数学参数方程知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学参数方程知识点总结

参数方程和函数很相似,它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。下面数学参数方程知识点总结是为大家整理的,在这里跟大家分享一下。

数学参数方程知识点总结

参数方程定义

一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t) 并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

参数方程

圆的参数方程

x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数

椭圆的参数方程x=acosθy=bsinθa为

长半轴长b为短半轴长θ为参数

双曲线的参数方程x=asecθ(正

割)y=btanθa为实半轴长b为虚半轴长θ为

参数

抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数

直线的参数方程 x=x+tcosa y=y+tsina,x,y和a表

示直线经过(x,y),且倾斜角为a,t为参数

参数方程的应用

一般在平面直角坐标系中,如果曲线上任意一点的

坐标x, y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。

圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数

椭圆的参数方程 x=a cosθ y=b sinθ a 为长半轴长 b为短半轴长 θ为参数

双曲线的参数方程 x=a secθ (正割) y=b

tanθ a为实半轴长 b为虚半轴长 θ为参数抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准

线的距离 t为参数

直线的参数方程 x=x+tcosa y=y+tsina , x, y和a 表示直线经过(x,y),且倾斜角为a,t为参数.

相关文档
最新文档