大学物理静电场习题答案

合集下载

大学物理静电场练习题带标准答案

大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。

试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

大学物理静电场练习题带答案

大学物理静电场练习题带答案

大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O'的矢量用a表示。

试证明球形空腔中任一点电场强度为 .A、3ρεa B、ρεaC、2ρεa D、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R.试求环中心O点处的场强A、2πRλε- B、πRλε-C、00ln22π4λλεε+ D、00ln2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。

A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。

求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。

A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

6、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A )高斯定理成立,且可用它求出闭合面上各点的场强;(B )高斯定理成立,但不能用它求出闭合面上各点的场强; (C )由于电介质不对称分布,高斯定理不成立; (D )即使电介质对称分布,高斯定理也不成立。

大连理工大学大学物理作业5(静电场五)及答案详解

大连理工大学大学物理作业5(静电场五)及答案详解

2.一平行板电容器中充满相对介电常数为r ε的各向同性均匀电介质。

已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为[ ]。

.A0σε' .B 02σε' .C 0r σεε' .D rσε' 答案:【A 】解:极化电荷也是一种电荷分布,除不能自由移动和依赖于外电场而存在外,与自由电荷没有区别。

在产生静电场方面,它们的性质是一样的。

在电容器中,正是极化电荷的存在,产生的静电场与自由电荷产生的静电场方向相反,使得电容器中总的电场强度减弱,提高了电容器储存自由电荷的能力,电容器的电容增大。

或者说,储存等量的自由电荷,添加电介质后,电场强度减弱,电容器两极的电势差减小,电容器的电容增大。

正负极化电荷产生的电场强度的大小都是0/2εσ,方向相同,所以,极化电荷产生的电场的电场强度为0/εσ。

3.在一点电荷产生的静电场中,一块电介质如图5-1放置,以点电荷q 所在处为球心作一球形闭合面,则对此球形闭合面[ ]。

.A 高斯定理成立,且可用它求出闭合面上各点的场强 .B 高斯定理成立,但不能用它求出闭合面上各点的场强 .C 由于电介质不对称分布,高斯定理不成立 .D 即使电介质对称分布,高斯定理也不成立答案:【B 】解:静电场的高斯定理,是静电场的基本规律。

无论电场分布(电荷分布)如何,无论有无电介质,也无论电介质的分布如何,都成立。

但是,只有在电场分布(电荷分布和电介质分布),在高斯面上(内)具有高度对称时,才能应用高斯定理计算高斯面上的电场强度。

否则,只能计算出穿过高斯面的电通量。

图示的高斯面上,电场强度分布不具有高度对称性,不能应用高斯定理计算高斯面上的电场强度。

4.半径为1R 和2R 的两个同轴金属圆筒,其间充满着相对介电常数为r ε的均匀介质。

设两圆筒上单位长度带电量分别为λ+和λ-,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场
电场强度E的方向为带电平板外法线方向。
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。

大学物理静电场练习题及答案

大学物理静电场练习题及答案

练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。

设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。

7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。

设平衡时两线间夹角2θ很小。

(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。

(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。

小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。

大学物理-静电场(一)(带答案)

大学物理-静电场(一)(带答案)

一、库仑定律和电场力1.关于摩擦一物体后,物体呈现正电性的一种解释是:在摩擦过程中,[ ]A.物体获得了中子。

B.物体获得了质子。

C.物体失去了电子。

D.物体失去了中子。

【答案】:C2.两条平行的无限长直均匀带电线,相距为d,线电荷密度分别为±λ,若已知一无限长均匀带电直线的场强分布为λ2πε0r方向垂直于带电直线,则其中一带电直线上的单位长度电荷受到另一带电直线的静电作用力大小为[ ]A.λ24πε0d2B.λ24πε0dC.λ22πε0d2D.λ22πε0d【答案】:D3.关于电荷与电场,有下列几种说法,其中正确的是[]A.点电荷的附近空间一定存在电场;B.电荷间的相互作用与电场无关;C.若电荷在电场中某点受到的电场力很大,则表明该点的电场强度一定很大;D.在某一点电荷附近的任一点,若没放试验电荷,则该点的电场强度为零。

【答案】:A4. 两个静止不动的点电荷的带电总量为2q,为使它们间的排斥力最大,各自所带的电荷量分别为[]A.q2,3q 2B.q3,5q 3C.q,qD.−q2,5q 2【答案】:C5.关于电场力和电场强度,有下列几种说法,其中正确的是[]A.静电场的库仑力的叠加原理和电场强度的叠加原理彼此独立、没有联系;B.两静止点电荷之间的相互作用力遵守牛顿第三定律;C.在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同;D.以上说法都不正确。

【答案】:B6.—点电荷对放在相距d处的另一个点电荷的作用力为F,若两点电荷之间的距离减小一半,此时它们之间的静电力为[ ]A.4FB.2FC.0.5FD.0.25F【答案】:A7.如图所示为一竖直放置的无穷大平板,其上均匀分布着面电荷密度为σ的正电荷,周围激发的电场强度大小为σ2ε0,方向沿水平方向向外且垂直于平板。

在其附近有一水平放置的、长度为l的均匀带电直线,直线与平板垂直,其线电荷密度为λ,则该带电直线所受到的电场力大小为[ ]A.σλ2πε0ln lB.σλ2ε0ln lC.σλl2πε0D.σλl2ε0【答案】:D8.质量为m、电荷为-e的电子以圆轨道绕静止的氢原子核旋转,其轨道半径为r,旋转频率为γ,动能为E,则下列几种关系中正确的是[]A.E=e8πε0rB.γ2=32ε02E3me4C.E=e 24πε0rD.γ2=32ε0E3me2【答案】:B9.电偶极子在非均匀电场中的运动状态[ ]A.只可能有转动运动;B.不可能有转动运动;C.只可能有平动运动;D.既可能有转动运动,也可能有平动运动。

大学静电场试题及答案

大学静电场试题及答案

大学静电场试题及答案一、选择题1. 静电场中的电场线是从正电荷出发,终止于负电荷。

A. 正确B. 错误答案:A2. 电场强度的方向是正电荷所受电场力的方向。

A. 正确B. 错误答案:A3. 电场中某点的电势与该点的电场强度大小无关。

A. 正确B. 错误答案:A4. 电容器的电容与两极板间的距离成反比。

A. 正确B. 错误答案:B5. 电场中某点的电势与该点的电场强度方向无关。

A. 正确B. 错误答案:A二、填空题1. 电场强度的定义式为_______,其中E表示电场强度,F表示电场力,q表示试探电荷。

答案:E = F/q2. 电势差的定义式为_______,其中U表示电势差,W表示电场力做的功,q表示试探电荷。

答案:U = W/q3. 电容器的电容公式为_______,其中C表示电容,Q表示电荷量,V表示电势差。

答案:C = Q/V4. 电场力做功的公式为_______,其中W表示功,q表示电荷量,U表示电势差。

答案:W = qU5. 电场中某点的电势与该点的电场强度大小_______关系。

答案:无关三、简答题1. 简述电场强度和电势的概念及其物理意义。

答案:电场强度是描述电场强弱和方向的物理量,其大小等于单位正电荷在该点所受的电场力,方向与正电荷所受电场力的方向相同。

电势是描述电场能的性质的物理量,它表示单位正电荷在电场中从某点移到参考点(通常取无穷远处)所做的功。

2. 电容器的电容与哪些因素有关?请简述其关系。

答案:电容器的电容与电容器的几何尺寸、两极板间的距离以及介质的介电常数有关。

电容与两极板的面积成正比,与两极板间的距离成反比,与介质的介电常数成正比。

四、计算题1. 一个平行板电容器,其极板面积为0.05平方米,两极板间的距离为0.01米,介质为空气(介电常数ε₀=8.85×10^-12 F/m)。

求该电容器的电容。

答案:C = ε₀ * A / d = 8.85×10^-12 * 0.05 / 0.01 =4.425×10^-11 F2. 已知电场中某点的电势为100V,试探电荷为-2C,求该点的电场强度。

大学物理静电场习题答案

大学物理静电场习题答案

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE k r r ==πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R==-⎰ππλλθθθπεπε0(1)22R=-λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产图13.1生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=-. ①将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ①图13.4图13.5.场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为图13.7Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry d E r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=.当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=, `0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r rr r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;图13.10图13.11在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = qσd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E rπε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034QE r r R ρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084R rRQQ rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=. 12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为d d nqbnqbU y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求: (1)在两板之间离A板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=0ln8q Lπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②. 由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.图13.18[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR rR r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0, 电荷面密度为 σ = -ε0E ; 地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C·m -3).。

大学物理静电场作业题参考答案

大学物理静电场作业题参考答案

解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

《大学物理》静电场练习题及答案

《大学物理》静电场练习题及答案

《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。

答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。

0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。

答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。

4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。

6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。

对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。

但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。

二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

大学物理题库-第5章 静电场习题(含答案解析)

大学物理题库-第5章 静电场习题(含答案解析)

真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。

当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。

设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。

大学物理静电场习题答案

大学物理静电场习题答案

[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
R dEx
dq
d
x

dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
O
a aBiblioteka xa 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
Rb Rc Ra A BC
E1=λ1 / 2πε0r,方向由B指向A
B、C间场强分布为 B、A 间电势差
E2=λ2 / 2πε0r,方向由B指向C
1 U BA E1 d r Rb 2 0
Ra
Rb dr 1 Rb r 2 0 ln Ra
Ra
C
B A
E2 E1

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析

《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。

(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。

(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。

(B )通过S 面的电通量不变,P 点的电场强度变化。

(C )通过S 面的电通量改变,P 点的电场强度不变。

(D )通过S 面的电通量改变,P 点的电场强度变化。

6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。

大连理工大学大学物理作业4(静电场四)及答案详解

大连理工大学大学物理作业4(静电场四)及答案详解

作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。

.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。

否则内球壳内的静电场不为零。

如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。

电场强度由内球壳向外的线积分到无限远,不会为零。

即内球壳电势不为零。

这与内球壳接地(电势为零)矛盾。

因此,内球壳外表面一定带电。

设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。

这样,空间电场强度分布r r qr E ˆ4)(201πε=,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+= ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。

内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπε则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。

2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。

那么,E 是[ ]。

.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R O
x
/ 2 Ex 2 sin d sin d 0 2 2π 0 R 0 所以 /2 /2 Q Q Q E y 2 2 cos d cos d 2 2 E Ex i E y j 2 j 2 2 0 R 0 R 0 /2 0R
3.(1059) 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex=bx, Ey=0, Ez=0. 高斯面边长a=0.1 m,常量b=1000 N/(C· m).试求该闭合面中包含的净电荷.(真空介电 常数ε0=8.85×10-12 C2· N-1· m-2 ) y 解:设闭合面内包含净电荷为Q.因场强只有x分量不 为零,故只是二个垂直于x轴的平面上电场强度通量不 为零.由高斯定理得: -E1S1+ E2S2=Q / ε0 ( S1 = S2 =S ) 则 Q = ε0S(E2- E1) = ε0Sb(x2- x1) = ε0ba2(2a-a) =ε0ba3 = 8.85×10-12 C
+Q
R O
-Q
x
4 0 R 2
2 2 0 R 2
按θ角变化,将dE分解成二个分量:
d E x d E sin
Q
2 0 R
2
2
sin d
dq
y
d E y d E cos
Q 2 2 0 R 2
cos d
d

对各分量分别积分,积分பைடு நூலகம்考虑到一半是负电荷
D C
二、填空题 1.(1042) A、B为真空中两个平行的“无限大”均匀带电平面,已知两平 面间的电场强度大小为E0,两平面外侧电场强度大小都为E0/3, 方向如图.则A、B两平面上的电荷面密度分别为δA= -2ε0E0 / 3 4ε0E0 / 3 _______________, δB=____________________ .
[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
-a
O +a
x
U E d x 0 d x d x / 0 a / 0
x x a
0
a
0
在-a≤x≤a区间
在a≤x<∞区间
x U Edx dx x x 0 0 0 a 0 a U E d x 0d x dx
A
B
E0/3 E0
E0/3
2.(1050) 两根相互平行的“无限长”均匀带正电直线1、2,相距为d, 其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点 1 d 与直线1的距离a为_____________ . 1 2
1
2
a d 1 2
E
3.(1498) 如图,点电荷q 和-q被包围在高斯面S内,则通过该高
Q
2.(1010) 带电细线弯成半径为R的半圆形,电荷线密度为λ=λ0sinφ,式中λ0为一常数,φ为半 y 径R与x轴所成的夹角,如图所示.试求环心O处的电场强度. 解:在φ处取电荷元,其电荷为: dq =λdl = λ0Rsinφ dφ 它在O点产生的场强为 在x、y轴上的二个分量
0 sin d dq dE 2 4 0 R 4 0 R
O
a a
x
a 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
+q
S
0 斯面的电场强度通量 SE d S =_____________ ,式中
高斯面上各点 为_________________ 处的场强.
E
-q
4.(1194) 把一个均匀带有电荷+Q的球形肥皂泡由半径r1吹胀到r2,则半径为R(r1<R<r2)的 0 2) Q /(4π ε R 0 球面上任一点的场强大小E由______________变为______________;电势U由 Q/(4πε0R) Q/(4πε0r2) __________________________ 变为________________( 选无穷远处为电势零 点).
计算题 1.(1009) 一个细玻璃棒被弯成半径为R的半圆形,沿其上半部分均匀分布有电荷+Q,沿其下 半部分均匀分布有电荷-Q,如图所示.试求圆心O处的电场强度. y 解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 dq = λdl = 2Qdθ/ π dq Q 它在O处产生场强 d E d
3.(1047) 如图所示,边长为 0.3 m的正三角形abc,在顶点a处有一电荷为10-8 C的正点电荷,顶点 b处有一电荷为-10-8 C的负点电荷,则顶点c处的电场强度的大小E和电势U为: 1 ( =9×10-9 N m /C2)
4 0
c
(A) E=0,U=0. (B) E=1000 V/m,U=0. (C) E=1000 V/m,U=600 V. (D) E=2000 V/m,U=600 V.
R dEx
dq
d
x

dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
相关文档
最新文档