理论力学(矢量运算基本知识)PPT精选文档

合集下载

《理论力学》精品课件_TM.7-5以矢量表示角速度和角加速度.以矢积表示点的..

《理论力学》精品课件_TM.7-5以矢量表示角速度和角加速度.以矢积表示点的..

7-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度一、角速度矢绕定轴转动刚体的角速度可以用矢量表示。

1.角速度矢的大小角速度矢ω的大小等于角速度的绝对值,即td d ϕω==ω (7-16) 2.角速度矢的指向角速度矢ω沿轴线,它的指向表示刚体转动的方向;如果从角速度矢的末端向始端看,则所观察到的刚体作逆时针向转动,如图7-10a 所示;或按照右手螺旋规则确定:右手的四指代表转动的方向,姆指代表角速度矢ω的指向,如图7-10b 所示。

(a ) (b )图7-10至于角速度矢的起点,可在轴线上任意选取,也就是说,角速度矢是滑动矢。

如取转轴为z 轴,它的正方向用单位矢k 的方向表示(图7-11)。

于是刚体绕定轴转动的角速度矢可写成k ω=ω (7-17)式中ω是角速度的代数值,它等于ϕ。

(a ) (b )图7-11二、角加速度矢同样,刚体绕定轴转动的角加速度可以用一个沿坐标轴线的滑动矢量表示:k ε=ε (7-18)式中ε是角加速度的代数值,它等于ω或ϕ 。

于是 )(d dd d k k ωωtt ==ε (7-19)即角加速度ε是角速度矢ω对时间的一阶导数。

根据上述角速度和角加速度的矢量表示法,刚体内任一点的速度可以用矢积 表示。

三、速度的矢量积表示如在轴线上任选一点O 为原点,点M 的矢径以r 表示,如图7-12所示。

图7-12那么,点M 的速度可以用角速度矢与它的矢径的矢量积来表示,即r v ⨯=ω (7-20)为了证明这一点,需证明矢积r ⨯ω确实表示点M 的大小和方向。

根据矢积的定义知,r ⨯ω仍是一个矢量,它的大小是v r r =⋅=⋅=⨯R ωωωθsin式中θ是角速度矢ω与矢径r 的夹角。

于是证明了矢积r ⨯ω的大小等于速度的大小。

矢积r ⨯ω的方向垂直于ω和r 所组成的平面(即图7-12中三角形OMO 1平面),从矢量v 的末端向始端看,则见ω按逆时针转向转过角θ与r 重合,由图容易看出,矢积r ⨯ω的方向正好与点M 的方向相同。

矢量PPT课件

矢量PPT课件

( Ay Bz Az By )iˆ ( Az Bx Ax Bz ) ˆj ( Ax By Ay Bx )kˆ
iˆ iˆ ˆj ˆj kˆ kˆ 0
iˆ ˆj kˆ, kˆ iˆ ˆj, ˆj kˆ iˆ
ˆj iˆ kˆ,iˆ kˆ ˆj, kˆ ˆj iˆ
– 结合律(associative law): (A+B)+C=A+(B+C)
三、矢量的加法和减法 (vector addition and subtraction)
4.两矢量的减法:
– 定义: C=A-B=A+(-B) 即两矢量A和B的矢量差C可看成为矢量A和矢量(-B)的矢量和
– 运算方法: • 平行四边形法则:以A和(-B)为邻边做平行四边形,其对角线 即为矢量差C • 三角形法则:将A和B的矢尾相接,由B的矢端向A的矢端做矢 量,则该矢量即为矢量差C
• 直角坐标系下n个矢量的求和

n个矢量:
A1
,
A2
,,
An

每个矢量都可分解成矢量投影式
Ai
Aixiˆ
Aiy
ˆj
Aiz kˆ
– 和矢量:
A
Axiˆ
Ay
ˆj
Az kˆ
A
n
Ai
n
( Aixiˆ Aiy ˆj Aiz kˆ)
i 1
i 1
n
n
n
( Aix )iˆ ( Aiy ) ˆj ( Aiz )kˆ
t 0 t
➢ 方向:当t0时,A的极限方向,沿A(t)的矢端曲线的切线且指向时
• 把一个矢量分解成若干个分矢量之和,可能采取的分解方式有无
限规多定个矢,量如A 果在规某定一了直 三角个坐正标交系分的量xy的z轴方上向分,解则,分则解z可是表唯示一成的。如, A A1 A2 A3

理论力学(矢量运算基本知识)

理论力学(矢量运算基本知识)

ai = i aix+ jaiy + kaiz 则有: Rx= aix
4.矢量的矢积 (1)定义: c = a × b
R = ai Rz= aiz
Ry= aiy
c
c a b sin a b


b a
6
(2)直角坐标中的解析表示
i a b ax bx
j ay by
k az bz
y
xE+2xA= c1
xB+(xB - xA) = c2
xC+(xC - xB) = c3
C
E
xD - xC =c4
D
x
18
对上述各式微分得:
2 dxB - dxA = 0 dxD - dxC = 0
dxE + 2 dxA = 0
2 dxC - dxB = 0
8dxD = -d xE
8vD= - vE 8aD= - aE aE = 2 vE =10 aE = 2
18 5
14
二.绪论
1.理论力学的研究对象
(1)机械运动
(2)质点,质点系,刚体和多刚体系统
(3)静力学,运动学,动力学和分析力学概论
2.理论力学的学习目的 3.理论力学的研究方法 4.理论力学的学习方法
15
例题2.如图所示,滑轮和绳子的质量均不计,物块A和B
的质量分别为m1和m2 且m1< m2 ,试求物块A的加速度. 解:
理 论 力一.矢量运算的基本知识 1.单位矢量 2.矢量的加法 3.矢量的标积 4.矢量的矢积 5.矢量的导数
2
二.绪论
1. 理论力学的研究对象 2. 理论力学的学习目的 3. 理论力学的研究方法 4. 理论力学的学习方法

矢量的运算PPT课件

矢量的运算PPT课件

矢量加法:服从平行四边形法则,合矢量是平行四边形的对角线。
A
B
C 记为 C A B
C
A
对矢量加法有:交换率
AB B A
B
也可以用三 角形表示。
结合率 (A B) C A (B C)
矢量的减法: A B A (B)
定义为:加上 B 矢量的负矢量。
A
AB
B
2
第2页/共16页
矢量的模:矢量的大小称为矢量的模,记为
r
或r
单位矢量: 模为 1 的矢量称为单位矢量,用于表示方向。常用
r0 表示。
矢量相等:两矢量大小相等,方向相同,则两矢量相等。(即
A
使他们不再同一起点上。)
记为
BA
B
负矢量: 一矢量的负矢量与该矢量大小相等,方向相反。
A
记为
B A
B
1
第1页/共16页
矢量与数量相乘:记为
C mA
定义为: C = | m | A (即C的模为A的m倍) 当m大于0时, C与A方向相同。 当m小于0时,C与A方向相反。
利用上述乘法的定义,任意一个矢量都可以表示为该矢量的
模与该矢量方向上的单位矢量的乘积。
r rr0
r
任意矢量的单位矢量也可 以表示为:
r0
r
其中r是该矢量的模,而括号中的 项是r方向上的单位矢量。
r0 cos i sin j
在已知x及y的情况下
r x2 y2
tg y
x
例1、设矢量
r (6i 8 j)m
写出该矢量的模和单位矢量,并用图表示该矢量。
5
第5页/共16页
Y
利用矢量的解析表示法,设两矢量

大学物理矢量PPT课件

大学物理矢量PPT课件
把 [a,b] 分 成 n个 小 y 区 间[ xi 1, xi ], 长 度 为 xi xi xi1;
在每个[ xi1, xi ] 上
任 取 一 点 i,
o
x1
a
xi1 i xi
xn1
b
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
Ax
O Ax
X


如果A Axi Ay j 和 B Bxi By j , 则有:



C Cxi Cy j B A (Ax Bx )i (Ay By ) j
显然:
C x Ax Bx
C y Ay By
第1章 运动的描述
矢量的加法: 两个矢量相加
C AB
AB
矢量的减法: 两个矢量相减
C' A B A (B)
差矢量方向:
减数终端→被减数终端
第1章 运动的描述
A
C
B

C'
A
B
矢量的内积
a

b

ab
(点乘、标乘):

0, cos 1, a b ab
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.

理论力学第六章ppt课件

理论力学第六章ppt课件
v v x 2 v y 2 r2 ( 1 co t ) 2 r s s2 i t( n 0 t 2 ) a x & x & r2 s int,a y & y & r2 c o st
a ax2ay2 r2
.
已 知 : r, t, 常 数 。
求:M点的运动方程、速度、切向和法向加速度。
解: A,B点都作直线运动,取Ox轴如图所示。 运动方程
x A b r si n b r sit n)(
x B rs i n rsi tn ) (
.
已知:O M r , t , 常 数 ,A B b 。
求:① A,B点运动方程; ② B点速度、加速度。
B点的速度和加速度
v B x B rco t s
因为
dr
ds
ddr
dds dds 1
所以 nr d r
ds
副法线单位矢量
r b
rnr
.
方向同
r n
自然坐标轴的几何性质
.
3、速度
v rdr rdr rdsdsrvr
dt dsdt dt
4、加速度 ardvr dvrvdr
代入
dt dt dt
dr dr ds v nr
dt ds dt

ar ddvtrv2 nr atrannr
r k
rr
r
r
i
j
直角坐标与矢径坐标之间的关系
r r ( t ) = x t r i + y ( t ) r j + z ( t ) k r
.
速度 v r= d d r r t = d d x t r i + d d y t r j + d d z t k r= v x r i + v y r j + v z k r

《矢量运算》课件

《矢量运算》课件
总结词
矢量加法满足交换律和结合律,即A+B=B+A和(A+B)+C=A+(B+C) 。
详细描述
交换律和结合律是矢量加法的基本性质,它们表明矢量的加法不依赖 于其排列顺序。
数乘运算
总结词
数乘运算是矢量运算中的一种运算,它表示矢量与实数的 乘积。
总结词
数乘运算满足分配律,即k(A+B)=kA+kB。
详细描述
描述物体速度变化快慢的物理量,包括大 小和方向。加速度可以通过速度的变化量 与时间的比值来定义,也可以通过速率和 方向来描述。加速度是矢量,具有方向性 。通过研究速度和加速度的关系,可以深 入理解物体运动的变化规律和动力学问题 。
06
矢量在数学中的拓展
向量场
向量场是由一组向量构成 的数学结构,这些向量定 义在某个空间或流形上。
内积的定义与性质
总结词
内积是矢量的一种运算,表示两个矢量之间的点乘。
详细描述
内积定义为两个矢量A和B的内积,记作A·B,等于A的模长与B的模长之积与它 们之间夹角的余弦的乘积。内积的结果是一个标量,与矢量的方向无关,只与 矢量的长度和夹角有关。内积具有交换律和分配律。
外积与内积的应用
总结词
外积和内积在物理学、工程学等领域有广泛的应用。
力的分解
将一个力分解为两个或多个分力的过程。力的分解有多种方 法,如正交分解和任意分解。通过力的分解可以更深入地理 解力的作用效果和力的作用方式。
运动的合成与分解
运动的合成
当物体同时参与两个或多个运动时,其合运动可以通过运动的合成来描述。运动的合成包括速度的合 成和加速度的合成。通过运动的合成可以确定合速度的大小和方向,以及合加速度的大小和方向。

矢量运算法则ppt课件

矢量运算法则ppt课件

2.矢量:不仅有大小,而且有方向的物理量。
如:力 F 、速度 v 、电场 E 等
矢量表示为: A | A| aˆ
其中:|
A
|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
电磁场与电磁波
第1章 矢量分析
3. 散度:
a.定义:矢量场中某点的通量密度称为该点的散度。
b.表达式: divF lim S F dS
c.散度的计算:
V 0 V
在直角坐标系中,如图做一封闭
z
S6
S1
S3
S4
S2
曲面,该封闭曲面由六个平面组成。
S5
y
Az
A
o
Ay
Ax
y
x
cos Ax , cos Ay , cos Az
| A|
| A|
| A|
在直角坐标系中三个矢量加法运算:
A B C (Ax Bx Cx )aˆx (Ay By Cy )aˆy (Az Bz Cz ) aˆz
电磁场与电磁波
第1章 矢量分析
2.减法:换成加法运算
第1章 矢量分析
b.矢量积(叉积):
aˆc
B
A B | A | | B | sin aˆc
•含义:
A
两矢量叉积,结果得一新矢量,其大小为这两个矢量
组成的平行四边形的面积,方向为该面的法线方向,且三
者符合右手螺旋法则。
推论1:不服从交换律: A B B A, A B B A

理论力学完整ppt课件

理论力学完整ppt课件
理论力学
主讲 王卫东
可编辑课件PPT
1
可编辑课件PPT
2


一、理论力学的研究对象和内容 二、理论力学发展简史 三、学习理论力学的目的 四、理论力学的研究方法
可编辑课件PPT
3
可编辑课件PPT
真汽 车 碰 撞 仿
4
可编辑课件PPT
5
可编辑课件PPT
6
一、理论力学的研究对象和内容
理论力学——研究物体机械运动规律的科学。
可编辑课件PPT
15
都江堰
岷江上的大型引水枢纽工程,也是现有世界上历史最长的无坝 引水工程。始建于公元前256~前251年。
可编辑课件PPT
16
赵州桥(安济桥)
591~599年,跨度37.4米,采用拱高只有7米的浅拱-敞肩拱,
敞肩拱的运用为世界桥梁史上的首创,并有“世界桥梁鼻祖”
的美誉。
可编辑课件PPT
3 随着科学技术的发展,交叉学科的地位也越来越 重要。力学与其它学科的渗透形成了生物力学、爆 炸力学、物理力学等边缘学科,这就需要我们有坚 实的理论力学基础。
4 培养分析问题、解决问题的方法。
可编辑课件PPT
24
四、理论力学的研究方法
是从实践出发,经过抽象化、综合、归纳、建立 公理,再应用数学演绎和逻辑推理而得到定理和结论, 形成理论体系,然后再通过实践来验证理论的正确性。
17
张衡与地动仪
东汉时期,中国发生地震的次数是比较多的,为了测定地
震方位,及时地挽救人民的生命财产,公元126年,张衡在第二
ቤተ መጻሕፍቲ ባይዱ
次担任太史令之后, 就注意掌握收集地震的情报和记录,经过
多年的潜心研究,终于在公元132年(东汉顺帝阳嘉元年),发明

理论力学《理学矢量代数》课件

理论力学《理学矢量代数》课件

25 。3 ±(2j+k)/ 。 5 /2。 3
!.9 2。 (a) 20,(b) 20,(c) 8 i-19j-k,
(d) 25 i-15j-10k.
• 上述答案未经核算,仅供参考。
理论力学《理学矢量代数》课件
|B| B
理论力学《理学矢量代数》课件
• 关于叉乘的运算规律
• A×A = 0 • A×(B + C) = A×B + A×C • λ(A×B) =(λA)×B = A×(λB) • A×B = -B×A
• A与B 共线 A×B = 0
理论力学《理学矢量代数》课件
A×B
B×A = - A×B
理论力学《理学矢量代数》课件
ez
ex
ey
ex×ex = ey×ey = ez×ez = 0 ex×ey = ez , ey×ez = ex , ez×ex = ey
以上结果可由直接计算得出。
理论力学《理学矢量代数》课件
8. 矢量的解析表达式
◆ 任意矢量可表示成基矢量的线性组合
A = Axex + Ayey + Azez
投式影中:Ax、Ay、Az分别为矢量ez A沿各坐轴的
关于点乘的下列运算规律 可由直接计算导出

A·B = B·A

A·(B + C) = A·B + A·C
※ λ(A·B) =(λA)·B = A·(λB)

A·A = A 2 A2

A⊥B
A·B = 0
理论力学《理学矢量代数》课件
矢量在某轴上的投影
设轴N上的单位矢量为en,则矢量A在轴N 上的投影为
3. 矢量的分解
• 平面矢量的分解

理论力学(矢量运算基本知识)

理论力学(矢量运算基本知识)

ai = i aix+ jaiy + kaiz R = ai
则有: Rx= aix Ry= aiy Rz= aiz
4.矢量的矢积
(1)定义: c = a × b
c
c a b sin a b
b
(2)直角坐标中的解析表示
a
6
i jk a b ax ay az
bx by bz
O
y
A
即: 2aA aE
D E
x
17
例题4.图示滑轮系统,已知物体E的运动方程为 xE = 2t +t2 ,求t = 4s时物体D的速度和加速度.
解:利用绳长不变的约 束条件得:
O
y
xE+2xA= c1
A
xB+(xB - xA) = c2
B E
xC+(xC - xB) = c3
C
xD - xC =c4
(6)
dt
10
(2)旋转矢量的导数
d R d r r
dt dt
dr dr dt dt
r
R
o r´
r r (r r)
R
11
例题1.矢量 a = 3i + 4j +5k , b = i + 2j +5k 求:(1) a+b (2) ab (3) a×b (4) ab (5) ba

ab b
31 4 2 5 5 36
1 22 52
30
13
(5) a0 3i 4 j 5k 3i 4 j 5k
32 42 52
25
ba

【物理课件】矢量运算ppt课件

【物理课件】矢量运算ppt课件

3)点乘的分配律 (a b) c a c b c 点乘的常用性质还有
1)a a a 2; 2)a b,a b 0 3)直角坐标中i j jk k i 0 i i j j k k 1 4)按点乘分配律 a {xa , ya , zb},b {xb , yb , zb} 有 a b (xai ya j zak) (xbi yb j zbk)
量需要用其大小和方向来表示 • 大小为矢量的模,
记为 A
• 长度为零的矢量 叫令矢量
依据事物自身的规律,按矢 量运算规则运算的量叫矢量
• 长度为1的矢量叫
单位矢量,记 e
单位矢量用来表示 空间的方向
• 大小相等、方向相反的矢量
互为负矢量,如 a 与 a
a (a) 0
天马行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632
天马行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632
3) 加法交换律 加法结合律 数乘结合律
ab ba
(a b) c a (b c)
(a) ()a
数乘分配律 ( )a a a
(a b) a b
4)矢量可由单位矢量与标量数的乘积
dt
dt
x(t)i y(t)j z(t)k
注意:矢量的微商仍是矢量 质点位置函数的时变率即质点的速度,速度为矢量。 速度的方向:位置函数空间曲线的任意点切线方向。
四.矢量的点乘(标量积)
点乘运算规则
ab a b cos
1)点乘的交换律 a b b a
a
b
2)点乘与数乘的结合律 (a b) (a) b a (b)
则 a b Sen

理论力学5A

理论力学5A

10
dτ kn ds
问题: dn ?
ds
由: n n 1
dn n 0 ds
dn n ds
设: dn τ
ds
再由: n τ 0
dn τ n dτ 0
ds
ds
即: τ τ n kn 0 k
dn kτ ds
ds ds
ds
记: dn τ b
ds
kn n τ ( τ b) n
定义:

(s) 称为空间曲线在弧坐标 s 的挠率; (s) 可取: + , - , 0.
dn d (b τ ) db τ b dτ n τ b kn kτ b
这些曲线形状相同,可以通过旋转和平移使得这些曲线重合)。
对于平面曲线: b =常矢, (s) 0 .
25
26
精品课件!
精品课件!
反映速度大小的变化
an

kv2n

v2

n
反映速度方向的变化
加速度矢量在密切面内 16
例: 半径为 R 的车轮在地面上纯滚动,轮心速度大小为 u (常量) 求圆盘接触地面时的加速度。
u R
vx x u(1 cos) vy y u sin
触地时: 2k (k 0,1, )
主法线
n
密切面
速度: v sτ vτ 加速度: a v d(vτ )
dt
法 平
M
面b
副法线
τ 切线
vτ v dτ ds ds dt
vτ kv2n

理论力学第6章 ppt课件

理论力学第6章  ppt课件

25
作业
• 6-4 • 6-6
ppt课件
26
第六章 点的运动学
• §6-1 矢量法和直角坐标法
• 1. 表示质点运动的矢量法:
• 质点的空间位置用矢径r表示,它是时间的 函数,

r = r(t)
• 投影式: r = xi+yj+zk
• 轨迹:矢径r 端点的连线。
ppt课件
1
• 速度:
v dr lim r(t t) r(t)
a dv dt
• 动点移动时,速度大小和方向都发生改变。
a

dv dt

d dt
( ds dt
τ)

d 2s dt 2
τ

ds dt
dτ dt
ppt课件
15
• 切向加速度
at

d 2s dt 2
τ

dv dt
τ
• 法向加速度
an

ds dt
dτ dt
v
dτ dt
dτ dτ ds 1 vn

vy y r sin t
v
vx2

v
2 y
r (1 cost)2 sin2 t
2r sin t
2
ppt课件
19
• 求M点的曲线位移: • 方法1
v ds dt

s


vdt

2r
t
0
sin
t
2
dt

4r (1
cos
t
2
)
ppt课件
20
• 求M点的曲线位移:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

rR o r´
rr (rr)
R
11
例题1.矢量 a = 3i + 4j +5k , b = i + 2j +5k 求:(1) a+b (2) ab (3) a×b (4) ab (5) ba
解:(1) a+b = (3+1)i + (4+2) j + (5+5) k
= 4i + 6j + 10k
r
矢量r 绕垂直于x y平面 0 j ro
过o点的z 轴以角速度逆
o
i
x
时针旋转,单位矢量ro和o
亦同样旋转.
8
r0 icosjsin
y
r
0 isinjcos (1)
d
0 j ro
k dt
o
i
x
k r 0 k ic o k sjs in jc o sisi n 0 (2)
125
4 5 5 2 i 5 1 3 5 j 3 2 4 1 k
= 10i -10j +2k
(4) b0 i 2 j 5k 1 i2j5k 122 52 30
ab
ab0
ab b
314255 36
12252
30
13
(5) a0 3i 4j 5k 3i 4 j 5k
32 42 52
25
ba
ba0
ba a
13245518
324252
5
14
二.绪论
1.理论力学的研究对象 (1)机械运动 (2)质点,质点系,刚体和多刚体系统 (3)静力学,运动学,动力学和分析力学概论
2.理论力学的学习目的 3.理论力学的研究方法 4.理论力学的学习方法
15
例题2.如图所示,滑轮和绳子的质量均不计,物块A和B 的质量分别为m1和m2 且m1< m2 ,试求物块A的加速度.
A
即: 2aA aE
D E
x
17
例题4.图示滑轮系统,已知物体E的运动方程为 xE = 2t +t2 ,求t = 4s时物体D的速度和加速度.
解:利用绳长不变的约 束条件得:
O
y
xE+2xA= c1
A
xB+(xB - xA) = c2
B E
xC+(xC - xB) = c3
C
xD - xC =c4
理 论 力 学 (0)
1
内容提要
一.矢量运算的基本知识 1.单位矢量 2.矢量的加法 3.矢量的标积 4.矢量的矢积 5.矢量的导数
二.绪论
1. 理论力学的研究对象 2. 理论力学的学习目的 3. 理论力学的研究方法 4. 理论力学的学习方法
2
一.矢量运算的基本知识
1.单位矢量: ro r
r
(r>0)
aE = 2
代入上述结果得: vD= - 1.25
aD= - 0.25
19
阅读材料和作业
一.阅读材料
(1)P1---P4 (2)P1---P7 ; P491---P497
二.预习材料
(1)P5---P53 ; P144---P150 (2)P1---P17
20
再见
21
(2)直角坐标中的解析表示
a = i ax + j ay + k az b = i bx + j by + k bz
a·b = ax bx + ay by + az (3)矢bz 量的投影
矢量A在直线 l 上的投影 Al Al0
5
(4)合矢量投影定理 若R = i Rx+ j Ry+k Rz ai = i aix+ jaiy + kaiz R = ai
则有: Rx= aix Ry= aiy Rz= aiz
4.矢量的矢积
(1)定义: c = a × b
c
c a b sia n b
(2)直角坐标中的解析表示
b a
6
z
i jk
a b ax ay az bx by bz
k
Oj
i
y
x
iaybxaxby jazbxaxbz
kaxbyaybx
(2) ab = 3×1 + 4×2 + 5×5 = 36 (3) a×b = 3i ×(i + 2j +5k)+ 4j ×(i + 2j +5k)
+ 5k ×(i + 2j +5k)
= (6k-15j) + (-4k + 20i) + (5j -10i)
= 10i -10j +2k
12
i jk ab 3 4 5
直角坐标系中的 单位矢量:
i ,j,k
x
z
k
O j
i
r
r0
y
3
2.矢量的加法
a
R
(1)平行四边形法
R=a+b
(2)三角形法 a
o
(3)多边形法 R=c+a+b R=a+b+c R=b+c+a
o
b
R=b+a
b
R
a
R
ob
a
c
c
bR
b
a
a
b c
4
3.矢量的标积
(1)定义:a b a b ca o b s c
D
x
18
对上述各式微分得: dxE + 2 dxA = 0
2 dxB - dxA = 0 2 dxC - dxB = 0
dxD - dxC = 0
8dxD = -d xE
计算速度和加速度得: 8vD= - vE 8aD= - aE
vE = 2 + 2t aE = 2 当t = 4s时 vE =10
解:
aA
m2 m1
m1 m2
g
O
y
A
aA aB
xAxBc x Ax B0
B
x A x 例题3.如图所示,滑轮和绳子的质量均不计,物块D和E 的质量分别为m1和m2 且m1< m2 ,试求物块E的加速度.
解: 2xAxEc 2x Ax E0 2 x A x E0
O
y
(3)直角坐标系中单位矢量的标积和矢积
i·i = j·j = k·k = 1 i·j = i·k = j·k = 0
i×i = j×j = k×k = 0
i×j = k
j×k = i
k×i = j
7
5.矢量的导数
A A A0
dA d AA0 dAA0 AdA0
dt dt dt
dt
y
(1)旋转单位矢量的导数
k k is i n k jc os
jsinicos r 0
(3)
9
dr0 isi njcosd
dt
dt
d 0 dkr0
dt
dt
k dr0 r0
(5)
dt
同理: d
(6)
dt
10
(2)旋转矢量的导数
dR d rr
dt dt
dr dr dt dt
相关文档
最新文档