八下第四章因式分解43公式法.doc
4.3 公式法 (解析版)-八年级数学下
4.3公式法考点:因式分解公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a 2-b 2=(a+b)(a-b)②完全平方公式:a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)2题型一:判断是否能用公式法因式分解1.(2023秋·广东云浮·八年级统考期末)下列各式中,能用平方差公式分解因式的是()A .229x y -+B .229x y +C .2221x y -+D .229x y --【答案】A【分析】根据能用平方差公式分解因式的式子必须是两项平方项的差即可判断.【详解】解:A.229x y -+是x 与3y 的平方的差,能用平方差公式分解因式,故本选项正确,符合题意;B.229x y +两项的符号相同,不能用平方差公式分解因式,故本选项错误,不符合题意;C.2221x y -+是三项,不能用平方差公式分解因式,故本选项错误,不符合题意;D.229x y --两项的符号相同,不能用平方差公式分解因式,故本选项错误,不符合题意;故选:A .【点睛】本题考查了平方差公式分解因式,熟记能用平方差公式分解因式的式子必须是两项平方项的差是解题的关键.2.(2023春·八年级课时练习)下列多项式,能用公式法分解因式的有()个.①2233+x y ②22x y -+③22x y --④22x xy y ++⑤222x xy y +-⑥2244x xy y -+-A .2B .3C .4D .5【答案】A【分析】根据完全平方公式()2222a b a ab b ±=±+,平方差公式()()22a b a b a b +-=-进行判断即可.【详解】解:①2233+x y 不能用公式法分解因式,不符合题意;②()()22x y y x y x -+=+-,可以用平方差公式分解因式,符合题意;③()2222x y x y --=-+不能用公式法分解因式,不符合题意;④22x xy y ++不能用公式法分解因式,不符合题意;⑤222x xy y +-不能用公式法分解因式,不符合题意;⑥()()2222244442x xy y x xy y x y-+-=--+=--,可以用完全平方公式分解因式,符合题意;故选A .【点睛】本题主要考查了分解因式,熟知公式法分解因式是解题的关键.3.(2022秋·山东威海·八年级统考期中)下列多项式:①2216x y -+,②()222812()a ab b a b -+-+,③222139m mn n -+,④22x y --能用公式法因式分解的有个()A .1B .2C .3D .4【答案】C【分析】根据公式法因式分解的方法,逐一进行判断即可.【详解】解:()()221644x y x y x y -+=-++①,符合题意;()222812()a ab b a b -+-+②2281()()a b a b =--+()()()()99a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()45445a b a b =--,符合题意;22221393n m mn n m ⎛⎫-+=- ⎪⎝⎭③,符合题意;22x y --④,不能用公式法进行因式分解,不符合题意.故选C .【点睛】本题考查公式法因式分解.熟练掌握公式法因式分解是解题的关键.题型二:运用平方差公式因式分解4.(2023春·广东深圳·八年级校考期中)一次数学课上,老师出了下面一道因式分解的题目:41x -,请问正确的结果为()A .()()2211x x -+B .()()2211x x +-C .()()()2111x x x +-+D .()()311x x -+【答案】C【分析】根据平方差公式分解因式即可.【详解】解:()()()()()4222111111x x x x x x =-+--+=+,故C 正确.故选:C .【点睛】本题主要考查了分解因式,解题的关键是熟练掌握平方差公式,注意分解因式要分解到最后结果.5.(2022秋·全国·八年级专题练习)下列多项式中,在有理数范围内不能用平方差公式分解的是()A .22x y -+B .224()a a b -+C .228a b -D .221x y -【答案】C【分析】利用平方差公式的结果特征判断即可,能用平方差因式分解的式子的特点是:两项平方项,符号相反.【详解】在有理数范围内不能用平方差公式分解的是228a b -,A 、2222()()()x y x y x y x y -+=--=-+-,B 、[][]224()2()2()(3)()a a b a a b a a b a b a b -+=++-+=+-,D 、22221()1(1)(1)x y xy xy xy -=-=+-,故选:C .【点睛】本题考查了公式法分解因式,不仅要掌握平方差公式的特点,还要对有理数的范围把握好.6.(2022春·甘肃酒泉·八年级统考期末)下列多项式中,不能用平方差公式分解因式的是()A .22x y -B .22x y -+C .22x y --D .2281x y -【答案】C【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.【详解】A.22x y -能用平方差公式因式分解,故不符合题意;B.22x y -+能用平方差公式因式分解,故不符合题意;C.22x y --不能用平方差公式因式分解,故符合题意;D.2281x y -能用平方差公式因式分解,故不符合题意;故选择:C【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式分解因式的特点.题型三:运用完全平方公式因式分解7.(2023春·全国·八年级期中)下列各式:①269x x -+;②225101a a +-;③244x x --;④2144x x -+,其中不能用完全平方公式因式分解的个数为()A .1B .2C .3D .4【答案】C【分析】能利用完全平方公式因式分解的整式需满足:整式是“两数平方和与这两个数积的2倍”.利用完全平方公式的结构特点逐个分析得结论.【详解】解:()22693x x x -+=-,故①能用完全平方公式因式分解;整式225101a a +-与244x x --不满足两数平方和,故②③不能用完全平方公式因式分解;整式2144x x -+的中间项x 不是2x 与12积的2倍,故④不能用完全平方公式因式分解.故选:C .【点睛】本题考查了整式的因式分解,掌握完全平方公式的结构特点是解决本题的关键.8.(2023春·浙江·八年级阶段练习)已知23,23x y =-=+,则代数式2224x xy y x y +++--的值为()A .32B .34C .31-D .512-【答案】C【分析】根据已知,得到232322,232323x y x y +=-++=-=---=-,整体思想带入求值即可.【详解】解:∵23,23x y =-=+,∴232322,232323x y x y +=-++=-=---=-,∴()()222244x xy y x y x y x y +++--=++--()222234=--8234=--423=-()23231=-+()231=-31=-.故选C .【点睛】本题考查二次根式的化简求值.熟练掌握二次根式的运算法则,利用整体思想进行求解,是解题的关键.9.(2023秋·山东威海·八年级统考期末)下列多项式,不能用完全平方公式分解的是()A .214x x -+B .22441a b ab -+C .21025y y +-D .22111934a ab b++【答案】C【分析】对每个选项进行因式分解即可做出判断.【详解】解:A .221142x x x ⎛⎫-+=- ⎪⎝⎭,故选项不符合题意;B .()22244121a b ab ab -+=-,故选项不符合题意;C .21025y y +-不能用完全平方公式分解,故选项符合题意;D .2221911321134a b a ab b ⎛⎫=+ ⎝+⎪⎭+,故选项不符合题意.故选:C .【点睛】此题考查了因式分解,熟练掌握完全平方公式是解题的关键.题型四:综合运行公式法因式分解10.(2023秋·湖北武汉·八年级统考期末)下列因式分解正确的是()A .26(2)(3)x x x -=-+B .2221(1)--=-x x xC .222()x y x y -=-D .2244(2)x x x ++=+【答案】D【分析】根据公式法分别判断即可.【详解】A .26(6)(6)x x x -=-+,故原选项错误;B .22)221(1)(12)(12x x x x x -=--=--+--,故原选项错误;C .22()()x y x y x y -=+-,故原选项错误;D .2244(2)x x x ++=+,故原选项正确;故选D .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.11.(2023秋·湖北荆门·八年级统考期末)因式分解(1)()222224x y x y +-(2)22369xy x y y --【答案】(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +-()()222222x y xy xy xy=+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.12.(2022秋·河南南阳·八年级统考期中)分解因式:(1)()69x x -+;(2)()()2xx y y x -+-;(3)()22214x x +-.【答案】(1)()23x -(2)()()()11x y x x -+-(3)()()2211x x -+【分析】(1)先计算整式的乘法,再利用完全平方公式进行因式分解即可;(2)先提取公因式x y -,再利用平方差公式分解因式即可;(3)先利用平方差公式分解因式,再利用完全平方公式分解因式即可.【详解】(1)解:()69x x -+269x x =-+()23x =-;(2)()()2xx y y x -+-()()2x x y x y =---()()21x y x =--()()()11x y x x =-+-;(3)()22214x x +-()()221212x x x x =+++-()()2211x x =+-.【点睛】本题考查的是因式分解,掌握“利用提取公因式与利用公式法分解因式”是解本题的关键.题型五:因式分解在有理数简算的应用13.(2023秋·河北邢台·八年级统考期末)计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为().A .512B .12C .712D .1130【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯,712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.14.(2022秋·八年级单元测试)利用因式分解简便计算(1)22124252576⨯-⨯(2)2382438144+⨯+【答案】(1)240000(2)2500【分析】(1)先提取公因数25,然后利用平方差公式进行计算即可;(2)根据完全平方公式进行求解即可.【详解】(1)解:22124252576⨯-⨯()222512476=⨯-()()251247612476=⨯+⨯-2520048=⨯⨯500048=⨯240000=;(2)解:2382438144+⨯+22382123812=+⨯⨯+()23812=+250=2500=.【点睛】本题主要考查了因式分解的应用,熟知因式分解的方法是解题的关键.15.(2022秋·重庆合川·八年级校考期末)(1)先化简,再求值:()()()22a b a b a b +-++,其中1a =,2b =-;(2)已知()249x y -=,6xy =-,求32232x y x y xy ++的值.【答案】254a ab +,3-;150-【分析】(1)先根据平方差公式和完全平方公式进行计算,再进行同类项的合并,最后代入1a =,2b =-计算即可;(2)先提取公因式,再根据完全平方公式将原式进行因式分解,将原式转换为()24xy x y xy ⎡⎤-+⎣⎦,再将()249x y -=,6xy =-代入计算即可.【详解】解:(1)()()()22a b a b a b +-++=222244a b a ab b -+++=254a ab +,当12a b ==-,时,原式=()542+⨯-=58-=3-;(2)32232x y x y xy ++=()222xy x xy y ++ =()2224xy x xy y xy -++ =()24xy x y xy ⎡⎤-+⎣⎦=()(6)4924-⨯-=150-.一、单选题16.(2023春·全国·八年级专题练习)下列各式不能运用公式法进行因式分解的是()A .22a b -+B .221625m n -C .2292016p pq q -+D .()214a b a b ++++【答案】C【分析】根据平方差公式和完全平方公式因式分解,逐项分析即可.【详解】因为2222()()a b b a b a b a -+=-=+-,能因式分解,所以A 不符合题意;因为221625(45)(45)m n m n m n -=+-,能因式分解,所以B 不符合题意;因为2292016p pq q -+不能因式分解,所以C 不符合题意;因为222111()()()()442a b a b a b a b a b ++++=++++=++,能因式分解,所以D 不符合题意.故选:C .【点睛】本题主要考查了公式法因式分解,掌握公式法因式分解的方法是解题的关键.17.(2023秋·山东淄博·八年级统考期末)下列因式分解:①()322412412m m m m -+=--;②()()()421111x x x x -=++-;③()()224a b ab a b -+=+;④()23222a a b ab a a b -+=-,其中结果正确的有()A .4个B .3个C .2个D .1个【答案】B【分析】根据因式分解逐项分析判断即可求解.【详解】解:①()32241243m m m m -+=--,故①不正确;②()()()()()4222111111x x x x x x -=+-=++-,故②正确;③()()222242a b ab a ab b a b -+=++=+,故③正确;④()()23222222a a b ab a a ab b a a b -+=-+=-,故④正确,∴正确的有3个,故选:B .【点睛】本题考查了因式分解,灵活运用所学知识求解是解决本题的关键.18.(2023春·四川达州·八年级校考阶段练习)下列因式分解正确的是()A .2222444(4)4(2)(2)x y x y x y x -+=--=-+-B .323123(4)a a a a -=-C .4222241274(3)7x y x y x y x y -+=-+D .2425(25)(25)a a a -=+-【答案】D【分析】利用提公因式法,公式法进行分解,逐一判断即可解答.【详解】解:A 、2222444()4()()x y x y x y x y -+=--=-+-,故本选项不符合题意;B 、323123(4)3(2)(2)a a a a a a -=-=+-,故本选项不符合题意;C 、4222241274(3)7x y x y x y x y -+=-+,不是因式分解,故本选项不符合题意;D 、2425(25)(25)a a a -=+-,故本选项符合题意;故选:D .【点睛】本题考查了提公因式法与公因式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.19.(2023秋·福建福州·八年级福州三牧中学校考期末)已知a b c 、、是ABC 的三边,且满足()222220a b c b a c ++-+=,则此三角形的形状一定是()A .直角三角形B .等边三角形C .直角三角形或等腰三角形D .以上都不对【答案】B【分析】将原式整理为完全平方式,然后根据平方式的非负性即可得出答案.【详解】解:∵()222220a b c b a c ++-+=,∴2222220a b b ab bc c -+++-=,即22()()0a b b c -+-=,∴0a b -=,0b c -=,∴a b c ==,∴此三角形的形状一定是等边三角形,故选:B .【点睛】本题考查了完全平方公式及其非负性,熟练掌握完全平方公式的结构特点是解本题的关键.20.(2023春·全国·八年级专题练习)分解因式(1)211025t t ++;(2)21449m m -+;(3)214y y ++;(4)()()2244m n m m n m +-++;(5)2258064a a -+;(6)()()222a a b c b c ++++.【答案】(1)()215t +(2)()27m -(3)212y ⎛⎫+ ⎪⎝⎭(4)()2n m -(5)()258a -(6)()2a b c ++【分析】利用完全平方公式分解因式即可.【详解】(1)解:()221102515t t t ++=+;(2)解:()2214497m m m -+=-;(3)解:221142y y y ⎛⎫++=+ ⎪⎝⎭;(4)解:()()()()2222442m n m m n m m n m n m +-++=+-=-;(5)解:()2225806458a a a -+=-;(6)解:()()()2222a a b c b c a b c ++++=++.【点睛】本题考查了因式分解,熟练掌握完全平方公式分解因式是解题的关键.21.(2023秋·安徽阜阳·八年级统考期末)发现与探索.(1)根据小明的解答将21220a a -+因式分解;(2)根据小丽的思考,求代数式21220a a -+的最小值.【答案】(1)()()102a a --(2)16-【分析】(1)将21220a a -+改写为212363620a a -+-+,再根据完全平方公式和平方差公式进行因式分解;(2)根据题意,将21220a a -+化为()2616a --,即可进行解答.【详解】(1)解:21220a a -+212363620a a =-+-+()2264a =--()()102a a =--;(2)解:21220a a -+212363620a a =-+-+()2616a =--,无论a 取何值()26a -都大于等于0,再加上16-,则代数式()2616a --大于等于16-,则21220a a -+的最小值为16-.【点睛】本题主要考查了利用平方差公式和完全平方公式进行因式分解,解题的关键是掌握()2222a b a ab b ±=±+,()()22a b a b a b -=+-.一、单选题22.(2023春·山东济南·八年级统考期末)下列各式能用完全平方公式进行因式分解的是()A .244x x -+B .21x x ++C .2441x x +-D .221x x +-【答案】A【分析】利用完全平方公式:()2222a ab b a b ±+=±,进而判断得出答案.【详解】解:A 、()22442x x x -+=-,能用完全平方公式进行因式分解;B 、21x x ++,不能用完全平方公式进行因式分解;C 、2441x x +-,不能用完全平方公式进行因式分解;D 、221x x +-,不能用完全平方公式进行因式分解;故选:A .【点睛】本题考查用完全平方公式进行因式分解,解题的关键是熟练运用完全平方公式.23.(2023秋·四川乐山·八年级统考期末)已知a 、b 、c 是ABC 三条边的长,且满足条件()222220a b c b a c ++-+=,则ABC 的形状是()A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形【答案】A【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据非负数的性质得到a b c ==,从而得到答案.【详解】解:∵()222220a b c b a c ++-+=,∴2222220a b c ab bc ++--=,∴()()2222220a ab b b bc c -++-+=,∴()()220a b b c -+-=,∵()()2200a b b c -≥-≥,,∴()()2200a b b c -=-=,,∴00a b b c -=-=,,∴a b c ==,∴ABC 是等边三角形,故选A .【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,解题的关键在于灵活利用因式分解建立与方程之间的关系来解决问题.24.(2023秋·河南安阳·八年级校考期末)王林是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,a b -,3,21x +,a ,1x +分别对应六个字:南,爱,我,数,学,河,现将()()223131a x b x ---因式分解,结果呈现的密码信息可能是()A .我爱数学B .爱河南C .河南数学D .我爱河南【答案】D【分析】先把代数式分解因式,再对照密码手册求解.【详解】解:()()()()()223131311a x b x x x a b ---=+--,所以,结果呈现的密码信息可能是:我爱河南故选:D .【点睛】本题考查了因式分解的应用,分解因式是解题的关键.25.(2023秋·重庆永川·八年级统考期末)下列分解因式正确的是()A .()231x x x x -=-B .()()22x y x y x y +=+-C .()()22x y x y x y -=--+-D .2244121)x x x -+=-(【答案】D【分析】根据提公因式法和公式法分别分解因式,从而可判断求解.【详解】解:A 、应为()()()32111x x x x x x x -=-=+-,故选项错误,不符合题意;B 、22xy +不能分解,故选项错误,不符合题意;C 、22x y --不能分解,故选项错误,不符合题意;D 、()2244121x x x -+=-,故选项正确,符合题意.故选:D .【点睛】本题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.26.(2023秋·福建泉州·八年级统考期末)已知120212022a x =-+,120222022b x =-+,120232022c x =-+,那么,代数式222a b c ab bc ac ++---的值是()A .2022-B .2022C .3-D .3【答案】D【分析】先求解1a b -=-,1b c -=-,2a c -=-,再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦,再代入求值即可.【详解】解:∵120212022a x =-+,120222022b x =-+,120232022c x =-+,∴1a b -=-,1b c -=-,2a c -=-,∴222a b c ab bc ac++---()=++---22212222222a b c ab bc ac ()()()22212a b b c a c =-+-+-⎡⎤⎣⎦()11142=++3=;故选D .【点睛】本题考查的是利用完全平方公式分解因式,因式分解的应用,求解代数式的值,掌握“完全平方公式的应用”是解本题的关键.27.(2023秋·河北廊坊·八年级统考期末)小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:a b -,3x -,3x +,a b +,29x -,22a b -分别对应下列六个字:河,爱,我,香,游,美,现将()()222299x a x b ---因式分解,结果呈现的密码信息可能是()A .我爱美B .香河游C .我爱香河D .美我香河【答案】C【分析】将所给的多项式因式分解,然后与已知的密码相对应得出文字信息.【详解】解:∵()()222299x a x b---()()2229x a b =--()()()()33x x a b a b =+-+-又∵a b -,3x -,3x +,a b +,分别对应下列四个个字:河,爱,我,香,∴结果呈现的密码信息是:我爱香河.故选:C .【点睛】本题主要考查了因式分解的应用.解题的关键是将多项式因式分解,注意因式分解要分解到每一个因式都不能再分解为止.28.(2023秋·广东韶关·八年级统考期末)若+=3,+=1a b x y ,则代数式22+2++2 015a ab b x y --的值是()A .2019B .2017C .2024D .2023【答案】D【分析】把所给代数式变形后把+=3,+=1a b x y 代入计算即可.【详解】解:∵+=3,+=1a b x y ,∴22+2++2 015a ab b x y --()()2+2 015a b x y =+-+231+2 015=-2023=.故选D .【点睛】此题考查了因式分解的应用,代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.29.(2022秋·八年级单元测试)已知1x y +=,则2212x y 1xy+2+的值是()A .12B .1C .2-D .2【答案】A【分析】首先提公因式,再利用完全平方公式分解因式,然后将1x y +=代入计算即可.【详解】解:∵1x y +=,∴2212x y 1xy+2+()2212x xy y =+2+()212x y =+2112=⨯12=,故选A .【点睛】本题考查了综合提公因式法和公式法分解因式,代数式的求值,熟悉相关运算法则是解题的关键.二、填空题30.(2023春·全国·八年级期中)在实数范围内分解因式:28a b b -=______【答案】()()2222b a a +-【分析】首先提取公因式b ,再利用平方差公式分解即可求得答案.【详解】解:原式()28b a =-()()2222b a a =+-.故答案为:()()2222b a a +-.【点睛】本题考查了实数范围内的因式分解,掌握因式分解的步骤是关键.31.(2023春·全国·八年级期中)Rt ABC △的面积为5,斜边长为6,两直角边长分别为a ,b ,则代数式33a b ab +的值为___________.【答案】360【分析】根据两直角边乘积的一半表示出Rt ABC △的面积,把已知面积代入求出ab 的值,利用勾股定理得到2226a b +=,将代数式33a b ab +变形,把22a b +与ab 的值代入计算即可求出值.【详解】解:∵Rt ABC △的面积为5,∴152ab =,解得10ab =,根据勾股定理得:222636a b +==,则代数式332210363()60a b ab ab a b +=+=⨯=.故答案为:360.【点睛】此题考查了勾股定理,以及三角形面积求法,熟练掌握勾股定理是解本题的关键.32.(2023春·河北保定·八年级统考阶段练习)已知()222x =+,642y =-.(1)x 的值为______;22x y -的值为______;(2)若22160x nxy y ++=,则n 的值为______.【答案】642+##426+9626【分析】(1)利用完全平方公式求x 的值;利用平方差公式法因式分解求解即可;(2)利用完全平方公式和提公因式法因式分解,将等式分组因式分解成含有x y +、xy 的等式,将x y +、xy 的值代入等式即可求出n 的值.【详解】(1)解:()222x =+()222222+2=+⨯⨯=2+42+4=6+42;()()22=-+-x y x y x y ()()642642642642=++-+-+1282962=⨯=;故答案为:642+;962;(2)22160x nxy y ++= ,2222160x xy y xy nxy ∴++-+=,()()22160x y n xy ++-=,64264212x y +=++-= ,()()642642xy ∴=+-()22642=-3632=-4=;()()22160x y n xy ∴++-=,()21224160n +-⋅=,()2416014416n -⋅=-=,21644n ∴-=÷=,解得6n =,故答案为:6.【点睛】本题考查二次根式的运算、完全平方公式与平方差公式,由于直接代入计算复杂容易出错,因此可以考虑整体代入是解题的关键.33.(2022秋·山东济宁·八年级统考期末)若3x y +=,5xy =,则22x y xy +的值为______.【答案】15【分析】先提取公因式分解因式,在把3x y +=,5xy =,代入原式计算即可.【详解】解:22x y xy + ()xy x y =+,把3x y +=,5xy =,代入,原式5315=⨯=,故答案为:15.【点睛】本题主要考查了因式分解的应用,掌握取公因式分解因式的方法是解题关键.34.(2023秋·山东烟台·八年级统考期末)已知7,2ab a b =+=,则多项式222008a b ab ++的值为_______.【答案】2022【分析】将多项式中含有字母的式子因式分解,然后整体代入可得结果.【详解】解:()2220082008a ab a b b ab =++++,∵7,2ab a b =+=,∴原式7220081420082022=⨯+=+=.故答案为:2022.【点睛】本题主要考查了因式分解的应用,解题的关键是利用整体代入思想解决问题.35.(2023秋·重庆万州·八年级统考期末)若2463,5,7555m x n x k x =+=+=-,则代数式222222m n k mn mk nk +++--的值为___________.【答案】225【分析】根据完全平方公式因式分解进而即可求解.【详解】解:∵2463,5,7555m x n x k x =+=+=-∴24635715555m n k x x x +-=+++-+=∴222222m n k mn mk nk +++--()2m n k =+-215225==,故答案为:225.【点睛】本题考查了因式分解的应用,掌握()2222222a b c a b c ab ac bc ++=+++++是解题的关键.三、解答题36.(2023春·广东深圳·八年级期中)分解因式:(1)321025a a a ++;(2)()()224a b a b --+.【答案】(1)()25a a +(2)()()33a b a b --【分析】(1)先提公因式,再用完全平方公式进行因式分解即可;(2)利用平方差法进行因式分解即可.【详解】(1)解:原式()21025a a a =++()25a a =+;(2)解:原式()()()()22a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()2222a b a b a b a b =-++---()()33a b a b =--.【点睛】本题考查因式分解.熟练掌握提公因式和公式法分解因式是解题的关键.37.(2023秋·山东滨州·八年级统考期末)因式分解:(1)()()2222221x x x x -+-+(2)()()22x m n y n m -+-;【答案】(1)4(1)x -(2)()()()m n x y x y -+-【分析】(1)把22x x -看作整体,先利用完全平方公式分解,再利用平方差公式即可;(2)先提取公因式()m n -,再利用平方差公式分解即可.【详解】(1)()()2222221x x x x -+-+()2221x x =-+22(1)x ⎡⎤=-⎣⎦()41x =-(2)()()22x m n y n m -+-()()22m n x y =--()()()m n x y x y =-+-【点睛】此题考查了因式分解,熟练掌握完全平方公式和平方差公式是解题的关键.38.(2023春·全国·八年级专题练习)(1)把一个多项式写成两数和(或差)的平方的形式叫做配方法.阅读下列有配方法分解因式的过程:222210925559a a a a ++=+⨯+-+()2254a =+-()()5454a a =+++-()()91a a =++仿照上面方法,将下式因式分解2627x x --;(2)读下列因式分解的过程,再回答所提出的问题:()()2111x x x x x +++++()()111x x x x =++++⎡⎤⎣⎦()()211x x =++()31x =+①上述分解因式的方法是,共应用了次.②若分解()()()220041111x x x x x x x ++++++⋯++,则需应用上述方法次,结果是.③分解因式:()()()21111nx x x x x x x ++++++⋯++(n 为正整数).【答案】(1)()()39x x +-;(2)①提取公因式,3;②2005,()20051x +;③()11n x ++【分析】(1)仿照材料中的方法,利用配方法、平方差公式进行因式分解;(2)观察可知,材料中采用了提取公因式法分解因式,()()()21111nx x x x x x x ++++++⋯++经过()1n +次提取公因式,可得()11n x ++.【详解】解:(1)2222627233327x x x x --=-⨯+--()2236x =--()()3636x x =-+--()()39x x =+-;(2)①上述分解因式的方法是提取公因式,共应用了3次;故答案为:提取公因式,3;②若分解()()()220041111x x x x x x x ++++++⋯++,则需应用上述方法2005次,结果是()20051x +,故答案为:2005,()20051x +;③由题意知:()()()21111nx x x x x x x ++++++⋯++()()()11111n x x x x x x -⎡⎤=+++++⋯++⎣⎦()()()221111n x x x x x x -⎡⎤=+++++⋯++⎣⎦()()11n x x =++()11n x +=+.【点睛】本题主要考查分解因式,解题的关键是看懂材料,能够仿照材料中的方法求解.39.(2023秋·四川眉山·八年级统考期末)已知对于任意实数x 代数式2x 的最小值是0,代数式2(3)x -,当3x =时的最小值是0.(1)求代数式21236x x ++的值是最小值时x 的值.(2)判断代数式2123x x -+-的值是有最大值,还是最小值,并求出代数式2123x x -+-的最大值或者最小值【答案】(1)6x =-(2)有最大值,最大值为7136-【分析】(1)根据完全平方公式因式分解,得出()26x +,即可求解;(2)根据完全平方公式因式分解,进而得出2171636x ⎛⎫--- ⎪⎝⎭,根据2106x ⎛⎫--≤ ⎪⎝⎭,即可求解.【详解】(1)解:∵21236x x ++()26x =+∴6x =-时,最小值为0;(2)解:∵2123x x -+-2112636x ⎛⎫=--+- ⎪⎝⎭2171636x ⎛⎫=--- ⎪⎝⎭∵2106x ⎛⎫--≤ ⎪⎝⎭∴2123x x -+-7136≤-,有最大值,最大值为7136-【点睛】本题考查了完全平方公式的应用,根据题意凑出平方项是解题的关键.40.(2023秋·陕西西安·八年级统考期末)请阅读下列材料:我们可以通过以下方法,求代数式223x x +-的最小值.22222232113(1)4x x x x x +-=++--=+-,∵2(1)0x +≥,∴当=1x -时,223x x +-有最小值4-.请根据上述方法,解答下列问题:(1)22222610233310()x x x x x a b ++=+⨯+-+=++,则=a ________,b =___________;(2)求证:无论x 取何值,代数式2235x x ++的值都是正数;(3)若代数式227x kx -+的最小值为3,求k 的值.【答案】(1)3,1(2)见解析(3)2k =或2-.【分析】(1)将2610x x ++配方,然后与22610()x x x a b ++=++比较,可得a 与b 的值,则问题得解;(2)先利用完全平方公式配方,再根据偶次方非负数的性质列式求解;(3)二次项系数为1的二次三项式配方时,常数项为一次项系数一半的平方,故先将代数式配方,然后根据代数式227x kx -+的最小值为3,可得关于k 的方程,求解即可.【详解】(1)2610x x ++222233310x x =+⨯+-+=2(3)1x ++∴22(3)1=()x a bx ++++∴3,1a b ==故答案为:3,1(2)证明:2235x x ++22223(3)(3)5x x =+⨯+-+2(3)2x =++,∵2(3)0x +≥∴22350x x ++>∴无论x 取何值,代数式2235x x ++的值都是正数;(3)2222222727()7x kx x kx k k x k k -+=-+-+=--+,∵2()0x k -≥,∴227x kx -+的最小值为27k -+,又∵代数式227x kx -+的最小值为3,∴273k -+=,解得2k =或2-.。
北师大版八年级数学下册第四章因式分解小结与复习课件
⑸(2x+y)2-2(2x+y)+1
(6) (x-y)2 - 6x +6y+9
解:原式=(2x+y-1)2
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
(8) (x+1)(x+5)+4
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
2. 若 100x2-kxy+49y2 是一个完全平方式, 则k= ( ±140)
3.计算(-2)101+(-2)100
解:原式=(-2)(-2)100+ (-2)100
=(-2)100(-2+1) =2100·(-1)=-2100
4.已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x39
=4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
三分 ③再考虑分组分解法
四查 ④检查:特别看看多项式因式 是否分解彻底
课堂小结
因 式 分 解
概念
与整式乘法的关系
提公因式法
方法 公式法
平方差公式
完全平方差公式
提:公因式 步骤 运:运用公式
查:检测结果是否彻底
首页
随堂训练
1.把下列各式分解因式:
(1) 4x2-16y2
(2) x2+xy+ y2.
第四章 因式分解
小结与复习
知识 归纳
复习点一 (一)分解因式的概念:
把一个多项式化成几个整式的积的情势, 叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积
八年级数学北师大版初二下册--第四单元 4.3《公式法--第三课时:分组分解法及分解因式的方法》课件
知1-讲
例2 分解因式:-x2-2xy+1-y2.
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
ìïïíïïî
4x-4 y=96, x2-y2=960,
但直接解方程组很烦琐,可利用平方差公式分解
因式:x2-y2=(x+y)(x-y),再利用整体思想求
出x+y的值,从而转化为二元一次方程组求解.
知2-讲
解:设大正方形的边长为x cm,小正方形的边长为y cm,
由题意得
ìïïíïïî
4x-4 y=96,① x 2-y2=960,②
知1-练
3 将多项式a2-9b2+2a-6b分解因式为( D ) A.(a+2)(3b+2)(a-3b) B.(a-9b)(a+9b) C.(a-9b)(a+9b+2) D.(a-3b)(a+3b+2)
知1-练
4 分解因式x2-2xy+y2+x-y的结果是( A ) A.(x-y)(x-y+1) B.(x-y)(x-y-1) C.(x+y)(x-y+1) D.(x+y)(x-y-1)
知1-练
5 分解因式: (1) ac+ad+bc+bd=__(_a_+__b_)_(c_+__d_)__; (2) x2-xy+xz-yz=___(_x_-__y_)(_x_+__z_)_.
6 分解因式: a2-4ab+4b2-1=_(_a_-__2_b_+__1_)_(a_-__2_b_-___1_) .
2.分解技巧:分组分解是因式分解的一种复杂的方法, 让我们来须有预见性. 能预见到下一步能继续分解. 而“预见”源于细致的“观察”,分析多项式的特 点,恰当的分组是分组分解法的关键 .
八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习
(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.
【专题课件】北师大版八年级下册第四章《因式分解》4.3 公式法:完全平方公式
解: (1)16x2+ 24x +9 = (4x)2 + 2·4x·3 + (3)2 = (4x + 3)2;
(2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
例3 把下列各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.
分析:(1)中有公因式3a,应先提出公因式,再进 一步分解因式; (2)中将a+b看成一个整体,设a+b=m,则原式化为 m2-12m+36.
解: (1)原式=3a(x2+2xy+y2)
=3a(x+y)2; (2)原式=(a+b)2-2·(a+b) ·6+62
=(a+b-6)2.
概念学习
利用公式把某些具有特殊形式(如平方差式, 完全平方式等)的多项式分解因式,这种分解因式 的方法叫做公式法.
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
a2+2ab+b2
a2-2ab+b2
(1)每个多项式有几项? 三项 (2)每个多项式的第一项和第三项有什么特征? 这两项都是数或式的平方,并且符号相同 (3)中间项和第一项,第三项有什么关系? 是第一项和第三项底数的积的±2倍
4-3 公式法课件2022-2023学年北师大版数学八年级下册
2
2
2
2
跟踪练习1
把下列各式因式分解.
1 2 2 − 2
解: 原式 =(ab)2-m2
=(ab+m)(ab-m)
(2)-16x2+81y2
原式 =81y2-16x2
=(9y)2-(4x)2
=(9y+4x)(9y-4x)
例题讲解
例2.把下列各式因式分解.
1 9 m n m n
2.会用平方差公式进行因式分解
3.使学生了解提公因式法是分解因式首先考虑的方法,再
考虑用平方差公式分解
教学重难点
1.重点:会用平方差公式进行因式分解
2.难点:发展学生的逆向思维,渗透数学的
“互逆”、换元整体的思想
学习目标
1.经历通过整式乘法公式的逆向变形得出公式
法因式分解的过程,发展逆向思维和推理能力.
2.会用平方差公式进行因式分解.
平方差公式
公式法
完全平方公式
问题引入
模块一
1.计算下列各式
观察这些式子,等式两边
分别有什么共同特征?
9x 2 y 2
9m2 4n2
2
2
a
b
a
b
=
a
b
两数或式的和与差的乘积
结果都是二项式,其中每一项都
是某数或式的平方,且两项符号
相反(一正一负)
模块二
例题讲解
例1.把下列各式因式分解.
1 2
2 9a b
4
1 25 16x
2
解:1 25 16x =52 - (4x)2 =(5 + 4x) (5 - 4x)
北师大版本八年级数学下第四章因式分解全章教案(可编辑修改word版)
北师大版本八年级数学下第四章因式分解全章教案1 因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99 能被99 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
993-99 = 99×992-99 = 99(992-1)∴993-99 能被99 整除.(2)993-99 能被100 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99- 1)= 99×98×100所以993-99 能被100 整除.想一想:(1)在回答993-99 能否被100 整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99 还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99 化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99 可以被98、99、100 三个连续整数整除.将99 换成其他任意一个大于 1 的整数,上述结论仍然成立吗?学生探究发现:用a 表示任意一个大于1 的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)① 能理解吗?你能与同伴交流每一步怎么变形的吗?② 这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x= - (2)m2-4n2 =答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m= 2a3+2a= y2+4y+4=答案:4m(m-1) 2a(a2+1) (y+2)2 4.如果a+b=10,ab=21,则a2b+ab2 的值为.答案:210.5.如果a-3b=-3,那么5-a+3b 的值是()A.0B.2C.5D.8答案:D.6.9993-999 能被998 整除吗?能被1000 整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998 所以9993- 999 能被998 整除,能被1000 整除。
八下4.3公式法(1)
学习目标 问题引入 例题讲解 巩固训练 课堂小结
例1.把下列各式因式分解.
1 25 16x2
解: 52 4x2
5 4x5 4x
29a2 1 b2
4
3a
2
1 2
b
2
3a
1 2
b
3a
1 2
b
例题讲解
25 16x2 52 4x2 5 4x5 4x a2 b2 a ba b
问题引入
对下列各式进行因式分解
x2 25 __ _x__5___x__5____________; 9x2 y2 __3_x__y___3_x___y_________; 9m2 4n2 _3_m___2_n__3_m___2_n_______.
问题引入
平方差公式: aa2 bb2=aabb=a2bb 2
变式练习
变式练习2.把下列各式因式分解.
13ax2 3ay4
解:
2 16x4 81y4
注意事项
使用平方差公式因式分解时要注意:
02
例题讲解
例3
解:由题意得,剩余部分的面积为:
a2 4b2
a2 2b2
a 3.6,b 0.8, 代入得 原式=10.4cm2
a 2ba 2b 答:剩余部分的面积是10.4cm2.
使用公式分解因式 去括号整理
4m 2n2m 4n
42mnm2n
分解彻底
例题讲解
例2.把下列各式因式分解.
22x3 8x
2xx2 4
2xx 2x 2
当多项式的各项含 有公因式时,先提 出公因式
变式练习
变式练习2.把下列各式因式分解.
13ax2 3ay4
解:
北师大版数学八年级下册第四章因式分解4.3公式法(第1课时)教案设计
4.3 公式法(第1课时运用平方差公式因式分解)教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤分解因式的能力.教学重点掌握运用平方差公式分解因式的方法.教学难点能会综合运用提公因式法和平方差公式对多项式进行因式分解.课时安排1课时教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2.平方差公式:(a+b)( a-b)=a2-b2.导入新课活动1(学生交流,教师点评)【问题1】填空:(1)(x+5)(x-5)=;(2)(3x+y)(3x-y)=;(3)(3m+2n)(3m–2n)=.它们的结果有什么共同特征?答案:(1)x2–25;(2)9x2–y2;(3)9m2–4n2学生:以上都是用平方差公式:(a+b)( a-b)=a2-b2计算得出来的.【问题2】根据问题1中等式填空:(1)x2-25=;(2)9x2−y2=;(3)9m2-4n2=.答案:(1)(x+5)(x-5)(2)(3x+y)(3x-y);(3)(3m+2n)(3m–2n).教师总结:公共特点:是两个数(式)的和与这两个数(式)的差的积,等于这两个数(式)的平方差,反过来,两个数(式)的平方差就可以化成这两个数(式)的和与这两个数(式)的差的积的形式,这种变形就是我们今天学习的内容,引出课题.探究新知探究点一用平方差公式因式分解(a+b)( a-b)=a2-b2反过来,a2-b2=(a+b)( a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.【注意】公式中的a,b既可以是单项式,也可以是多项式活动2(学生交流,教师点评)【问题3】(师生互动)下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.【方法总结】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【互动】(小组交流)下列各式中,能运用平方差公式分解的多项式是.(填序号)①x2+y2;②1-x2;③-x2-y2;④x2-xy.答案:②.活动3小组讨论(师生互学)【例1】因式分解:(1)a4-116b4;(2)x3y2-xy4.【探索思路】(引发学生思考)观察各式的特点,运用平方差公式进行因式分解.解:(1) a4-116b4=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a2-14b2=⎝⎛⎭⎪⎫a2+14b2⎝⎛⎭⎪⎫a-12b⎝⎛⎭⎪⎫a+12b.(2) x3y2-xy4=xy2(x2-y2)=xy2(x+y)(x-y).【总结】(学生总结,老师点评)因式分解前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【例2】分解因式:9(m+n)2-(m-n)2.解:原式=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).【总结】1.如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.2.当多项式各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解.【注意】多项式的因式分解有没有分解到不能再分解为止.【即学即练】(学生独学)因式分解:(1)(a+b)2-4a2; (2) x4-y4.解:(1) (a+b)2-4a2=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)x4-y4=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).活动4(合作探究,解决问题)探究点二用平方差公式因式分解解决综合问题.(师生互动)【例2】248-1可以被60和70之间某两个自然数整除,求这两个数.【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.活动5拓展延伸(学生对学)【例3】利用因式分解计算:(1)1012-992;(2)5722×14-4282×14.【探索思路】观察式子特点,用提公因式法和平方差公式进行因式分解. 解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36 000.【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,使运算简便.【即学即练】 (学生独学)求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除.证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n ,∵n 为整数,∴8n 被8整除,即多项式(2n +1)2-(2n -1)2一定能被8整除.课堂练习1下列多项式中能用平方差公式因式分解的是( )A.a 2+(−b )2B.5m 2−20mnC.x 2−y 2D.x 2+92.因式分解(2x +3)2 -x 2的结果是( )A.3(x 2+4x +3)B.3(x 2+2x +3)C.(3x +3)(x +3)D.3(x +1)(x +3)3 若a +b =3,a -b =7,则b 2-a 2的值为( )A.-21B.21C.-10D.104.用平方差公式进行简便计算:(1)38²-37² ; (2)213²-87²;(3)229²-171²; (4)91×89.5.已知x 2-y 2=-1,x +y =12,求x -y 的值.6.已知4m +n =40,2m -3n =5.求(m +2n )2-(3m -n )2的值.参考答案:1.C 解析:A.a 2+(−b )2中两项符号相同,不能用平方差公式因式分解,故A 选项错误;B.5m 2−20mn 两项不都是平方项,不能用平方差公式因式分解,故B 选项错误;C.x 2−y 2中两项符号相反,能用平方差公式因式分解,故C 选项正确;D.x 2+9中,两项符号相同,不能用平方差公式因式分解,故D 选项错误.选C.2.D 解析:(2x +3)2 -x 2=(2x +3+x )(2x +3-x )=(3x +3)(x +3)=3(x +1)(x +3)3.A 解析: b 2-a 2=(b +a )(b -a )= 3×(−7)= −21.4.解:(1)38²−37²=(38+37)(38−37)=75.(2)213²-87²=(213+87)(213-87)=300×126=37800.(3)229²-171²=(229+171)(229-171)=400×58=23200.(4)91×89=(90+1)(90−1)=90²-1=8100-1=8099.5.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2.6.解:原式=(m +2n +3m −n )(m +2n −3m +n )=(4m +n )(3n −2m )=− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结(学生总结,老师点评,当堂达标)一、运用平方差公式因式分解:a2-b2=(a+b)(a-b).二、平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.布置作业教材第100页习题4.4板书设计3 公式法第1课时运用平方差公式因式分解用平方差公式因式分解:a2-b2=(a+b)(a-b).【问题1】例1因式分解:(1)a4-116b4;(2)x3y2-xy4.【问题2】例2 248-1可以被60和70之间某两个自然数整除,求这两个数.。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级数学下册第四章因式分解4.3完全平方公式(教案)
一、教学内容
北师大版八年级数学下册第四章因式分解4.3节,主要围绕完全平方公式展开教学。本节课内容如下:
1.探索完全平方公式的推导过程,掌握完全平方公式:(a±b)^2 = a^2 ± 2ab + b^2。
2.学会运用完全平方公式分解因式,解决实际问题。
其次,对于完全平方公式的应用,我发现学生们在解决具体问题时,有时会忽略符号的判断。在讲解过程中,我特别强调了“同号得正,异号得负”的规律,并通过大量练习帮助学生加深记忆。但在实际操作中,仍有个别学生会出现错误。为此,我考虑在今后的教学中,增加一些关于符号判断的专项训练,以提高学生们的准确率。
此外,在学生小组讨论环节,我发现学生们能够积极参与,主动提出自己的观点和想法。但在讨论过程中,部分学生可能会偏离主题,讨论一些与完全平方公式无关的内容。为了提高讨论效率,我计划在今后的教学中,明确讨论主题,并在讨论过程中适时引导,确保学生们围绕主题展开讨论。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和运用这两个重点。对于难点部分,如符号判断,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题。
北师大版八年级数学下册第四章4.3公式法(1)课件
=(5a+b)(a+5b)
把多项式x4-16因式分解.
解:x4-16 =(x2)2-42 =(x2+4)(x2-4) =(x2+4)(x+2)(x-2)
把下列各式因式分解:
(1) a4–b4=(a2)2-(b2)2= (a2+b2)(a2-b2)
(5) a2-4;
(6) a2+32.
因式分解: 9x2-4y2
解:9x2-4y2 =(3x)2-(2y)2 =(3x+2y) (3x- 2y)
a2 b2 (a b)(a b)
先确定a和b
例1 把下列各式因式分解:
(1)25-16x2 (2) 9a2 1 b2
4
解:(1)25-16x2 =52-(4x)2
补充练习
1、设n为整数,你能说明(2n+1)2-25一定 能被4整除吗?
3、已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
小结
从今天的课程中,你学到了哪些知识? 掌握了哪些方法?
(1)有公因式(包括负号)则先提取公因式; (2)整式乘法的平方差公式与因式分解的平方 差公式是互逆关系;
x2-25=x2-52=(x+5)(x-5); 9x2-y2 =(3x)2-y2=(3x+y)(3x-y).
事实上,把乘法公式(a+b)(a-b)=a2-b2反过来,就 得到
a2-b2=(a+b)(a-b)
你对平方差公式认识有多深?
a2-b2=(a+b)(a-b)
△2- 2=(△+ )(△- )
北师大版八年级数学下册(教案)4.3公式法
(五)总结回顾(用时5分钟)
今天的学习,我们了解了公式法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对公式法的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“公式法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解公式法的基本概念。公式法是利用已知的数学公式进行因式分解的一种方法。它是解决多项式因式分解问题的重要工具,可以帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例,比如利用完全平方公式分解因式x²-4。这个案例展示了公式法在实际中的应用,以及它如何帮助我们解决问题。
-完全平方公式的重点在于理解(a±b)²展开后的结构,并能将其应用于简化计算和因式分解;
-平方差公式的重点在于识别a²-b²的形式,并能够运用(a+b)(a-b)的形式进行因式分解;
-立方和与立方差公式的重点在于掌握其展开后的多项式结构,以及在实际问题中的应用。
2.教学难点
-难点在于理解公式中的符号变化,如完全平方公式中的±号,立方和与立方差中的加号与减号;
-在进行因式分解时,学生可能会在面对多项式时难以确定先使用哪个公式,或是在应用公式后无法进一步简化表达式。
4.3 公式法(完全平方公式)-2023-—2024学年北师大版数学八年级下册
北师大版八年级下册 第四章 因式分解
4.3 公式法
学习目标:
1.能够理解并掌握完全平方式的结构特征
2.能够理解并熟练运用完全平方公式分解因式
3.能够综合运用提公因式法、完全平方公式法分解因 式.
复习回顾
思考:你学过哪些因式分解的方法? 你能把下列式子分解因式吗?
探究新知 (1) (2) (3) (4)
(1) (2) (3) (4)
探究新知
你有什么发现呢?
我们将形如
或
的式
子称为完全平方式.你能谈谈一个完
全平方式的结构具有什么样的特征吗?
做一做
下列多项式中,哪几个是完全平方式?若不是,请说明理 由;
(1)
(2)
(3)
(4)
例1:把下列式子分解因式
4x2+12xy+9y2
解:原式 2x2 2 2x 3y 3y2
拓展研究
1.
是一个完全平方式,求 的值.
2.在横线上填上适当的单项式,使 是一个完全平方式.
梳理反思
反思 本节课学习的因式分
解公式是什么?
它有什么特征?
在运用时应如何把握?
利用完全平方公式进行因式分解
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
“首” 平方, “尾” 平方, “首” “尾”两倍坐中央.
首2 2首尾 尾2 =(首±尾)2
典例解析
例2 把下列完全平方式分解因式 :
(1)
(2)
典例解析
例3 把下列各式分解因式:
(1)
(2)
课堂练习
把下列各式分解因式:
(1)
(2)
(3)
(4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3因式分解——公式法(2)
—、备课标
1.内容标准:能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。
2.核心概念:本节课通过整式乘法的完全平方公式的逆向运用得出因式分解的完
全平方公式的过程,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系,在此过程中,通过观察、类比等方法,发展学生的观察能力与逆向思维能力, 加深对类比数学思想的理解,渗透数学的“互逆”、降撮、整体的思想,感受数
学知识的完整性.
十大核心概念在本节课中突出培养的是学生的符号意识、运算能力、应用意识、推理能力。
一、备重点难点:
1、教材分析:本节课是八下第四章《因式分解》的第三节课《公式法》的第2课时,属于“数与代数”领域中的“数与式气通过前面的学习,学生加深了对因式分解的概念的理解,学会了用提取公因式法、平方差公式进行因式分解,本节课通过整式乘法的完全平方公式的逆向运用得出因式分解的完全平方公式的过程,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系,并会用完全平方公式进行因式分解,同时让学生能熟练地应对各种形式的多项式的因式分解,为卜一章分式运算以及今后的方程、函数等知识的学习奠定一个良好的基础。
所以本课时的重点是用完全平方公式分解因式,难点是综合应用提取公因式法与公式法对一些比较复杂的多项式进行因式分解。
2、重点、难点分析
本节课是对完全平方公式的再认识,通过整式乘法的逆向变形得到进行因式分解的方法,让学生进一步感受整式乘法与因式分解是互为逆变形的关系。
确定多项式是否具备完全平方式的特征是用完全平方公式因式分解的关键。
由此确定本节课的重难点是:
重点:掌握完全平方公式的特点,会用此公式分解因式。
难点:综合应用提取公因式法与公式法对一些比较复杂的多项式进行因式分解。
三、备学情
(%1)学习条件和起点能力分析:
1、学习条件分析
(1)必要条件:学生在上儿节课的基础上,已经了解了整式乘法运算与因式分
解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了
完全平方公式.
(2)支持性条件:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础。
2、起点能力分析
学生会用提公因式法和公式法中的平方差公式进行因式分解,基本掌握了因式分解的步骤。
(%1)学生可能达到的程度和存在的普遍性问题:
通过上节课的学习,学生积累了一定的学习经验。
本节课的学习模式与前者基本相同:公式倒用,分析公式的结构特征,一提二套三查的分解步骤。
这些活动是学生非常熟悉的观察、对比、讨论等方法,学生有较好的经验.当完全平方公式中的打与力表示多个字母或是多项式时,学生运用起来有一定的困难。
用完全平方公式分解因式时,第二项的符号容易出错。
针对这一问题,采取的策略: 练习找a和b,熟悉练完全平方式的特征。
教学时引导学生强化口诀记忆:首平方,尾平方,两倍乘积放中央。
四、教学目标
1、经历通过整式乘法公式(a±b) 2=/±2ab+扩的逆变形得出公式法因式分解的平方差公式疽±2ab+b2二(a±b)之的过程。
2、会用完全平方公式a2±2ab+b2= (a±b)之分解因式,理解公式中a、b不仅表示具体的数,还可以表示其他代数式。
3、会用提公因式法和公式法进行因式分解,进一步掌握因式分解的基本步骤。
4、体会用符号表示公式的意义,进一步形成符号感,培养应用意识,发展逆向思维和推理能力。
五、教学过程
一、构建动场
活动一:探索完全平方公式
还记得上一节我们怎样得到因式分解的平方差公式吗?
我们把乘法公式:(。
+力)2 =/ +2沥+屏,=。
2 一2沥+屏反过来,可得:
a2 + 2ab + b? = + Z?)2, a2 -2ah + h2 = (tz -Z?)2
设计意图:通过类比学习因式分解的平方差公式,回顾完全平方公式,直入主题将完全平方公式倒置得新的分解因式方法.
二、自主学习,交流探究
活动二:学习新知
我们把形如a2±2ab + b2的式子称为完全平方式。
说一说找公式特征
a2 + 2ah + b2 = (tz + /?)2, a2 -2ab + b2 = (ti -/?)2
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有三项,其中两项是两数的平方和,第三项是这两数积的2倍。
(2)公式右边:(是分解因式的结果)
★分解的结果是两个数和或差的平方。
首平方,尾平方,两倍乘积放中央。
设计意图:在老师的指导下,完善学生对公式特征的相关描述并得出结论。
同时要求学生对于不能利用完全平方公式进行分解因式的式子给出相应的解释。
活动三:知识辨析
1.判别下列各式是不是完全平方式.
(1)X2 + ),2;
(2)x2 + 2xy + y2;
(3)/ -2村 + 兄
(4)%2 + 2xy - y2;
(5)-x2 + 2xy - ,2.
2.请补上一项,使下列多项式成为完全平方式.
(1)%2 ++兄
(2)4已+9屏+;
(3)%2 -+4,2;
(3)(m + n)2 - 6(m (4) a 2 ++-/?2;
(5) x 4 + 2x 2y +・
活动四:学以致用
例1.把下列各式因式分解:
⑴亍+ 141 + 49 ⑵4八2汕+沥
(4)(〃? 一 2n)2 一 2(2n 一 m)(m + n) + (m + n)2 注意事项:灵活掌握完全平方式的特征是运用公式法进行分解因式的关键,在运 用整体法时,注意去括号后的符号变化和系数变化。
跟踪练习:把下列各式因式分解:
(1) 12妍364 (2) 16孑+24/&+9//
(3) 4-12 (x-y) +9 (% - y)2
例2.把下列各式因式分解:
(1)3。
/ +(y ClX y + (2)-x 2 -4y 2
+ 4xy 注意事项:在综合应用提公因式法和公式法分解因式时,一般按以下三步完成:
(1)有公因式,先提公因式;(2)再用公式法进行因式分解.(3)检查因式分 解是否彻底。
跟踪练习:把下列各式因式分解:
(1) - 6xy - 9^ - (2) 2a2b2-8ab+8
活动六:联系拓广
1.用简便方法计算:20052 -4010x2003+ 20032
2.将4/+1再加上一个整式,使它成为完全平方式,你有几种方法?
3.一天,小明在纸上写了一个算式为4x2 +8x+ll,并对小刚说:“无论x取何值, 这个代数式的值都是正值,你不信试一试?”
三、综合建模
从今天的课程中,你学到了哪些知识?掌握了哪些方法?
当堂检测:
1.判别下列各式是不是完全平方式,检测目标一、二
(1)%2 - 6x + 9;
(2)1 + 4后;
(3)X2-2X +4;
(4)4X2+4X-1;
m2
(5)1 + ——m;
4
(6)4/-12xy + 9x2.
2、下列多项式中哪些是完全平方式,请把是完全平方式的多项式分解因式:(1) xF+f (2) 9a2b2-3ab 检测目标一二三四
(3)才 m2+3mn+9n2(4) x6-lOx -25
布置作业:
A组:习题4.5 1、2检测目标一、二
B组:习题4.5 1、2、3、检测目标一、二、三。