2018年山东省青岛市中考数学试卷(样题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省青岛市中考数学试卷(样题)

一、选择题(本题满分24分,共有8道小题,每小题3分,)

1.(3分)﹣的绝对值是()

A.﹣B.﹣C.D.5

2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()

A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s 3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()

A.B.C.D.

4.(3分)计算a•a5﹣(2a3)2的结果为()

A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6

5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P 在A′B′上的对应点P′的坐标为()

A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()

A.﹣=1B.﹣=1

C.﹣=1D.﹣=1

7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()

A.175πcm2B.350πcm2C.πcm2D.150πcm2 8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()

A.x<﹣2或x>2B.x<﹣2或0<x<2

C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2

二、填空题(本题满分18分,共有6道小题,每小题3分,)

9.(3分)计算:=.

10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.

11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.

12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.

13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.

14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.

三、解答题(共1小题,满分4分)

15.(4分)已知:线段a及∠ACB.

求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.

四、解答题(本题满分74分,共有9道小题,)

16.(8分)(1)化简:(+n)÷;

(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.

17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.

18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)

(参考数据:sin35°≈,cos35°≈,tan35°≈)

19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:

根据以上信息,整理分析数据如下:

中位数/环众数/环方差

平均成绩/

甲a77 1.2

乙7b8c

(1)写出表格中a,b,c的值;

(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选

派其中一名参赛,你认为应选哪名队员?

20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.

(1)求制作每个甲盒、乙盒各用多少米材料?

(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?

21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.

(1)求证:△ABE≌△CDF;

(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

相关文档
最新文档