化,即过程是等压的(但不是准静态的)。
过程中大气对系统所做的功为1000.W p V p V =-∆=另一方面,小匣既抽为真空,系统在冲入小匣的过程中不受外界阻力,与外界也就没有功交换,则20.W =因此式(1)可表为000.U U p V -= (2)如果气体是理想气体,根据式(1.3.11)和(1.7.10),有00,p V nRT = (3)000()()1V nRU U C T T T T γ-=-=-- (4) 式中n 是系统所含物质的量。
代入式(2)即有0.T T γ= (5)活门是在系统的压强达到0p 时关上的,所以气体在小匣内的压强也可看作0p ,其物态方程为00.p V nR T γ= (6)与式(3)比较,知0.V V γ= (7)1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2)将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。
(3)将上式微分,有12(1)0,n n V dT n V TdV --+-=所以.(1)nV V T n T ∂⎛⎫=- ⎪∂-⎝⎭ (4) 代入式(2),即得,(1)1n V V pV n C C C T n n γ-=-=-- (5) 其中用了式(1.7.8)和(1.7.9)。