初中数学 实数知能综合检测考试卷及答案
七年级数学 《实数》综合测试题 (含答案)
![七年级数学 《实数》综合测试题 (含答案)](https://img.taocdn.com/s3/m/694f5ba7fd0a79563c1e72ac.png)
《实数》全章测试题一、选择题(每小题3分,共18分)1.14的算术平方根是()A.12B.12- C.12±D.1162.2)7.0(-的平方根是()A. -0.7B. ±0.7C. 0.7D. 0.493.若3a-=387,则a的值是()A.87B.87- C.87± D.512343-4. 如图,数轴上点P表示的数可能是()A.10B C D5. 下列等式正确的是()A.43169±= B.311971=- C.393-=- D.31)31(2=-6. 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确说法的个数是()A. 1B. 2C. 3D. 4二、填空题(每空2分,共26分)7. 9的平方根是_______;8-的立方根是.8. 25-的相反数是_______ ,-36的绝对值是_______ .9. 在3π,161-,3.14,0,21-,25,14-,76.0123456…(小数部分由相继的正整数组成)中,无理数是_______ .10. 数轴上与3-距离为2的点所表示的数是_______ .11. 绝对值小于18的所有整数是.12. 若1.1001.102=_______ .13. 若一个数的立方根是它本身,则这个数是.14. 13的小数部分是.15. 比较大小:;(2)15+-22-;32.三、解答题16. 计算(每小题4分,共20分)(1) 2243+(2) 2(3) 32-+(4) 3812)1(412)2(-+÷--(5) 217. 求下列各式中的x .(每小题5分,共10分)(1) 2491690x-=(2) 3(0.7)0.027x-=-18.(62(317)0x y-+=的值.0 1 2 3 41-P19.(6分)一个正数x的两个平方根是2a-3与5-a,求x的值.20.(6分)已知xxxy93113+---=,求323-+yx的平方根.21.(8分)如图,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1) 拼成的正方形的面积是,边长是;(2) 在数轴上作出表示5、-25的点;(3) 你能把这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图中画出拼接后的正方形,并求边长,若不能,请说明理由.参考答案:1-6、A 、B 、B 、B 、D 、B 7、3、-3;-28、2-5,369、3π、21-、25、76.0123456… 10、-3+2,-3-211、-4,-3,-2,-1,0,1,2,3,4 12、1.01 13、-1,0,114、13-315、﹤,﹤,﹤16、(1)5 (2)326(3)2(4)312-(5)625+- 17、(1)x=713±(2)x=0.4 18、x=-2,y=5 19、x=4920、2±21、(1)5 ,5(2)略 (3)能。
中考数学总复习《实数》专项测试卷含答案
![中考数学总复习《实数》专项测试卷含答案](https://img.taocdn.com/s3/m/53f48ca259f5f61fb7360b4c2e3f5727a5e924d2.png)
中考数学总复习《实数》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.实数2的相反数是( )A.√2B.±2C.2D.-22.(2024·安顺一模)当前,手机移动支付已经成为新型的支付方式,中国正在向无现金支付发展.小明在妈妈的某软件零钱明细中看到,收入200元被记作+200元,则-35元表示( )A.收入35元B.支出35元C.收入165元D.支出165元3.在-3,-2,0,5四个数中,负数有( )A.4个B.3个C.2个D.1个4.(2024·贵阳二十八中二模)实数A,B,C,D在数轴上的对应点位置如图所示,这四个数中绝对值最小的是( )A.AB.BC.CD.D5.(2024·毕节金沙一模)据统计,2023年贵州省共接待游客128 400万人次.数据“128 400万”用科学记数法表示为( )A.12.84×104B.1.284×105C.12.84×108D.1.284×1096.计算2×(-1)的结果是( )A.-2B.-1C.0D.27.4的算术平方根是.8.比较大小:√73.(选填“>”“<”或“=”))0=.9.计算:(-1)2+(1310.已知a=√5,b=2,c=√3,则a,b,c的大小关系是( )A.b>a>cB.a>c>bC.a>b>cD.b>c>a11.写出一个比√2大且比√15小的整数为.12.计算:|√3-2|+2sin 60°-2 0230=.)0-|-3|.13.(2024·黔南一模)计算:√4+(-2314.(2024·铜仁万山三模)计算:2tan 45°+(-1)0+|√3-1|.2【B层·能力提升】15.(2024·毕节市金沙一模)下列四个数中,最大的数是( )A.-(-2 021)B.|-2 022|C.-|-2 023|D.-(+2 024)16.(2024·遵义一模)“好山好水迎贵客,最美遵义人气旺”,2024年春节假期,遵义市累计接待游客4 988 000人次,将数据“4 988 000”用科学记数法表示为4.988×10n,则n的值为( )A.5B.6C.7D.817.估计√21的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间18.有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.a +b >0B.a -b >0C.ab >0D.a b <0 19.(2024·贵阳市云岩一模)石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.000 000 033 5 cm,将0.000 000 033 5这个数用科学记数法表示为( )A.3.35×10-9B.3.35×10-8C.33.5×10-9D.335×10-1020.(2024·镇远江古二模)计算:(-3)2+(-15)-1+(3-π)0.21.计算:(-6)×(23-■)-23. 圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(-6)×(23-12)-23.(2)如果计算结果等于6,求被污染的数字.【C 层·素养挑战】22.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是( )A.8B.18C.28D.32参考答案【A层·基础过关】1.实数2的相反数是(D)A.√2B.±2C.2D.-22.(2024·安顺一模)当前,手机移动支付已经成为新型的支付方式,中国正在向无现金支付发展.小明在妈妈的某软件零钱明细中看到,收入200元被记作+200元,则-35元表示(B)A.收入35元B.支出35元C.收入165元D.支出165元3.在-3,-2,0,5四个数中,负数有(C)A.4个B.3个C.2个D.1个4.(2024·贵阳二十八中二模)实数A,B,C,D在数轴上的对应点位置如图所示,这四个数中绝对值最小的是(B)A.AB.BC.CD.D5.(2024·毕节金沙一模)据统计,2023年贵州省共接待游客128 400万人次.数据“128 400万”用科学记数法表示为(D)A.12.84×104B.1.284×105C.12.84×108D.1.284×1096.计算2×(-1)的结果是(A)A.-2B.-1C.0D.27.4的算术平方根是2.8.比较大小:√7<3.(选填“>”“<”或“=”))0=2.9.计算:(-1)2+(1310.已知a=√5,b=2,c=√3,则a,b,c的大小关系是(C)A.b>a>cB.a>c>bC.a>b>cD.b>c>a11.写出一个比√2大且比√15小的整数为2(或3).12.计算:|√3-2|+2sin 60°-2 0230=1.)0-|-3|.13.(2024·黔南一模)计算:√4+(-23【解析】原式=2+1-3=3-3=0.14.(2024·铜仁万山三模)计算:2tan 45°+(-1)0+|√3-1|.2【解析】原式=2×1+1+√3-1=2+1+√3-1=2+√3.【B层·能力提升】15.(2024·毕节市金沙一模)下列四个数中,最大的数是(B)A.-(-2 021)B.|-2 022|C.-|-2 023|D.-(+2 024)16.(2024·遵义一模)“好山好水迎贵客,最美遵义人气旺”,2024年春节假期,遵义市累计接待游客4 988 000人次,将数据“4 988 000”用科学记数法表示为4.988×10n,则n的值为(B)A.5B.6C.7D.817.估计√21的值在(C)A.2和3之间B.3和4之间C.4和5之间D.5和6之间18.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是(D)A.a+b>0B.a-b>0C.ab>0D.a<0b19.(2024·贵阳市云岩一模)石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为0.000 000 033 5 cm,将0.000 000 033 5这个数用科学记数法表示为(B)A.3.35×10-9B.3.35×10-8C.33.5×10-9D.335×10-10)-1+(3-π)0.20.(2024·镇远江古二模)计算:(-3)2+(-15【解析】原式=9+(-5)+1=9-5+1=5.21.计算:(-6)×(2-■)-23.3圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(-6)×(23-12)-23. 【解析】(1)(-6)×(23-12)-23=(-6)×16-8=-1-8=-9; (2)如果计算结果等于6,求被污染的数字.【解析】(2)设被污染的数字为x根据题意得:(-6)×(23-x )-23=6,解得:x =3 答:被污染的数字是3.【C 层·素养挑战】22.(2024·宜宾中考)如果一个数等于它的全部真因数(含单位1,不含它本身)的和,那么这个数称为完美数.例如:6的真因数是1,2,3,且6=1+2+3,则称6为完美数.下列数中为完美数的是(C)A.8B.18C.28D.32。
八年级数学《实数》综合测试题及参考答案(人教版)
![八年级数学《实数》综合测试题及参考答案(人教版)](https://img.taocdn.com/s3/m/7aae6cc0c850ad02de80419c.png)
八年级数学《实数》综合测试题一、选择题: 1. 在实数Λ5757757775.0722、(相邻两个5之间7的个数逐次加1)、、、、02753- 32)2(0-、、ππ中,无理数的个数是( ) (A ) 3个 (B ) 4个 (C ) 5个 (D ) 6个2.下列语句或式子:①-3是81的平方根;②-7是2)7(-的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤ 0没有算术平方根.其中正确的个数是 [ ] (A )0个 (B )1个 (C )2个 (D )3个 3. 若32b -是b -2的立方根,则( )A 2<bB 2=bC 2>bD b 可以为任意实数4.|-64|的立方根是 [ ] (A )4± (B )4 (C )8± (D )85. 当14+a 的值为最小值时,a 的值为( )A 1-B 41- C 0 D 16.估计3124与26的大小关系是 [ ] (A )3124>26 (B )3124=26(C )3124<26 (D )无法判断7.若一个自然数的算术平方根是m ,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是 [ ](A )12+m (B )12+m (C ) 1+m (D )1+m8.若33b a +=0,则a 与b 的关系是 [ ](A )0==b a (B )b a = (C )0=+b a (D )ba 1= 9. 若m 是n 的算术平方根,则n 的平方根是( )A mB m ±C m ±D m10.若a a -=2,则实数a 在数轴上的对应点一定在 [ ](A )原点左侧 (B )原点右侧 (C )原点或原点左侧 (D )原点或原点右侧 二、填空题:11. 比较大小:215- 85(填“>”,“<”或“=”) 12.已知,10<<a 化简=-+-++2121aa a a _____.13.已知,2323,2323+-=-+=y x 则代数式222y xy x +-的值为_____.14.计算:_______)25()25(20082007=+⨯-. 15.已知,04)1(222=-++y x 则22y x +______.16. 1,34,39,322,… 符合这个规律的第五个数是_____. 17.有四个实数分别是|3-|,2π,9,π4,请你计算其中有理数的和与无理数的积的差,其计算结果是_____. 18.实数a ,b 在数轴上的位置如图1所示,则化简=-++2)(a b b a _____. 三、解答题: 19.计算:(1)91)3(220160+--⨯π (2) 36632223513459-⨯÷ (3) 432|2535|)2(2⨯÷-+- (3)|23|3)13(3)33(4801----+--20.已知13的整数部分为a ,小数部分为b ,试求)13(41a b +的值. 21. (1)已知实数z y x 、、满足0412311442=+-++++-z z z y y x ,求22)(x z y ⋅+的值; (2)已知,321,321-=+=y x 求xy y x -+2222的值.22. 阅读下列运算过程: ①3333331=⨯=,②3252525)25)(25(25251-=--=-+-=+数学上把这种将分母中的根号去掉的过程称作“分母有理化”。
初一数学实数试题及答案
![初一数学实数试题及答案](https://img.taocdn.com/s3/m/d823827ca9114431b90d6c85ec3a87c240288ac7.png)
初一数学实数试题及答案一、选择题(共10题,每题3分,共30分)1. 下列各数中,是实数的是()A. √2B. πC. √(-1)D. 0.33333...答案:A、B、D2. 下列各数中,是无理数的是()A. 3.14B. √2C. 0.33333...D. 1/2答案:B3. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A4. 一个数的倒数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:B、C5. 绝对值等于它本身的数是()A. 正数C. 0D. 以上都是答案:A、C6. 下列各数中,是实数的是()A. √(-4)B. √9C. √(1/2)D. √(-1)答案:B、C7. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.33333...答案:B8. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 6答案:A9. 一个数的倒数是1/3,这个数是()A. 3B. 1/3C. -3D. -1/3答案:A10. 绝对值等于3的数是()A. 3B. -3C. 0D. 以上都是答案:A、B二、填空题(共5题,每题4分,共20分)11. √9的值是______。
答案:312. -√4的值是______。
答案:-213. 0的相反数是______。
14. 2的倒数是______。
答案:1/215. |-5|的值是______。
答案:5三、解答题(共3题,每题10分,共30分)16. 计算下列各式的值:(1)√16(2)-√(-9)(3)|-7|答案:(1)4(2)无意义(因为负数没有实数平方根)17. 已知a和b互为相反数,c和d互为倒数,求下列各式的值:(1)a+b(2)cd答案:(1)0(因为相反数相加得0)(2)1(因为倒数相乘得1)18. 已知|x|=5,求x的值。
答案:x=5或x=-5(因为绝对值等于5的数可以是5或-5)四、综合题(共2题,每题20分,共40分)19. 已知a、b、c是实数,且a+b+c=0,a^2+b^2+c^2=2,求ab+bc+ca的值。
中考数学总复习《实数综合》专项测试卷(带参考答案)
![中考数学总复习《实数综合》专项测试卷(带参考答案)](https://img.taocdn.com/s3/m/f87a93580a4e767f5acfa1c7aa00b52acfc79cd7.png)
中考数学总复习《实数综合》专项测试卷(带参考答案)(考试时间:90分钟试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题每小题3分共30分)。
1.﹣83的相反数是()A.83B.﹣38C.D.【答案】A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解析】解:﹣83的相反数是83.故选:A.2.﹣11的相反数是()A.11B.﹣11C.D.﹣【答案】A【分析】依据相反数的定义求解即可.【解析】解:﹣11的相反数是11.故选:A.3.下列实数:﹣0.1010010001(每相邻两个1之间依次增加一个0) 3.14 中无理数的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称.即有限小数和无限循环小数是有理数而无限不循环小数是无理数.由此即可判定选择项.【解析】解:是分数属于有理数;3.14是有限小数属于有理数;无理数有:﹣0.1010010001...(每相邻两个1之间依次增加一个0)共4个.故选:D.4.下列各组数中互为倒数的是()A.1与﹣1B.与3C.﹣5与D.﹣3与|﹣3|【答案】C【分析】根据互为倒数的定义逐项进行判断即可.【解析】解:A.因为1×(﹣1)=﹣1≠1 所以1与﹣1不是互为倒数因此选项A不符合题意;B.因为=﹣1≠1 所以与3不是互为倒数因此选项B不符合题意;C.因为所以﹣5与是互为倒数因此选项C符合题意;D.因为(﹣3)×|﹣3|=﹣9≠1 所以﹣3与|﹣3|不是互为倒数因此选项D不符合题意.故选:C.5.在数轴上与﹣3的距离等于4的点表示的数是()A.1B.﹣7C.﹣1或7D.1或﹣7【答案】D【分析】此题注意考虑两种情况:该点在﹣3的左侧该点在﹣3的右侧.【解析】解:根据数轴的意义可知在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:D.6.﹣64的立方根是()A.﹣4B.±4C.﹣8D.±8【答案】A【分析】根据立方根的定义求解即可.【解析】解:∵(﹣4)3=﹣64∴﹣64的立方根是﹣4.故选:A.7.如图是加工零件的尺寸要求现有下列直径尺寸的产品(单位:mm)其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.01【答案】A【分析】依据正负数的意义求得零件直径的合格范围然后找出不符要求的选项即可.【解析】解:∵45+0.03=45.03 45﹣0.04=44.96∴零件的直径的合格范围是:44.96≤零件的直径≤45.03∵44.9不在该范围之内∴不合格的是A故选:A.8.2023年1月22日电影《流浪地球2》上映截止北京时间2023年2月10日总票房已达38.6亿元38.6亿用科学记数法表示为()A.3.86×108B.3.86×109C.38.6×1010D.0.386×1010【答案】B【分析】把38.6亿表示为:a×10n的形式其中1≤|a|<10 n为整数即可.【解析】解:∵38.6亿=3860000000=3.86×109故选:B.9.如图所示A B C D四点在数轴上分别表示有理数a b c d则大小顺序正确的是()A.a<b<c<d B.b<a<d<c C.a<b<d<c D.d<c<b<a【答案】B【分析】根据数轴的特征:一般来说当数轴方向朝右时右边的数总比左边的数大判断出有理数a b c d的大小关系即可.【解析】解:如图∵当数轴方向朝右时右边的数总比左边的数大∴b<a<d<c.故选:B.10.形如a1a2…a n﹣1a n a n﹣1…a2a1的自然数(其中n为正整数a1≤a2≤…a n﹣1≤a n a1>0 a1a2…a n 为0 1 … 9中的数字)称为“单峰回文数” 例如123454321 不超过5位的“单峰回文数”共有()个.A.273B.219C.429D.129【答案】B【分析】根据“单峰回文数”的定义确定一位的“单峰回文数”有9个;三位的“单峰回文数”有45个;五位的“单峰回文数”有165个即可确定不超过5位的“单峰回文数”共有9+45+165=219.【解析】解:∵一位的“单峰回文数”有9个:1 2 3…9;两位的“单峰回文数”有9个:11 22 33…99;三位的“单峰回文数”有45个:111 …191共9个222…292共8个依次减少1个总共为9+8+7+…+1=45;四位的“单峰回文数”有45个:9+8+7+…+1=45;五位的“单峰回文数”有165个:1+3+6+10+15+21+28+36+45=165;根据定义不可能出现两位和四位的数只能出现奇位数.∴不超过5位的“单峰回文数”共有9+45+165=219.故选:B.二、填空题(本题共6题每小题2分共12分)11.9的算术平方根是3.【答案】3.【分析】根据算术平方根的定义计算即可.【解析】解:∵32=9∴9的算术平方根是3故答案为:3.12.名句“运筹帷幄之中决胜千里之外”中的“筹”原意是指“算筹” 在我国古代的数学名著《九章算术》和《孙子算经》中都有记载.“算筹”是古代用来进行计算的工具之一它是将几寸长的小竹棍摆在平面上进行运算“算筹”的摆放有纵横两种形式(如图1).则图2中“算筹”表示的减法算式的运算结果为﹣6023.【答案】﹣6023.【分析】依题意得图2中“算筹”所表示的算式是:951﹣6974 然后计算即可得出结果.【解析】解:951﹣6974=﹣6023.故答案为:﹣6023.13.若|x|=4 |y|=5 则x﹣y的值为±1或±9.【答案】±1或±9.【分析】求出xy的值分为四种情况代入求出即可.【解析】解:∵|x|=4∴x=±4∵|y|=5∴y=±5当x=4 y=5时x﹣y=﹣1当x=4 y=﹣5时x﹣y=9当x=﹣4 y=5时x﹣y=﹣9当x=﹣4 y=﹣5时x﹣y=1.故答案为:±1或±9.14.比较大小:>4.【答案】见试题解答内容【分析】求出3=4=再进行比较即可.【解析】解:3==4=∵>∴3>4.故答案为:>.15.已知:[x]表示不超过x的最大整数.例:[4.8]=4 [﹣0.8]=﹣1.现定义:{x}=x﹣[x] 例:{1.5}=1.5﹣[1.5]=0.5 则{3.9}+{﹣1.8}﹣{1}= 1.1.【答案】1.1.【分析】根据题意列出计算式解答即可.【解析】解:根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2﹣0=1.1;故答案为:1.1.16.若3+的小数部分是a3﹣的小数部分是b则a+b=1.【答案】见试题解答内容【分析】先判断3+33﹣的在哪两个整数之间再用3+减去整数部分求出a3﹣减去整数部分求出b再相加求出结果.【解析】解:∵5<3+<6 0<3﹣<1∴3+的小数部分为:3+﹣5=﹣2 3﹣的小数部分为:3﹣∴a+b=﹣2+3﹣=1故答案为:1.三解答题(本题共7题共52分)。
初中数学实数综合运算综合题目含答案word版
![初中数学实数综合运算综合题目含答案word版](https://img.taocdn.com/s3/m/366abfcdfad6195f302ba66b.png)
初中数学实数综合运算综合题一、单选题(共9道,每道11分)
1.的结果是()
A.176
B.88
C.368
D.294
答案:A
试题难度:三颗星知识点:化成最简二次根式
2.的结果是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:无理数乘法
3.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:根号下含有分母
4.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:分母有理化
5.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:无理数去绝对值
6.的化简结果是()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:二次根式的非负性
7.的结果是()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:化简求值综合
8.解方程的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含无理数系数的方程
9.如图,在等腰△ABC中,AC=BC,∠C=120°,AC=1,则AB的长为
()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:含特殊角(15°的倍数)的三角形
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
第3 章实数综合测试卷 2024-2025学年浙教版数学七年级上册
![第3 章实数综合测试卷 2024-2025学年浙教版数学七年级上册](https://img.taocdn.com/s3/m/4a3692486fdb6f1aff00bed5b9f3f90f76c64d0f.png)
第3 章综合测试卷 实数班级 学号 得分 姓名一、选择题(本大题有10 小题,每小题3分,共30分) 1.数轴上的点表示的一定是( )A. 整数B. 有理数C. 无理数D. 实数 2.下列各式正确的是( )A.√16=±4B.√−273=−3 C.√−9=−3 D.√2519=513 3.下列说法正确的是( )A. 无限小数都是无理数B.−1125没有立方根 C. 正数的两个平方根互为相反数 D. -(-13)没有平方根4. 已知一个数的立方根是 −12,那么这个数是( )A.−32 B 14 c 18 D.−18 5.√81的平方根是( )A. ±3B. 3C. ±9D. 9 6.如图,数轴上点P 表示的数可能是( )A √7 B.−√7 C. —3.2 D.−√107.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A. 0个B. 1个C. 2个D. 3个 8.|√6−3|+|2−√6|的值为( )A. 5B.5−2√6C. 1D.2√6−19. 若 a 2=9,√b 3=−2,则a+b=( )A. -5B. —11C. -5或-11D. ±5或±1110. 如图,面积为5 的正方形 ABCD 的顶点A 在数轴上,且表示的数为1,若 AD=AE ,则数轴上点 E 所表示的数为( )A.−√5B.1−√5C.−1−√52D.32−√5 二、填空题(本大题有6 小题,每小题4分,共24分) 11.1−√6的相反数是 ,绝对值是 . 12. 如果 √x +3=2,那么 (x +3)²= .13. 已知m 与n 互为相反数,c 与d 互为倒数,a 是 √5的整数部分,则 √cd +2(m +n)—a 的值是 .14. 如图,数轴上的点A 和点B 之间的整数.点表示的数分别为 .15. 如图所示,化简 |a −√3|−|b +√3|的结果是 .16. 有四个实数分别是| |−3|,π2,√9,4π,请你计算其中有理数的和与无理数的积的差,其计算结果是 . 三、解答题(本大题有8小题,共66分) 17.(6分)计算.(1)√2+3√2−5√2; (2)|2−√3|+2(√3−1);(3)√16−√9+√−273.18. (6分)把下列各数分别填在相应的括号内. −12,0,0.16,312,√3,−23√5,π3,√16,−√22,−3.14. 有理数:{ }; 无理数:{ }; 负实数:{ }.19.(6分)如图,一只蚂蚁从点 A 沿数轴向右爬行2个单位长度到达点 B,再爬行到C点停止.已知点 A 表示−√2,点 C 表示 2,设点 B 所表示的数为m.(1)求m的值;(2)求 BC的长.20.(8分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的质量是7.8千克,那么这段圆钢横截面的半径是多少分米? 这段圆钢重多少千克(保留π)?21.(8分)已知实数a,b,c在数轴上对应点的位置如图所示,化简:√a2−|a+b|+√(c−a)2+|b−c|.22. (10分)大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,但是由于1<√2<2,所以√2的整数部分为1,将√2减去其整数部分1,所得的差√2−1就是其小数部分.根据以上内容,解答下面的问题:(1)√5的整数部分是,小数部分是;(2)1+√2的整数部分是,小数部分是;(3)若设2+√3的整数部分是x,小数部分是y,求x−√3y的值.23. (10分)如图是4×4的方格图,每个小正方形的边长都为1,利用这个4×4的方格图作出面积为5的正方形,然后在数轴上表示实数√5和−√5.24. (12分)a0.0000010.00010.011100100001000000(1)被开方数a的小数点位置移动和它的算术平方根的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:√a=1800,−√3.24=−1.8,你能求出a的值吗?第3 章综合测试卷实数1.D2. B3. C4. D5. A6. B7. C8.C 解析:原式=3−√6+√6−2=1.故选 C.9. C 10. B 11 .√6—1√6—1 12. 16 13. -1 14. -1,0,1,15. -a-b 16. 4 17. 解:(1)原式=(1+3−5)√2=−√2.(2)原式=2-√3+2√3−2=√3.(3)原式:=4-3-3=-2.18.−12,0,0.16,312,√16,−3.14√3,−23√5,π3,−√22−12,−23√5,−√22,−3.1419. 解:(1)m−2=−√2,m=2−√2. (2)BC=|2-(2-√2)|=|2−2+√2|=√2.20. 解:设这段圆钢半径为r分米,则2πr²=10π,r²=5,r=√5(分米),10π×7.8=78π(千克).21. 解:由题图,得c<b<0<a,且|a|=|b|,则a+b=0,c-a<0,b-c>0,故原式=a-0+a-c+b-c=2a+b-2c.22. 解:(1)2√5−2解析:∵2<√5<3,:√5的整数部分是2,小数部分是√5−2.(2)2√2−1解析:∵1<√2<2,∴2<1+√2<3.∴1+√2的整数部分是2,小数部分若1+√2−2 =√2−1.(3)∵1<√3<2,∴3<2+√3<4.∴x=3,y=2+√3−3=√3−1.∴x−√3y=3−√3(√3−1)=√3.23. 解:面积为5的正方形如图所示(所画图形合理即可).这个正方形的边长为√5,,可用圆规截得长为√5的线段,找到表示√5和−√5的点,并画到数轴上(如图).24. 解:依次填:0.0010.01 0.1 1 10 100 1000(1)有规律,当被开方数的小数点每向左(或向右)移动2位时,算术平方根的小数点向左(或向右)移动 1 位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位后的数,即a =3240000.。
七年级实数综合测试题及答案文档
![七年级实数综合测试题及答案文档](https://img.taocdn.com/s3/m/9178c515581b6bd97f19eaaa.png)
第六章 实数的综合测试练习一、选择题(第小题3分,共30分)1.25的平方根是( )A.5B .-5C. ± 5D. ±52.下列说法错误的是( )A.1的平方根是1B .-1的立方根是-1C.2是2的平方根D .-3是()23-的平方根 3.下列各组数中互为相反数的是( )A .-2与()22-B .-2与38- C.2与()22- D. 2-与24.数8.032032032是( )A.有限小数B.有理数C.无理数D.不能确定5.在下列各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是( )A.2个B.3个C.4个D.5个6.立方根等于3的数是( )A.9B. ± 9C.27D. ±277.在数轴上表示5和-3的两点间的距离是( ) A. 5+3B. 5-3C .-(5+3)D. 3-58.满足-3<x <5的整数是( )A .-2,-1,0,1,2,3B .-1,0,1,2,3C .-2,-1,0,1,2,D .-1,0,1,29.当14+a 的值为最小时,a 的取值为( )A .-1 B.0 C. 41- D.1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为( )A.3B.7C.3或7D.1或7二、填空题(每小题3分,共30分)11.算术平方根等于本身的实数是 .12.化简:()23π-= . 13. 94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.15.估计60的大小约等于 或 .(误差小于1)16.若()03212=-+-+-z y x ,则x +y +z = . 17.我们知道53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .18.比较下列实数的大小(填上>、<或=).215- 21;③53. 19.若实数a 、b 满意足0=+b b a a ,则ab ab = . 20.实a 、b 在数轴上的位置如图所示,则化简()2a b b a -++= . 三、解答题(共40分)21.(4分)求下列各数的平方根和算术平方根:(1)1; (2)410-;22.(4分)求下列各数的立方根:(1)21627 ; (2)610--; 23.(8分)化简:(1)5312-⨯; (2)236⨯;(3)()()27575+⨯-; (4)8145032--24. (1)42x =25 (2)()027.07.03=-x .25.(4分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.(5分)请在同一个数轴上用尺规作出2-和5的对应的点.27.(5分)已知:字母a 、b 满足021=-+-b a . 求()()()()()()2001201112211111++++++++++b a b a b a ab 的值.28.(6分)(1)做一做:画四个宽为1,长分别为2、3、4、5的矩形;(2)算一算:它们的对角线有多长?(3)试一试:平方等于5,平方等于10,平方等于17,平方等于26的数各有几个?(4)根据上面的探究过程,你能得出哪些结论?(5)利用其中的某些结论解决下面的问题:如果a >b ,那么a 与b 有何关系?参考答案1. C ;2.A ;3.A ;4.B ;5.B ;6.C ;7.A ;8.D ;9.C ;10.D11.0.1;12.π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.2011个5;18. <,>,<;19.-1;20. a 2-;21.(1) ±1,1;(2)±210-,210-;22. (1)21,(2)210--;23.(1)1,(2)3;(3)0,(4)22-;24.(1)±25,(2)1; 25.0;26.如图所示:27.解:a =1,b =2 原式=20132012143132121⨯++⨯+⨯+=1-21+21-31+31-41+…+2013120121-=1-20131=20132012。
(完整版)七年级下册实数数学综合测试卷及答案培优试卷
![(完整版)七年级下册实数数学综合测试卷及答案培优试卷](https://img.taocdn.com/s3/m/b2f39d58bf23482fb4daa58da0116c175f0e1e7c.png)
一、选择题1.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( ) A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-2.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,依此类推,则第⑦个图形中五角星的个数是( )A .98B .94C .90D .863.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6664.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,25.如图,数轴上点P 表示的数可能是( )A 2B 38C 10D 56.已知A ,B ,C 是数轴上三点,点B 是线段AC 的中点,点A ,B 对应的实数分别为1-2C 对应的实数是( ) A 21B 22+C .221D .2217.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192B 194C .2194D 1928.下列说法中,错误的有( ) ①符号相反的数与为相反数; ②当0a ≠时,0a >; ③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远; ⑤数轴上的点不都表示有理数. A .0个B .1个C .2个D .3个 9.15a ,小数部分为b ,则a-b 的值为() A .615B 156C .815D 15810.规定:f (x )=|x ﹣2|,g (y )=|y +3|,例如f (﹣4)=|﹣4﹣2|=6,g (﹣4)=|﹣4+3|=1.下列结论正确的个数是( ) ①若x =2,y =3,则f (x )+g (y )=6; ②若f (x )+g (x )=0,则2x ﹣3y =13; ③若x <﹣3,则f (x )+g (x )=﹣1﹣2x ; ④能使f (x )=g (x )成立的x 的值不存在. A .1个B .2个C .3个D .4个二、填空题11.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.12.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.15.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.16.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.17.220a b a --=,则2+a b 的值是__________; 18.1x -(y +1)2=0,则(x +y )3=_____.19.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).22.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.23.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)24.对于有理数a 、b ,定义了一种新运算“※”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※如:532537=⨯-=※,2131313=-⨯=-※. (1)计算:①()21-=※______;②()()43--=※______;(2)若313m x =-+※是关于x 的一元一次方程,且方程的解为2x =,求m 的值; (3)若3241A x x x =-+-+,3262B x x x =-+-+,且3A B =-※,求322x x +的值. 25.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部写出来,而12<2212.请解答下列问题:21_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 26.阅读材料:求值:2342017122222+++++⋯+, 解答:设2342017122222S =+++++⋯+,①将等式两边同时乘2得:2342018222222S =++++⋯+,②将-②①得:201821S =-,即2342017201812222221S =+++++⋯+=-. 请你类比此方法计算:()234201122222+++++⋯+.()2342133333(n +++++⋯+其中n 为正整数)27.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(110100,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________. (4)现在换一个数103823,你能按这种方法得出它的立方根吗?28.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=29.阅读材料:求1+2+22+23+24+…+22017的值. 解:设S=1+2+22+23+24+…+22017, 将等式两边同时乘以2得: 2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1请你仿照此法计算: (1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29. 30.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值. 【详解】解:设S = 1+2020+20202+20203+…+20202020① 则2020S =2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S =20202021-1 ∴2021202012019S -=.故答案为:C . 【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算.2.A解析:A 【分析】学会寻找规律,第①个图2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,那么第n 个图呢,能求出这个即可解得本题。
2019—2020年最新浙教版七年级数学上册《实数》综合测评及答案解析.docx
![2019—2020年最新浙教版七年级数学上册《实数》综合测评及答案解析.docx](https://img.taocdn.com/s3/m/3eba46e5c1c708a1294a440b.png)
第3章自我评价一、选择题(每小题3分,共30分) 1.下列运算正确的是(A) A .-(-6)2=-6 B .(-3)2=9 C.(-16)2=±16 D .-⎝⎛⎭⎪⎪⎫-16252=16252.81的算术平方根为(C)A. 9B. ±9C. 3D. ±33.下列各组数中互为相反数的是(A)A .-2与(-2)2B .-2与3-8C .2与(-2)2 D.||-2与24.下列说法正确的是(B) A .两个无理数的和还是无理数B .两个不同有理数之间必定有无数个无理数C .在1和2之间有无数个有理数,没有无理数D .如果x 2=6,那么x 是有理数 5.若(-9)2的平方根是x, 64的立方根是y ,则x +y 的值为(D)A .3B .7C .3或7D .1或7 6.计算|2-3|+|1-3|的结果为(C)A. 3B. 2-23 C. 1 D. -17.-27的立方根与81的平方根之和是(C)A .0B .6C .0或-6D .-12或6【解】 ∵3-27=-3,81=9,±9=±3,∴-3+3=0或-3-3=-6. 8.在-π2,4,227,-2,3-8,0.2020020002…(两个“2”之间依次多一个“0”),15,32,1.3·1·中,无理数的个数是(B)A .4B .5C .6D .7 【解】 无理数有-π2,-2,0.2020020002…(两个“2”之间依次多一个“0”),15,32这5个.9.下列运算中,错误的有(D)①125144=1512;②(-4)2=±4;③-22=-22=-2;④116+125=14+15=920. A. 1个 B. 2个 C. 3个 D. 4个(第10题)10.如图,网格中每个小正方形的边长都为1,如果把阴影部分拼成一个正方形,那么这个新正方形的边长是(C)A. 6B.7C.8 D.3【解】∵阴影部分的面积等于8,∴这个新正方形的边长为8.二、填空题(每小题3分,共30分)11.(-4)2=__4__;3(-6)3=__-6__;(196)2=__196__.12.(1)已知x+4与(y-16)2互为相反数,则x=-4,x2的平方根是±4.(2)在计算器上按16-7=,显示的结果是-3.(3)设a,b都是有理数,定义运算a*b=a+3b,则(4*8)*[9*(-64)]=1.【解】(1)根据题意,得x+4+(y-16)2=0.∵x+4≥0,(y-16)2≥0,∴x+4=0,y-16=0,∴x=-4,y=16,∴x2的平方根为±(-4)2=±4.(2)16-7=4-7=-3.(3)原式=(4+38)*(9+3-64)=(2+2)*(3-4) =4*(-1)=4+3-1=2-1 =1. 13.(1)若-2+x +|y -5|=0,则y x =25. 【解】 ∵-2+x +|y -5|=0,∴-2+x =0,y -5=0, ∴x =2,y =5,∴y x =52=25.(2)不小于4512的最小整数是__10__. 【解】 ∵4 512=88≈9.4,∴不小于4512的最小整数为10. (3)设13的整数部分为a ,小数部分为b ,则a -b =6-13.【解】 ∵3<13<4,∴13的整数部分为3,∴a =3,b =13-3,∴a -b =6-13.14.数轴上A ,B 两点分别表示实数2-1和2+1,则A ,B 两点之间的距离是2. 【解】 AB =|(2+1)-(2-1)|=|2+1-2+1|=2.15.若y =3-x +x -3+10,则y x =__1000__.16.任意写两个无理数,使它们的和为有理数,你写的等式是2+(-2)=0(答案不唯一).17.已知m ,n 是一个正数的平方根,则3m +3n =0. 【解】 ∵m ,n 是一个正数的平方根, ∴m +n =0,∴3m+3n=3(m+n)=0.18.若x2=64,则3x=±2.【解】∵x2=64,∴x=±8.∴3±8=±2.19.数轴上表示0,1,2的对应点分别为O,A,B,点C到点A的距离与点B到点A的距离相等(点B,C不重合),则点C所表示的数是2-2.【解】如解图.,(第19题解))由题意可知AC=AB=2-1,∴OC=OA-AC=1-(2-1)=2- 2.20.先填写下表,通过观察后再回答问题:a …0.0001 0.01 1 100 10000 …a …0.01 x 1 y 100 …(1)表格中x=__0.1__;y=__10__.(2)探究规律,并解决下面两个问题:①已知10≈3.16,则1000≈__31.6__.②已知 3.24=1.8,若a=180,则a=__32400__.三、解答题(共40分)21.(6分)计算:(1)9-(-3)2+3(-8)2-(-2)2.【解】原式=3-3+364- 4=4-2=2.(2)(-1)2015+327+(-2)×16.【解】原式=-1+3+(-2)×4=2-8=-6.22.(8分)(1)实数a,b,c在数轴上的对应点如图所示,化简a+|a+b|-c2.,(第22题))【解】∵a>0,b<0,c<0,|b|>|a|,∴a+b<0.∴a+|a+b|-c2=a+(-a-b)-(-c)=a-a-b+c=-b+c.(2)已知一个正数m的两个平方根分别是2x-4与3x-1,求x和m的值.【解】根据题意,得2x-4+3x-1=0,解得x=1.∴m=(2x-4)2=(-2)2=4.23.(8分)(1)计算:4×9=__6__,4×9=__6__;16×25=__20__,16×25=__20__;1121×36=611,1121×36=__611__ (2)用含字母a ,b 的式子表示你所发现的规律:a ×b =ab(a ≥0,b ≥0).(3)请利用你所找到的规律计算:① 5×20. ②123×935. 【解】 ①原式=5×20=10.②原式=53×485=4. 24.(8分)如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.,(第24题))【解】 (1)正方形的面积与原图形的面积一样,为5×12=5. 设正方形的边长为x ,则x 2=5,∴x =5(负值舍去),即正方形的边长为5.(2)能画出一个面积为10的正方形,如解图.,(第24题解))25.(10分) (1)10的整数部分是__3__,35的小数部分是__35-6(2)如果5的小数部分为a,37的整数部分为b,求a+b-5的值.【解】由题意,得a=5-2,b=6,∴a+b-5=5-2+6-5=4.(3)已知18+5=x-y,其中x是整数,且0<y<1,求x-7y的相反数.【解】∵2<5<3,∴20<18+5<21.∵x是整数,且0<y<1,∴x=21,y=21-(18+5)=3-5,∴x-7y=21-7×(3-5)=75,∴x-7y的相反数为-7 5.。
初中实数测试题及答案
![初中实数测试题及答案](https://img.taocdn.com/s3/m/b8148a6b0a4c2e3f5727a5e9856a561252d32139.png)
初中实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 1/3D. 0.333332. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 计算下列哪个表达式的结果是有理数?A. √2 + √3B. √2 × √3C. √2 ÷ √3D. √2 - √34. 以下哪个数是实数集中的元素?A. πB. iC. √-1D. 2 + 3i5. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或06. 以下哪个选项表示的是同一个数?A. -3和3B. √4和2C. -√4和-2D. √9和37. 一个数的立方根是它本身,那么这个数可以是:A. 0B. 1C. -1D. 所有选项8. 如果一个数的平方等于它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 09. 下列哪个数是有理数?A. √2B. πC. 0.1010010001...D. 1/710. 一个数的倒数是它本身,那么这个数是:A. 1B. -1D. 1或-1二、填空题(每题4分,共20分)11. 写出数-5的相反数:_________。
12. 计算√9的值:_________。
13. 写出数2的绝对值:_________。
14. 计算(-2)³的值:_________。
15. 写出数√3的倒数:_________。
三、解答题(每题10分,共50分)16. 计算并简化表达式:(√5 + √2) × (√5 - √2)。
17. 证明:对于任意实数x,|x| ≥ 0。
18. 求解方程:x² - 4x + 4 = 0。
19. 计算并化简:√(2 + √3)²。
20. 证明:√2是一个无理数。
答案:一、选择题1. B2. A3. C4. A5. C6. B7. D8. A9. D10. D二、填空题12. 313. 214. -815. √3/3三、解答题16. 简化后的结果为5 - 2 = 3。
【3套打包】晋城市人教版初中数学七年级下册第六章《实数》检测试题及答案
![【3套打包】晋城市人教版初中数学七年级下册第六章《实数》检测试题及答案](https://img.taocdn.com/s3/m/eb9e8c8e1711cc7930b7167a.png)
人教版初中数学七年级下册第六章《实数》检测卷含答案一、 (每小 3 分,共 30 分 )1.9的平方根是 () 16A.3B.3C.33 4±4D. ±442.在数 5 ,22,π-2,3- 27 ,0.121221 222 1⋯ (相两个“ 1”之挨次多一个7“2” )中,有理数有 ()A.1 个B.2 个C.3个D.4个3.若 x2= 16, 5- x 的算平方根是 ()A. ±1B. ±4C.1或9D.1 或34.以下法中,不正确的选项是()A. 0.027 的立方根是 0.3B. - 8 的立方根是- 2C. 0 的立方根是 0D. 125 的立方根是±55.估 38 的在()A.4和5之B.5和 6之C.6和7之D.7和 8之6.一个自然数的算平方根是a,下一个自然数的算平方根是()A. a 2 + 1B. a +1C. a+ 1D. a + 17.如,数上 A,B 两点表示的数分 2 和5.1,A,B两点之表示整数的点共有 ()A.6 个B.5 个C. 4个D.3个8.已知3 0.5 ≈0.793 7,3 5≈ 1.710 ,0那么以下各式正确的选项是()A.3500 ≈17.100B. 3500≈ 7.937C.3500 ≈171.00D.3 500 ≈79.379. 若3a+3 b =0,则a与b的关系是()A. a= b= 0B. a 与 b 相等C. a 与 b 互为相反数1 D. a=b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为()A. 0B. ±10C.0或 10D.0 或-10二、填空题 (每题 3 分,共 24 分 )11.比较大小:- 5-26(填“>”“=”或“<” ).12. 3-11的相反数是,绝对值是.13.若 x + 2 =3,则2x+5的平方根是.14.小成编写了一个程序:输入 x→x2→立方根→倒数→算术平方根→1,则 x 2为.15.若数m,n知足-2+n + 2= 0,则 (m+ n)5=.(m 1)16.已知36= x,y =3,z是16的算术平方根,则2x+ y-5z 的值为.17.点 A 在数轴上和原点相距 3 个单位长度,点 B 在数轴上和原点相距5个单位长度,则 A, B 两点之间的距离是.18.对于随意不相等的两个数a, b,定义一种运算※以下:a + ba※ b=,如 3※2a - b=3+ 25.那么 12※4=.=3- 2三、解答题 (共 66 分 )19.(8 分 )计算:(1) 3+1+ 3+|1-3|;(2) 25-3- 1++3- 64.14420.(8 分 )求以下各式中的 x 的值:(1)25(x- 1)2= 49;(2)64(x- 2)3- 1= 0.21.(9 分 )已知 2a- 1 的平方根是±3, 3a+b- 1 的平方根是±4,求 a+ 2b 的平方根 .22.(9 分 )已知某正数的两个平方根分别是a+ 3 和 2a- 15,b 的立方根是- 2,求 3a+ b 的算术平方根 .23.人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10 小题)1.以下式子,表示 4 的平方根的是()A .4B .42C . -4 D . ± 42.若a 是无理数,则a 的值能够是()1A .4B . 1C . 2D .93.已知实数a ,b 在数轴上对应的点以下图,则以下式子正确的选项是()A . -a<-bB . a+b<0C . |a|<|b|D .a-b>04.实数 3的大小在以下哪两个整数之间,正确的选项是( )A .0和1B .1和2C .2和3D .3和 45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是 ()A .9,10B . 10,11C . 11,12D .12,136.在 -3、 0、 6、 4 这四个数中,最大的数是()A . -3B . 0C . 6D .47.以下说法正确的选项是( ) A .立方根等于它自己的实数只有 0 和 1B .平方根等于它自己的实数是 0C . 1 的算术平方根是± 1D .绝对值等于它自己的实数是正数8.已知 a , b 为两个连续整数,且 a< 13<b,则 a+b 的值为()A .9B . 8C . 7D .69.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .110.有以下说法:①实数与数轴上的点一一对应; ②2- 7的相反数是 7-2;③在1和3 之间的无理数有且只有2, 3, 5, 7这4个;④ 2+3x-4x2是三次三项式;⑤绝对值等于自己的数是正数; 此中错误的个数为()A .1B . 2C . 3D .4二.填空题(共 6 小题)11. 4 的算术平方根是 ,-64 的立方根是 .12.若 m 为整数,且 5<m<10,则 m=13.某个正数的平方根是 x 与 y,3x-y 的立方根是 2,则这个正数是 .14.已知实数 a 、 b 都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个 a 、 b 的值: a=, b=.15.如图,在数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C所表示的数是.16.如图,长方形内有两个相邻的正方形, 面积分别为 4 和 3 ,那么暗影部分的面积为 .三.解答题(共 7 小题)17.求 x 的值:(1)2x 2-32=0;(2)(x-1)3=274 3-64|+(-3)23 12518.计算:-|-27919.已知 2 的平方等于 a,2b-1 是 27 的立方根 , ± c-2表示 3 的平方根.( 1)求 a,b,c 的值;( 2)化简对于 x 的多项式: |x-a|-2(x+b)-c, 此中 x < 4.20.正数 x 的两个平方根分别为 3-a 和 2a+7.( 1)求 a 的值;( 2)求 44-x 这个数的立方根.21.定义新运算:对随意实数a 、b ,都有 a △ b=a 2-b 2,比如: (3△ 2)=32 -22=5,求 (1△ 2)△ 4的值.22.如图甲,这是由8 个相同大小的立方体构成的魔方,整体积为 64cm 3.( 1)这个魔方的棱长为 cm;( 2)图甲中暗影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形 ABCD 搁置在数轴上,如图乙所示,使得点A 与数1 重合,则 D 在数轴上表示的数为.23.有两个大小完整相同的长方形 OABC 和 EFGH重合放在一同,边 OA、 EF 在数轴上, O 为数轴原点(如图 1),长方形 OABC的边长 OA 的长为 6 个坐标单位.(1)数轴上点 A 表示的数为.(2)将长方形 EFGH沿数轴所在直线水平挪动①若挪动后的长方形 EFGH与长方形 OABC重叠部分的面积恰巧等于长方形OABC面积的1,则3挪动后点 F 在数轴上表示的数为.②若出行 EFGH向左水平挪动后, D 为线段 AF 的中点,求当长方形 EFGH挪动距离 x 为什么值时,D、 E 两点在数轴上表示的数是互为相反数?答案:1.D2.C3.C4.B5.B6.D7.B8.C9.A10.C11.2,-412.313.414.1,15.2+16.2-317. 解:( 1)∵ 2x2-32=0,∴2x2=32,则 x2=16,因此 x=±4 ;(2)∵(x-1)3=27,∴x-1=3,则 x=4.18.2 5解:原式=3-4+3- 3=-2.19.解:( 1)由题意知 a=22=4,2b-1=3 ,b=2;c-2=3, c=5;(2)∵ x<4,∴|x-a|-2 ( x+b)-c=|x-4|-2 ( x+2) -5=4-x-2x-4-5=-3x-5.20. 解:( 1)∵正数 x 的两个平方根是3-a 和 2a+7,∴3-a+ (2a+7)=0,解得: a=-10(2)∵ a=-10,∴3-a=13, 2a+7=-13.∴这个正数的两个平方根是±13,∴这个正数是169.44-x=44-169=-125 ,-125 的立方根是 -5.21.解:( 1△ 2)△4 =( 12-22)△ 4=( -3)人教版七年级数学下册第六章实数素质检测卷一.选择题(共10 小题)1.4的值是()A.2B. -2C.± 2D.42.算术平方根等于它相反数的数是()A.0B.1C.0 或 1D.0 或± 1 3.以下实数是无理数的是()1A. -2B.πC.3D.16 4.以下说法正确的选项是()A.16 的平方根是 4B.8 的立方根是± 2C. -27 的立方根是 -3D.49 =±75.若3x3 y =0,则x与y的关系是()A. x=y=0B. x=yC. x 与 y 互为相反数D. x 与 y 互为倒数16 的平方根之和是()6.-64的立方根与A.0B. -6C. -2D.-6 或 -2 7.在实数中,立方根等于它自己的数有()A.1 个B.2 个C.3 个D.无数个8.绝对值大于不大于6的整数有()个.A.5B. 10C. 6D. 139.对于非零的两个实数a ,b ,规定 a ※b=am –bn.若 3※ (–5)=15, (–1)※ 2 = –13,则 4※ (–7)的值为()A.?28B.28C. ?2D.210.如图,数轴上的点 A,B,C,D,E 对应的数分别为 -1,0,1,2,3,那么与实数11 2 对应的点在()A .线段AB 上B .线段 BC 上C .线段CD 上D .线段 DE 上二.填空题(共 6 小题)11. 9 的平方根是;的立方根是.12.有一个数值变换器,原理如图: 当输入的13.小于x=4 时,输出的5 的最大整数是y 等于..14.数轴上从左到右挨次有A 、B 、C 三点表示的数分别为a 、b 、10,此中 b 为整数,且满足|a+3|+|b-2|=b-2,则 b-a=.15.已知|a|=4,3b=2,ab<0,则ab的值为.16.将一组数按下边的方式进行摆列:2,2,6,22, 10;2 3, 14,4,32,2 5;若 2 2 的地点记为(1,4), 26 的地点记为(3,3),则这组数中最大的有理数的地点记为.三.解答题(共 6 小题)4 |364| ( 3)23 12517.计算:27918.求以下各式中x 的值:2(1)(x+2) -36=0;(2)64(x+1)3=27.19.已知 a 的平方根是它自己, b 是 2a+8 的立方根,求ab+b 的算术平方根.20.已知5a1b 1 =0,求a2017(a b )2018的值.21.小丽想在一块面积为 640 cm2的正方形纸片中,沿着边的方向裁出一块面积为420 cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出切合要求的纸片吗?请简要说明原因.22.如图,面积为30 的长方形OABC的边 OA 在数轴上, O 为原点, OC=5,将长方形OABC沿数轴水平挪动 ,O,A,B,C 挪动后的对应点分别记为O, A, B , C ,挪动后的长方形OABC与11111111原长方形 OABC重叠部分的面积记为 S.(1)当 S恰巧等于原长方形面积的一半时,数轴上点A1表示的数是多少?2)设点A的挪动距离 AA=x(.1①当 S=10 时,求 x 的值;1,11②D 为线段 AA 的中点,点 E 在线段 OO上,且 OE=当点 D,E 所表示的数互为相反数3时,求 x 的值.【3套打包】晋城市人教版初中数学七年级下册第六章《实数》检测试题及答案答案:1-5AABCC6-10 DCBBC11.。
2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(精选含答案)
![2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数综合测评试卷(精选含答案)](https://img.taocdn.com/s3/m/25fc802ebc64783e0912a21614791711cc797934.png)
沪教版(上海)七年级数学第二学期第十二章实数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是( )A .0B .﹣2C .2D 2、有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A B .2 C D .3、若(3)(3)55x x +-=,则x 的值为( )A .8B .8-C .8±D .6或84、下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何数的立方根都只有一个D .如果一个数有立方根,那么这个数也一定有平方根5、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A .2B .4C .8D .662210b b -+=,则-a b 的值为( )A .3B .3-C .1D .1-7、下列各式中正确的是( )A 4±B 34C 3=D 48、在实数233,,0.6•2π,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个A .2B .3C .4D .59、9的平方根是( )A .±9B .9C .±3D .310、实数﹣2的倒数是( )A .2B .﹣2C .12D .﹣12 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x =______ 时,分式21(3)(1)x x x ---的值为零2、已知x 、y 2(2)y -=0,则x y 的算术平方根为______.3、已知:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;….若设250=a ,则用含a 的式子表示250+251+252+…+2100=________.4、如果一个数的平方等于16,那么这个数是________.5、绝对值不大于4且不小于π的整数分别有______.三、解答题(10小题,每小题5分,共计50分)1、已知一个正数x 的平方根是a +3和2a -15,求a 和x 的值2、求下列各式中x 的值:(1)32764x =; (2)()214x +=.3、我们知道,假分数可以化为整数与真分数的和的形式.例如:54=1+14. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像52x x ++,21x x -,…,这样的分式是假分式;像34x -,21x x -,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:()23531222x x =x x x +++=++++;()()211111111x x x x x x x +-+==++---.解决下列问题: (1)写出一个假分式为: ;(2)将分式13x x +-化为整式与真分式的和的形式为: ;(直接写出结果即可) (3)如果分式22x x x --的值为整数,求x 的整数值.4、(11(2)求式中的x :(x +4)2=81.5、对于一个三位自然数m ,若m 的百位数字等于两个一位正整数a 与b 的和()a b >,m 的个位数字等于两个一位正整数a 与b 的差,m 的十位数字等于b ,则称m 是“和差数”,规定(),m F a b =.例如:723是“和差数”,因为752=+,352=-,22=,所以723是“和差数”,即()7235,2F =.(1)填空:()3,1F =______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数910010n x y =⨯++(18x ≤<,8y ≤<,x 、y 是整数,即n 的百位数字是9,十位数字是x ,个位数字是y )为“和差数”,求所有满足条件的“和差数”n .6、计算题(1)1)+;(2)(﹣1)20217、求下列各式中的x :(1)2210x =;(2)()3118x +=-. 8、求下列各式的值:(1(2)(39、计算:()0226π-++10、如图,将一个边长为a +b 的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a 、b 的代数式表示出来);(2)如果图中的a ,b (a >b )满足a 2+b 2=57,ab =12,求a +b 的值.-参考答案-一、单选题1、C【分析】先根据正数大于0,0大于负数,排除A,B,然后再用平方法比较2【详解】解:正数0>,0>负数,∴排除A,B,=,2=,2324∴>,43∴>2∴最大的数是2,故选:C.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.2、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案.【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2即y =故选:C .【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.3、C【分析】化简后利用平方根的定义求解即可.【详解】解:∵(3)(3)55x x +-=,∴x 2-9=55,∴x 2=64,∴x =±8,故选C .【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.4、C【分析】利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.【详解】解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴A选项说法不正确;∵一个负数有一个负的立方根,∴B选项说法不正确;∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,∴C选项说法正确;∵一个负数有一个负的立方根,但负数没有平方根,∴D选项说法不正确.综上,说法正确的是C选项,故选:C.【点睛】本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.5、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B .【点睛】本题考查了与实数运算相关的规律题,找到2n 的末位数的循环规律是解题的关键.6、B【分析】根据算术平方根、偶次方的非负性确定a 和b 的值,然后代入计算.【详解】 解:22210a b b ++-+=,2(1)0b -=,20a ∴+=,10b -=,解得2a =-,1b =,所以213a b -=--=-.故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.7、D【分析】由算术平方根的含义可判断A ,B ,C ,由立方根的含义可判断D ,从而可得答案.【详解】4,故A 不符合题意;3,2=故B 不符合题意;C 不符合题意;4,运算正确,故D 符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.8、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.【详解】有理数有:233,0.6•5-,一共四个.无理数有:2π,1.12112111211112…(每两 个2之间依次多一个1),一共四个. 故选:C .【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:π,2π等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.9、C【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:C .【点睛】此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a ,即()20x a a =≥,那么这个数叫做a 的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.10、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣12.故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.二、填空题1、1-【分析】由分式的值为0的条件可得:()()210310x x x ⎧-=⎪⎨--≠⎪⎩,再解方程与不等式即可得到答案.解: 分式21(3)(1)x x x ---的值为零, ()()210310x x x ⎧-=⎪∴⎨--≠⎪⎩①② 由①得:1,x =±由②得:3x ≠且1,x ≠综上: 1.x =-故答案为: 1.-【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.2、4【分析】直接利用算术平方根以及偶次方的性质得出x ,y 的值,进而得出答案.【详解】2(2)0y -=,∴x +4=0,y -2=0,解得:x =-4,y =2,故x y =(-4)2=16,16的算术平方根是:4.故答案为:4.【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x ,y 的值是解题关键.【分析】观察规律列式,代入所求式子即可.【详解】由规律可得:2+22+23+24+…+249=250﹣2,2+22+23+24+…+249+250+251+252+…+2100=2101﹣2,∴250+251+252+…+2100=2101﹣2﹣(250﹣2)=2×2100﹣250=2×250×250﹣250=2a2﹣a,故答案为:2a2﹣a.【点睛】本题考查了已知式子值求代数式的值,这类题主要是根据已知条件求出一个式子的值,然后把要求的式子化成与已知式子相关的形式,把已知式子整体代入即可求解,找出已知式子的规律是解题的关键.4、4±【分析】根据平方根的定义进行解答即可.【详解】±=解:∵()2416∴如果一个数的平方等于16,那么这个数是4±故答案为:4±【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a a称为被开方数)5、4根据绝对值的意义及实数的大小比较可直接进行求解.【详解】解:由绝对值不大于4且不小于π的整数分别有4和4-;故答案为4和4-.【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.三、解答题1、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴32150a a ++-=,解得4a =,所以2(3)49x a =+=.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.2、(1)43x =;(2)121, 3.x x ==- 【分析】(1)把原方程化为36427x ,再利用立方根的含义解方程即可; (2)直接利用平方根的含义把原方程化为12x +=或12x +=-,再解两个一次方程即可.【详解】解:(1)32764x =36427x 解得:43x = (2)()214x +=12x ∴+=或12x +=-解得:121, 3.x x ==-【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.3、(1)1+3x x +;(2)1+43x -;(3)x =0,1,3,4 【分析】(1)根据定义即可求出答案.(2)根据题意给出的变形方法即可求出答案.(3)先将分式化为真分式与整式的和,然后根据题意即可求出x 的值.【详解】解:(1)根据题意,1+3x x +是一个假分式; 故答案为:1+3x x +(答案不唯一).(2)13441333x x x x x +-+==----; 故答案为:413x --; (3)∵2(2)(1)+22=1+222x x x x x x x x --+=+---, ∴x -2=±1或x -2=±2,∴x =0,1,3,4;【点睛】本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.4、(1(2)5x =或13x =-【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x 的值.【详解】解:(1)原式321=-+=(2)由平方根的意义得:49x +=或4-9x +=∴5x =或13x =-.【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.5、(1)412(2)是,理由见解析(3)941或933或925或917【分析】(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;(2)根据定义即可判断311是“和差数”;(3)由题意得到9a b a b y +=⎧⎨-=⎩,解得29a y =+,再结合a 、b 为正整数且a b >,即可得解. (1)解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故()3,1F =412.故答案为:412;(2)解:311是“和差数”,∵321=+,121=-,11=,∴311是“和差数”;(3)解:∵910010n x y =⨯++(18x ≤<,18y <≤,x 、y 是整数)∴9a b a b y +=⎧⎨-=⎩∴29a y =+∴514a y b =⎧⎪=⎨⎪=⎩,633a y b =⎧⎪=⎨⎪=⎩,752a y b =⎧⎪=⎨⎪=⎩,871a y b =⎧⎪=⎨⎪=⎩6、(1)2;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.【详解】解:(1)原式=2+|﹣4|=2+4=2;(2)原式=﹣1+5=4.【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.7、(1)x=(2)32 x=-【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值.【详解】(1)等式两边同时除以2得:25x=,两边开平方得:x=(2)两边开立方得:112x+=-,等式两边同时减去1得:32x=-.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.8、(1)6;(2)12;(3)169【分析】利用立方与开立方互为逆运算进行化简求值.【详解】解:(1236=⨯=(2)==11()22=--=(34416 399=+=.【点睛】本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.9、3【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=1243++=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.10、(1)()2a b +或222a ab b ++;(2)9【分析】(1)由大正方形的边长为,a b +可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;(2)由(1)可得:2222,a ba ab b 再把a 2+b 2=57,ab =12,利用平方根的含义解方程即可.【详解】解:(1) 大正方形的边长为,a b +2,S a b 大正方形由两个小正方形与两个长方形组成,222.S a ab b(2)由(1)得:2222,a b a ab ba 2+b 2=57,ab =12,25721281,a b0,a b >> 则0,a b9.a b【点睛】本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.。
最新七年级下册实数数学综合测试卷及答案
![最新七年级下册实数数学综合测试卷及答案](https://img.taocdn.com/s3/m/5a0c1468571252d380eb6294dd88d0d233d43cb9.png)
一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或12.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 3.估算193+的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间4.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+5.若15的整数部分为a ,小数部分为b ,则a-b 的值为() A .615-B .156-C .815-D .158-6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±97.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n 8.设n 为正整数,且n 65n+1,则n 的值为( )A .5B .6C .7D .89.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个B .2个C .3个D .4个10.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,二、填空题11.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.13.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____14.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)15.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.16.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①, 然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②, ②-①得,3S-S=39-1,即2S=39-1, 所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是 ______ .17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.18.若()2210a b -++=.则a b =______.19.计算并观察下列算式的结果:31,3312+,333123++,33331234+++,…,则3333123100++++=_______.20.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.三、解答题21.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)22.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)23.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算. 定义:如果b a N =(a >0,a ≠1,N >0),那么b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=. 根据“对数”运算的定义,回答下列问题: (1)填空:6log 6= ,3log 81= . (2)如果()2log 23m -=,求m 的值.(3)对于“对数”运算,小明同学认为有“log log log a a a MN M N =⋅(a >0,a ≠1,M >0,N >0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.24.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.25.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106( );111( );400( );2015( ).(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 .(3)在所有三位数中,“本位数”一共有多少个?26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a18=,a n=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.27.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.28.新定义:对非负数x“四舍五入”到个位的值记为<x>,即当n为非负数时,若1122n x n-≤<+,则<x>=n.例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x的取值范围是________________.(2)若关于x的不等式组2413xxm x-⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x =的所有非负实数x 的值. 29.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算. 定义:如果b a N =(a >0,a ≠1,N >0),那么b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=. 根据“对数”运算的定义,回答下列问题: (1)填空:6log 6= ,3log 81= . (2)如果()2log 23m -=,求m 的值.(3)对于“对数”运算,小明同学认为有“log log log a a a MN M N =⋅(a >0,a ≠1,M >0,N >0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.30.阅读下面的文字,解答问题的小数部分我们不可能全部11,将这个数减去其整数部分,差就是小数部分.23, ∴22)请解答:(1整数部分是 ,小数部分是 .(2a b ,求|a ﹣b(3)已知:x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦,所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.C解析:C 【分析】先根据19位于两个相邻平方数16和25 【详解】解:由于16<19<25,所以45<<,因此738<<, 故选:C .【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=(舍去)x=22则24==,BC x故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.5.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<34<<,a b∴==,3,3)∴-=-=336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:2x-=,3522∴29x=,∵2(39)±=, ∴3x =±, 故选:C. 【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.7.B解析:B 【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】 解:∵n+p=0, ∴n 和p 互为相反数, ∴原点在线段PN 的中点处, ∴绝对值最大的一个是Q 点对应的q . 故选B . 【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.D解析:D 【分析】n 的值. 【详解】解:∵∴89,∵n n+1,∴n=8, 故选;D . 【点睛】9.B解析:B 【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可. 【详解】 解:∵2=1×2,∴F(2)=1,故①正确;2∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=,故②是错误的;63∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=,故③错误;93∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.10.D解析:D【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m-1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】3n ++=1+2+3+n + ∴326++=1+2+326+=351故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.14.③④【分析】根据的定义逐个判断即可得.【详解】①表示不小于的最小整数,则,结论错误②,则,结论错误③表示不小于x 的最小整数,则,因此的最小值是0,结论正确④若,则此时,因此,存在实解析:③④【分析】根据[)x 的定义逐个判断即可得.【详解】①[)0.2-表示不小于0.2-的最小整数,则[)0.20-=,结论错误②[)00=,则[)000-=,结论错误③[)x 表示不小于x 的最小整数,则[)0x x -≥,因此[)x x -的最小值是0,结论正确 ④若 1.5x =,则[)1.52=此时,[)1.5 1.52 1.50.5-=-=因此,存在实数x 使[)0.5x x -=成立,结论正确综上,正确的是③④故答案为:③④.【点睛】本题考查了新定义下的实数运算,理解新定义是解题关键.15..【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A 的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A 表示的数.【详解】∵正方形的面积为3,∴正方形的边长为解析:1【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A 的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A 表示的数.【详解】∵正方形的面积为3,∴,∴A 点距离01∴点A 表示的数为13-.【点睛】本题考查实数与数轴,解决本题时需注意圆的半径即是点A 到1的距离,而求A 点表示的数时,需求出A 点到原点的距离即A 点的绝对值,再根据绝对值的性质和数轴上点的特征求解.16..【解析】试题分析:设S =1+m +m2+m3+m4+…+m2016…………………①,在①式的两边都乘以m ,得:mS =m +m2+m3+m4+…+m2016+m2017…………………②②一①得: 解析:.【解析】试题分析:设S =1+m +m 2+m 3+m 4+…+m 2016…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2016+m 2017…………………② ②一①得:mS―S =m 2017-1.∴S =. 考点:阅读理解题;规律探究题.17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5,故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()220a-,∴()220a-==,∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2(1)1-=,故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 19.5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第1个算式:,第2个算式:,第3个算式:,第4个算式:,...,第解析:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第11==,第2123===+=,第31236=++=,第4123410==+++=,...,第n12 3...n===+++,∴当n=100()1001100 123 (1005050)2+=++++==,故答案为:5050.【点睛】本题考查了有理数的运算,二次根式的化简,通过探索发现数字间的规律是解题关键.20.10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则 1001001n x n x x +=+, ∴100n x为整数, ∵n 为整数,∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.三、解答题21.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A 表示的数是2-,点B 表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:5②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.22.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132, ∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭; (2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.23.(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log 66=1,log 381=4;(2)根据定义知m ﹣2=23,解之可得;(3)设a x =M ,a y =N ,则log a M =x 、log a N =y ,根据a x •a y =a x +y 知a x +y =M •N ,继而得log a MN =x +y ,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log 66=1,log 381=4.故答案为:1,4; (2)∵log 2(m ﹣2)=3,∴m ﹣2=23,解得:m =10;(3)不正确,设a x =M ,a y =N ,则log a M =x ,log a N =y (a >0,a ≠1,M 、N 均为正数).∵a x •a y =x y a +,∴x y a +=M •N ,∴log a MN =x +y ,即log a MN =log a M +log a N .点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.24.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.25.(1)×,√,×,×;(2)3332;1000;(3)36(个).【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【详解】解:(1)106107108321++=有进位;111112113336++=没有进位;4004014021203++=有进位;2015201620176048++=有进位;故答案为:×,√,×,×.(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,故答案为:3332,1000.(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.26.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12, a 18=1×(12)17=1712,a n =1×(12)n ﹣1=112n -, 故答案为:12,1712,112n -;(2)设S =3+32+33+ (323)则3S =32+33+…+323+324,∴2S =324﹣3,∴S =24332- (3)a n =a 1•qn ﹣1,a 1+a 2+a 3+…+a n =()11111n a a a --.【点睛】 本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.27.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.28.(1)10;1.5 2.5x ≤<(2)3m =(3):0,1,2【详解】分析:(1)①利用对非负数x“四舍五入”到个位的值为<x>,进而求解即可;(2)首先将<m>看做一个字母,解不等式,进而根据整数解的个数得出m 的取值; (3)利用65x x =得出关于x 的不等式,求解即可. 详解:(1)①10,②1.5 2.5x ≤<;(2)解不等式组得:1x m -≤<由不等式组的整数解恰有4个得,23m <≤,∴3m =;(3)∵65x x =, ∴161252x x x -≤<+,0x ≥, ∴0 2.5x ≤<,∵x 为非负整数,∴x 的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.29.(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log 66=1,log 381=4;(2)根据定义知m ﹣2=23,解之可得;(3)设a x =M ,a y =N ,则log a M =x 、log a N =y ,根据a x •a y =a x +y 知a x +y =M •N ,继而得log a MN =x +y ,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log 66=1,log 381=4.故答案为:1,4; (2)∵log 2(m ﹣2)=3,∴m ﹣2=23,解得:m =10;(3)不正确,设a x =M ,a y =N ,则log a M =x ,log a N =y (a >0,a ≠1,M 、N 均为正数).∵a x •a y =x y a +,∴x y a +=M •N ,∴log a MN =x +y ,即log a MN =log a M +log a N .点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.30.(1)7;(2)5;(3)【分析】(1(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求出y 的值,即可求出所求.【详解】解:(1)∵78, ∴7.故答案为:7.(2)∵34, ∴3a ,∵23,∴b =2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx题xx题xx题总分
得分
一、xx题
(每空xx 分,共xx分)
试题1:
(-2)2的算术平方根是( )
(A)2 (B)±2 (C)-2 (D)
试题2:
一个正方形的面积是15,估计它的边长大小在( )
(A)2与3之间 (B)3与4之间
(C)4与5之间 (D)5与6之间
试题3:
如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数是和-1,则点C所对应的实数是( )
(A) (B)
(C)(D)
试题4:
写出一个大于3且小于4的无理数:_____________.
评卷人得分
试题5:
已知则x+y=_________.
试题6:
若的值在两个整数a与a+1之间,则a=______.
试题7:
把下列各数分别填在相应的括号内:
整数集{ };分数集{ };
有理数集{ };无理数集{ };
正实数集{ };负实数集{ }.
试题8:
试题9:
试题10:
下面两个集合中各有一些实数,请你分别从中选出2个有理数和2个无理数,再用“+、-、×、÷”中的3种符号将选出的4个数进行3次运算,使得运算的结果是一个正整数(至少写出三个式子).
试题1答案:
A.(-2)2=4,4的算术平方根为2.
试题2答案:
B.∵一个正方形的面积是15,
∴该正方形的边长为
∵9<15<16,
∴3<<4.
试题3答案:
D.因为点B与点C关于点A对称,所以B,C到点A的距离相等.由于点C在x轴正半轴上,所以C对应的试题4答案:
π(答案不唯一)
试题5答案:
1
试题6答案:
2
试题7答案:
整数集
分数集
有理数集
无理数集0.101 001 000 1…};正实数集
负实数集
试题8答案:
原式=3-1+1=3.
试题9答案:
原式=2+1-5+1+9=8.
试题10答案:
(1)-6÷3+π×=-2+3=1.
(2)3-(-6)+×=3+6-6=3.
(3)3+0-×()=3+0+4=7.。