比值控制系统的参数整定

合集下载

PID控制中P、I、D参数的作用

PID控制中P、I、D参数的作用

PID控制中P、I、D参数的作用PID控制中有P、I、D三个参数,只有明白这三个参数的含义和作用才能完成控制器PID参数整定,让控制器到达最佳控制效果。

能熟练进行PID参数整定,将自动控制系统投自动,这代表着工程技术人员的自动化技能水平,但很多人并未真正掌握PID控制和PID参数整定。

一、比例作用比例控制器实际上就是个放大倍数可调的放大器,即△P=Kp×e,式中Kp为比例增益,即Kp可大于1,也可小于1;e为控制器的输入,也就是测量值与给定值之差,又称为偏差。

要说明的是,对于大多数模拟控制器而言,都不采用比例增益Kp作为刻度,而是用比例度来刻度,即δ=1/Kc×100%。

也就是说比例度与控制器的放大倍数的倒数成比例;控制器的比例度越小,它的放大倍数越大,偏差放大的能力越大,反之亦然。

明白了上述关系,就可知道:比例度越大,控制器的放大倍数越小,被控参数的曲线越平稳;比例度越小,控制器的放大倍数越大,被控参数的曲线越波动。

比例控制有个缺点,就是会产生余差,要克服余差就必须引入积分作用。

二、积分作用控制器的积分作用就是为了消除自控系统的余差而设置的。

所谓积分,就是随时间进行累积的意思,即当有偏差输入e存在时,积分控制器就要将偏差随时间不断累积起来,也就是积分累积的快慢与偏差e的大小和积分速度成正比。

只要有偏差e存在,积分控制器的输出就要改变,也就是说积分总是起作用的,只有偏差不存在时,积分才会停止。

对于恒定的偏差,调整积分作用的实质就是改变控制器输出的变化速率,这个速率是通过积分作用的输出等于比例作用的输出所需的一段时问来衡量的。

积分时间小,表示积分速度大,积分作用就强;反之,积分时问大,则积分作用就弱。

如果积分时间无穷大,表示没有积分作用,控制器就成为纯比例控制器。

实际上积分作用很少单独使用,通常与比例作用一起使用,使其既具有把偏差放大(或缩小)的比例作用,又具有将偏差随时间累积的积分作用,且其作用方向是一致的。

过程控制课程设计流量比值控制

过程控制课程设计流量比值控制

一.设计任务分析设计任务的描述在了解、熟悉和掌握双闭环流量比值控制系统的工艺流程和生产过程的静态和动态特性的基础之上,根据生产过程对控制系统所提出的安全性、经济性和稳定性要求,应用控制理论对控制系统进行分析和综合,最后采用计算机控制技术予以实现;设计的目的通过对一个完整的生产过程控制系统的课程设计,使我们进一步加深对过程控制系统课程中所学内容的理解和掌握,提高我们将过程检测与控制仪表、自动控制原理、微机控制技术和过程工程基础等课程中所学到知识综合应用的能力;锻炼学生的综合知识应用能力,让学生了解一般工程系统的设计方法、步骤,系统的集成和投运;从而培养学生分析问题和解决问题的能力;设计的要求1.从组成、工作原理上对工业型流量传感器、执行机构有一深刻的了解和认识;2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型;3.根据其数学模型,选择被控规律和整定调节器参数;4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果;5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果;6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识;本次设计的具体要求1.控制电磁阀的开度实现流量的单闭环的PI调节;2.通过变频器控制电磁阀运行实现流量的单闭环的PI调节3.用比例控制系统使副回路的流量跟踪主回路的流量,满足一定的工艺生产要求二.总体设计方案方案论证根据实际生产情况,比值控制系统可以选择不同的控制方案,比值控制系统的控制方案主要有开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统几种;方案一:单闭环控制系统原理设计的系统框图如图所示;图单闭环流量比值控制系统原理图单闭环流量比值控制系统与串级控制系统相似,但功能不同;可见,系统中没有主对象和主调节器,这是单闭环比值控制系统在结构上与串级控制不同的地方,串级控制中的副变量是调节变量到被控变量之间总对象的一个中间变量,而在比值控制中,副流量不会影响主流量,这是两者本质上的区别;方案二:在单闭环控制系统基础上,增加一个主流量闭环控制系统,单闭环比值控制系统就成为双闭环比值控制系统,其方框图如图所示;双闭环较之于单闭环而言更加复杂,选用的设备也更多,但对于实际生产,生产效率和质量十分重要,因此对系统的稳定性和精确度要求较高;双闭环比值控制系统能实现主动量的抗扰动、定植控制,使主、从动量均比较稳定,从而使总物料也比较平稳,这样,系统总负荷也将是稳定;经过分析,当系统处于稳态时,比值关系是比较精确的;在动态过程中,比值关系相对而言不够精确;另外,如果主流量处于不变的状态,副流量控制系统又相当于一个定值控制系统;方案二的双闭环流量比值控制系统,是在主流量也需要控制的情况下,增加一个主流量闭环控制系统构成的,由于增加了主流量闭环控制系统,主流量得以稳定,从而使得总流量能保持稳定;双闭环比值控制系统主要应用于总流量需要经常调整的场合;如果没有这个要求,两个单独的闭环控制系统也能使两个流量保持比例关系,仅仅在动态过程中,比例关系不能保证;方案选择通过方案的论证可知,单闭环流量比值控制系统适用于负荷变化不大,主流量不可控制,两种物料间的比值要求较精确的生产过程;而双闭环流量比值控制系统适用于主副流量扰动频繁,负荷变化较大,同时保证主、副物料总量恒定的生产过程;该设计针对控制对象,主流量选择为氯化钾液体,而副流量则选择是硫酸液体,实际生产中,由于这两种化学成分并不十分稳定,因而可能造成扰动频繁,并且属于负荷变化较大;经过分析,选择方案二的双闭环流量比值控制系统来设计该生产控制系统更为合适;双闭环比值控制系统的结构在现代工业生产过程中,经常遇到生产工艺要求两种或多种物料流量成一定比例关系的问题,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故;如硝酸生产中的氨氧化炉,其进料是氨气和空气,两者的流量必须具有一个合适的比例,因为氨在空气中的含量,低温时在15~28%之间,高温时在14~30%之间都有可能产生爆炸的危险,严格控制其比例,使其不进入爆炸范围,对于安全生产来说十分重要;这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统;本设计被控对象为电动阀支路的流量和变频器-磁力泵支路的流量,每个支路上分别装有流量传感器对支路的流量进行测量,电动阀支路的流量是系统的主动量Q1,变频器—磁力泵支路的流量是系统的从动量Q2;要求从动量Q2能跟随主动量Q1的变化而变化,而且两者间保持一个定值的比例关系,即Q2/Q1=K,同时要求保证主动量与从动量保持总量恒定;双闭环比值控制系统的结构图,如图,若除去比值器,则为两个独立的单回路系统;事实上,若采用两个独立的单回路系统同样能实现它们之间的比值关系,但只能保证静态比值关系;当需要实现动态壁纸关系时,比值器就不能省;双闭环比值控制所用设备较多、投资较高,而且运行投入比较麻烦,只有在工业特定要求如严格控制两种物料比例的情况下使用;三.实验装置说明及使用系统简介“THJ-2型高级过程控制系统实验装置”是基于工业过程的物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置;该系统包括流量、温度、液位、压力等热工参数,可实现系统参数辨识,单回路控制,串级控制,前馈—反馈控制,比值控制,解耦控制等多种控制形式;系统组成本实验装置由被控对象和控制仪表两部分组成;系统动力支路分两路:一路由三380V交流磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵220V变频、涡轮流量计及手动调节阀组成;压力传感器、变送器:采用工业用的扩散硅压力变送器,含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿;压力传感器用来对上、中、下水箱的液位进行检测,其精度为级,因为为二线制,故工作时需串接24V直流电源;温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温;经过调节器的温度变送器,可将温度信号转换成4~ 20mADC电流信号;Pt100传感器精度高,热补偿性较好;流量传感器、转换器:流量传感器分别用来对电动调节阀支路、变频支路及盘管出口支路的流量进行测量;涡轮流量计型号:LWGY-10,流量范围:0~1.2m3/h,精度:%;输出:4~20mA标准信号;本装置用了三套涡轮流量传感器、变送器;电动调节阀:采用智能型电动调节阀,用来进行控制回路流量的调节;电动调节阀型号为:QSVP-16K;具有精度高、控制单元与电动执行机构一体化、操作方便等优点,控制信号为4~20mA DC或1~5V DC,输出4~20mA DC 的阀位信号,使用和校正非常方便;变频器:本装置采用日本三菱变频器,控制信号输入为4~20mADC或0~5VDC,~220V变频输出用来驱动三相磁力驱动泵;水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W;本装置采用两只磁力驱动泵;一只为三相380V恒压驱动,另一只为三相变频220V输出驱动;可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号;输出电压用来控制加热器加热,从而控制锅炉的温度;电磁阀:在本装置中作为电动调节阀的旁路,起到阶跃干扰的作用;电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃;图装置总貌图操作前准备实验前,要对被控对象及其控制系统所涉及的仪器仪表有清楚的认识;先将储水箱中贮足水量,电动调节阀可以通过阀F1-1、磁力泵、F1-2、F1-8流至下水箱;变频器—磁力泵支路可以通过阀F2-1、变频器控制的磁力泵、阀F2-5流至下水箱;两个支路的流量传感器分别为FT1与FT2;具体管道开关及器件位置如图所示:图管道开关及器件位置图AI智能调节仪1设置参考:;Sn=33;CF=0;ADDR=1;SV=15;diH=100;dil=0; 调节仪2:Sn=32;CF=8;ADDR=2; diH=100;dil=0;电动调节阀使用:电动阀上电后切不可用手来旋转黑色手轮,断开控制信号后,阀位有保持功能,也不可旋转手轮,只有在断开AC220V后,才可使用手动,在一般情况下无须手动;控制面板接线说明控制面板如图所示图控制面板图①强电部分:三相电源输出u、v、w 接到380v磁力泵的输入u、v、w端;变频器输出端A、B、C接到220v磁力泵输入A、B、C端;单相Ⅰ的L、N 并联接到调节仪1和调节仪2的L、N端;单相Ⅱ的L、N端接到电动调节阀电源的L、N端;单相Ⅲ的L、N端接到比值器电源的L、N端;②弱电部分:电动阀支路流量FT1信号并联接到调节仪1的1、2输入端和比值模块电压输入1的+、-端,比值模块的电压输出+、-端对应接到调节仪2的1、2端,FT2信号+、-端对应接到调节仪2的3、2输入端;调节仪1的输出7、5端对应接到电动调节阀控制信号+、-端,调节仪2的输出7、5端对应接到变频器4~20mA控制信号输入+、-端,变频器STF端、SD端和RH 端短接;24v电源输出+、-端接到流量计电源输入+、-端;变频器使用:开启变频器后,其指示灯会自动工作在“EXT”外部控制状态下,当我们设置好参数P30=1,P53=1,P62=4选择正转将STF和SD短接再将DC4~20mA控制信号给到变频器信号输入端子去,就可以自动控制了,其中0~5V电压输入不可用;手动控制频率时,可在控制信号线和正反转短接线都拔下的情况下,按下“PU/EXT”按钮,就可将变频器的工作状态从EXT切到PU状态下,将频率调到某一值,按下“SET”键,这时会有F和设定值交替闪烁3秒的状态,表示设定成功,按下“RUN”键,变频器会自动运行到设定频率,在运行状态下,可通过旋转频率设定器来调整当前运行频率;注意切不可在变频器带电机运行时,拔下任一根强电输入输出线,造成变频器在运行状态下突然断电或电机缺相,先将变频器停止按下“STOP”键,再在断开变频器输入电源的情况下接线; 磁力驱动泵1为380V磁力驱动泵,磁力驱动泵2为220V磁力驱动泵;本实验采用变频器控制泵打水,所以用到的泵为220V磁力驱动泵,开启实验设备前谨记保证F2-1阀门处于打开的状态;AI智能调节仪部分设置参数解释:Sn输入规格Sn=32:—1V100mV-500mVSn=33:1-5V电压输入dip小数点位dil输入下限显示值dih输入上限显示值oPL调节器输出下限值oPH调节器输出上限值CF系统功能选择CF=0为反作用调节方式CF=8为有分段功能限制功能的反作用调节方式Addr通讯地址run运行状态及上电信号处理run=0手动调节状态run=1自动调节状态四.单回路参数整定由于电动阀跟变频器控制下的磁力泵的过程传递函数是未知的,因此我们必须对这测出这两个被控对象特性;被控对象特性的测试方法通过分析建模可知,其数学模型为:1()W s()H sQ s()==1KTS+若令Q1s作为阶跃扰动,即Q1s=X0S,则HS=/1K TST+×0XS=K0XS-0X1KST+对上式取拉氏反变换得ht=KX01-tT e-式中T=RC位时间常数,K为放大系数;当t→∞时,h∞=KX0,因而有K=h∞/X0.当t=T时,则有:hT=KX01-e-1==∞由上可知一阶惯性环节的响应曲线是一单调上升的指数函数,如图7所示;当由实验求得图所示的阶跃响应曲线后,该曲线上升到稳态值的63%;所对应的时间,就是时间常数T;图阶跃响应曲线电动阀传递函数测试图为电动阀输入与输出特性的方框图:图电动阀输入与输出特性方框图在t 0时给电动阀的输入量,得出相应的曲线;如图所示图 电动阀的输入量特性曲线图当t —>∞时,h ∞=K 0x ,因而有K=h ∞/0x =输出稳态值/阶跃输入;故K==为了方便计算y *t1=, y *t2=,则可得可求得0T = 而HS= 1sKe Ts τ-+故HS= 6.4449.411 1.572se s -+4.3 变频器——磁力泵传递函数测试图为变频器——磁力泵输入与输出特性的方框图:图磁力泵输入与输出特性图与电动阀传递函数相同,得出其相应曲线如图所示:图 磁力泵输入与输出特性曲线图同理,当t —>∞时,h ∞=K 0x ,因而有K=h ∞/0x =输出稳态值/阶跃输入;故K==为了方便计算y *t1=, y *t2=,则可得可求得1T =而HS= 1sKe Ts τ-+故HS= 7.42815.8071 2.88se s -+4.4用MATLAB 进行仿真如图所示为电动阀、变频器——磁力泵两个回路在MATLAB 的仿真:图 MATLAB 仿真原理图其中两个回路的比例度&分别为40%和50%,I 值都为,仿真的响应曲线如图和图所示:图主变量流量曲线图 图副变量流量曲线图说明:左图为电动阀回路相应曲线,右图为变频器——磁力泵响应曲线,图中对Y 轴上进行了放大,以更好地显示波形在1附近的变化情况,由观察可得,这种PI 设置基本能够使响应曲线稳定在1左右;五. 比值控制系统参数调节比值系数的计算设流量变送器的输出电流与输入流量间成线性关系,当流量Q 由0→Q max 变化时,相应变送器的输出电流为4→20mA;由此可知,任一瞬间主动流量Q 1和从动流量Q 2所对应变送器的输出电流分别为I 1=416max11+⨯Q Q I 2=416max 22+⨯Q Q 式中Q 1max 和Q 2max 分别为Q 1和Q 2最大流量值;设工艺要求Q 2/Q 1=K,则式1可改写为Q 1=16)4(1-I Q 1max同理式2也可改写为Q 2=16)4(2-I Q 2max 于是求得12Q Q =4412--I I max 1max 2Q Q 折算成仪表的比值系数K ′为:K ′ = K max2max 1Q Q 比值控制系统参数的整定按单回路的镇定方法分别镇定调节器1、2的PID 参数,但在具体操作中先整定调节器1的参数,待主回路系统稳定后,在整定从动回路中的调节器2CF=8,即外给定的参数;在主回路运用上面提到的PI 值,输出流量调剂时间稍长,系统在长时间运行以后有一点偏差,因此稍为减小P 的作用,适当加大I 的值;根据工艺要求,从余差、衰减率、最大偏差、过渡时间考虑设置,主从回路的PI 现场整定如下表所示:六. 结果分析给定阶跃响应曲线图给定阶跃响应曲线图图为主回路曲线,红线表示给定值的变化,从给定流量20上升到30作为输入,绿线表示输出值的变化,由图可以看出输出值在输入值变化一段时间后能自动跟踪输入值,而且偏差不大,基本符合要求;图从动回路曲线图图为从动回路曲线,红线是自动跟踪主回路输出值作为从动回路的输出值,实现自动控制;在比例控制系统中,采用了K=1的比值控制,因此主回路的输出值与从动回路的输出值比值为1:1;紫色线是从动回路的输出量,由图能清楚地看到输出流量基本与输入值重合,从动回路的快速性很好;改变K的大小,能改变系统两种流量的比值;加入扰动时的响应曲线图加入扰动时的响应曲线图加入扰动以后,系统电动阀在流量信号反馈前保持原来的开度,因此图形出现一定的波动,在输入量不变的情况下,系统能很快地进行自动调节,最后达到平衡状态;图在主回路输出Q1出现波动的情况下,影响了从动回路的输入量,导致输出量跟随输入量Q1变化,当Q1稳定是,Q2也很快地趋于稳定;双闭环比值控制系统实际操作调试结果图3-4-3 双闭环比值控制系统实际操作调试结果双闭环比值控制系统实际操作输出曲线图3-4-3 双闭环比值控制系统实际操作输出曲线七.心得体会本次课程设计,经过老师的悉心指导和同学们的相互配合跟相互帮助,顺利完成了此次设计,这次课程设计,收获了很多,在查阅相关资料的时候,学到了许多书本以外的应用性的知识;在整个课程设计的过程中,接触到了以前从来都没有接触过的设备;学习了新设备的运用;经过2个星期的学习与调试,基本完成双闭环流量比值控制;这两星期中出现过很多很多问题,如特性曲线显示不平稳,锅炉加热管烧坏,两条回路比例无法调节等问题,经过逐一的检查,排除障碍,最后得到实验结果;经过这次课程设计,使我对THJ-2型高级过程控制系统实验装置有了基本的了解,对过程控制技术的原理及应用有了个进一步的理解,对单回路控制,比值控制,双闭环回路控制有了进一步的深入研究;加强了我对过程控制技术的认识,明白了过程控制系统技术在实际应用的重要性;八.参考文献1 王再英,刘淮霞,陈毅静.过程控制系统与仪表M.北京:机械工业出版社,20062 卲裕深,戴先中 .过程控制工程. 北京:机械工业出版社,3 孙炳达.自动控制原理.北京:机械工业出版社,。

比值控制系统

比值控制系统

比值控制系统问题的提出:在工业生产过程中,要求两种或多种物料流量成一定比例关系 要求严格控制比例。

最常见的是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产和环保的要求。

造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆,许多化学反应的诸个进料要保持一定的比例。

例如1、氨合成生产过程3H2+1N2=2NH3,要求H2和N2完全按照3:1进料。

2、造纸过程中,对纸浆浓度有要求,进料浓纸浆和水的进料就要满足一定比例。

如果有三个进料,对三个进料之间需要满足一定比例关系。

而我们之前学习的控制系统的控制达不到这样的控制要求。

因此就要用到一个新的控制————比值控制系统基本概念:1.比值控制系统(流量比值控制系统):实现两个或两个以上参数符合一定比例关系的控制系统。

2.主物料或主动量:在保持比例关系的两种物料中处于主导地位的物料,称为主物料;表征主物料的参数称为主动量(主流量),用F1表示。

3.从物料或从动量:按照主物料进行配比,在控制过程中跟随主物料变化而变化的物料称为从物料;表征从物料特性的参数称为从动量(副流量),用F2表示。

4.有些场合,用不可控物料为主物料,用改变可控物料即从物料来实现比值关系。

5. 比值控制系统就是要实现从动量与主动量成一定的比值关系:K= F2/ F1 F2—为从动量A F1—为主动量B (从动量/主动量=K 常数)在比值控制系统中 从动量是跟随主动量变化的物料流量,因此,比值控制系统实际上是一种随动控制系统。

比值控制系统的类型:开环比值控制系统单闭环比值控制系统双闭环比值控制系统变比值比值控制系统(串级比值控制系统)开环比值控制系统开环比值控制系统是最简单的比值控制系统,同时也是一个开环控制系统。

随着F1的变化,F2跟着变化,满足F2=KF1的要求。

(阀门开度与F1之间成一定的比例关系)。

图P162 图5.1开环比值控制缺点:1.当F2因管线两端压力波动而发生变化时,系统不起控制作用,即F2本身无抗干扰能力。

(工业过程控制)7.比值控制

(工业过程控制)7.比值控制
安全保护
为防止异常情况对系统造成损害,需 设计安全保护措施,如联锁、紧急停 车等。
控制参数的整定
确定控制参数
根据控制目标和工艺要求,确定合适的控制参数,如比例系 数、积分时间等。
整定控制参数
通过实验或仿真,调整控制参数,以达到最佳的控制效果。
05
比值控制系统的调试与优化
系统调试
硬件设备检查
确保所有硬件设备如传感器、执行器、控制 器等都已正确安装并正常工作。
03
程的稳定和排放达标。
比值控制的重要性和优势
提高产品质量和产量
通过精确控制物料比例,可以 稳定生产过程,提高产品质量
和产量。
节能降耗
合理地控制物料比例可以降低 能耗和物耗,提高生产效率和 经济性。
减少环境污染
通过精确控制反应过程,可以 减少副反应和废弃物的产生, 降低对环境的污染。
提高生产安全
比值控制可以减少人工操作和 人为误差,降低生产事故的风
参数整定
根据实际工艺需求,对控制器参数进行整定, 以获得最佳的控制效果。
软件配置
根据比值控制需求,对控制软件进行配置, 包括输入输出信号、控制算法等。
模拟测试
在调试过程中,通过模拟测试来验证比值控 制系统的功能和性能。
系统优化
01
控制策略优化
对比值控制算法进行优化,以提高 系统的响应速度和稳定性。
求进行。
调节阀的安装位置和方式应合理 选择,以保证调节的准确性和可
靠性。
03
比值控制策略
固定比值控制
总结词
固定比值控制是一种简单的比值控制策略,通过设定固定的比例来控制两个或多 个输入流之间的输出比例。
详细描述
固定比值控制通常用于工业过程中需要保持恒定比例的场合,例如气体混合、液 体配料等。通过设定固定的比例系数,可以确保输入流之间的输出比例保持不变 。这种控制方法简单易行,但缺乏灵活性,无法应对输入流变化的情况。

PID控制器的参数整定(经验总结)

PID控制器的参数整定(经验总结)

PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

选择参数控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

2008年全国化工仪表技能大赛试题 5

2008年全国化工仪表技能大赛试题 5

仪表维修工技能大赛应知试题与答案试卷五一、选择题1.串级控制系统设计中,副回路应包含()A.较多干扰;B.主要干扰;C.特定的干扰;D.主要干扰和尽量多的干扰答案D2.离心泵的负荷控制系统中,调节阀应安装在()A.离心泵的出口;B.离心泵的进口;C.进、出口均可;D.回流或进口答案A3.单纯前馈控制系统是一种对()进行补偿的控制系统A:测量值与给定值的偏差;B:被控变量的变化;C:干扰量的变化;D:特定干扰的变化答案D4.控制阀前后压差较大或口径较大时,流体为一般介质,可选用()阀。

A.单座阀 B.双座阀 C.蝶阀 D. 球阀答案B5.积分控制规律的特点是()A:控制及时,能消除余差;B:控制超前,能消除余差;C:控制滞后,能消除余差;D:控制及时,不能消除余差答案C6.参数整定后、均匀控制系统的过渡过程应是()过程。

A:等幅振荡;B:发散振荡;C:非周期衰减;D:周期性衰减振荡答案:C7.均匀控制系统的目的是()A:液位、流量都稳定在一定的数值;B:保证液位或压力的稳定;C:保证流量的稳定D液位、流量都在一定范围内缓慢波动。

答案:D8.控制阀工作流量特性取决于()。

A.阀芯形状 B.配管状况 C.阀前后压差 D. 阀芯形状及配管状况答案:D9.由于微分规律有超前作用,因此控制器加入微分作用主要用来()。

A. 克服控制对象的滞后和大幅的干扰 B.克服大纯滞后和大幅的干扰C.克服控制对象的容量滞后和大幅的干扰 D. 克服对象的纯滞后和大幅的干扰答案:A10.分程控制系统,下列说法正确的是()A.不同工况被控变量不同;B.不同工况控制手段不同;C.不同工况控制目的不同;D.属于简单控制系统答案:B11. 锅炉汽包三冲量控制中的三个冲量是指()。

A:汽包液位、蒸汽流量、燃料流量;B:汽包液位、蒸汽流量、给水流量;C:蒸汽流量、燃料流量、给水流量;D:汽包液位、燃料流量、给水流量答案:D12.比值控制系统的参数整定后过渡过程曲线应为()。

比值控制

比值控制

§5-1 基本概念及结构方案
(四)变比值控制系统 很多情况下比值不是最终目的,而是保证产品产量、质量的手段。因 此,比值系数应根据质量要求进行修正。于是出现了按照一定工艺指标自 动修正比值系数的变比值控制系统(串级比值控制系统)。
设定值
+
y
主控制器
-
+
比值控制器
-
执行器
副流量对象
主流量对象
Q2 Q1
dI2 dQ2
Q2 Q20
2 Q2
2Q20
2 Q2 max
16
讨论:采用差压法测流量时,静态放大系数随流量的负荷变化 而变化。负荷(稳态工作点)升高,放大系数增大,系 统稳定性下降,反之,系统稳定性提高。 解决方法:负荷变化较大时,流量测量要用线性检测仪表。
§5-2 比值控制系统的设计和实施
§5-2 比值控制系统的设计和实施
若使
Q2 ( S ) K Q1 ( S )
则可保证从动量与主动量严格同步 。
为此可求得补偿器的传递函数:
Wz ( S ) K [1 Wc ( S )Wv ( S )Wo ( S ) H m 2 ( S )] Wk ( S )Wc ( S )Wv ( S )Wo ( S ) H m1 ( S ) 1 Wc ( S )Wv ( S )Wo ( S ) H m 2 ( S ) Q2 max Wc ( S )Wv ( S )Wo ( S ) H m1 ( S ) Q1max Wk ( S ) K Q1max Q2 max
2 Q2 2 Q1 2 I 2 4 Q2 2max I1 4 Q1max ' 2
即: K
2
K
'
仪表比值系数为:

Honeywell_DCS_控制回路PID参数整定方法

Honeywell_DCS_控制回路PID参数整定方法

Honeywell PKS系统控制回路PID参数整定方法鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。

修改PID参数必须有“SUPV(班长)”及以上权限权限,具体权限设置切换方法如下;一、打开要修改的控制回路细目画面,翻到下图所示的页面(Loop Tune),修改PID控制回路整定的三个参数K,T1,T2;二、PID参数代表的含义Control Action:控制器的作用方式,正作用(DIRECT),反作用(REVERSE);Overal Gain(K):比例增益(放大倍数),范围为0.0~240.0;T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用;T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。

三、PID参数的作用(1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。

K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。

(2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。

(3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。

四、控制器的选择方法(1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统;(2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;(3)PID控制器的选择:它适用于负荷变化大,容量滞后较大,控制质量要求又很高的控制系统,比如温度控制系统。

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。

它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。

PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。

下面将详细介绍PID控制的原理和参数整定方法。

一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。

当偏差较大时,调节量增大;当偏差较小时,调节量减小。

此项控制可以使系统快速响应,并减小系统稳态误差。

2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。

积分控制的作用主要是消除系统的稳态误差。

当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。

3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。

当偏差的变化率较大时,微分量会增大,以提前调整控制量。

微分控制可以减小系统的超调和振荡。

综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。

二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。

它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。

2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。

在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。

根据振荡周期和振荡增益的比值来确定P、I和D的参数值。

3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。

通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。

4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。

该方法可以通过在线自整定或离线自整定来实现。

流量双闭环比值控制pid参数增定

流量双闭环比值控制pid参数增定

流量双闭环比值控制pid参数增定在化工、炼油或其他工业生产过程中。

工艺中常需要两中或两中以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。

实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

常以保持两种或两种以上物料流量为一定比例关系的系统,称之为流量比值控制系统[1]。

在需要保持比值关系的两种物料中,必有一种物料处于主导地位,这种物料称之为主物料,表征这种物料的的参数称之为主动量,由于在生产过程控制中主要是流量比值控制系统。

所以主动量也称为主流量,用F1表示;而另一种物料按主物料进行配比,在控制过程中随主物料而变化,因此称为从物料,表征其特性的参数称为从动量或副流量,用F2表示。

比值控制系统就是要实现副流量:F2与主流量F1成一定比例关系,满足关系: K =F2/F1,式中 K 为副流量与主流量的流量比值。

1.控制系统设计分析1.1控制要求(1)在化工、炼油及其它工业生产工程中,工艺上常需要两种或两种以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。

在本实践中,将仿真比值控制系统,保持两个支路的流量Q1与Q2成一定比例关系,即: K =Q2?MQ1。

(2)当存在扰动时,两个流量仍能保持一定的比例,因此要求系统具有较好的抗干扰能力。

2.控制对象特征(1)本系统采用双闭环比值控制,其中支路1的流量Q1为主流量,支路2的流量Q2为副流量。

整个系统使用两个水泵,一个电磁流量计,一个涡轮流量计,一个电动调节阀以及一个变频器。

(2)在本次设计中,对象包括调节阀,及其所连接的管路。

(3)系统扰动大,工况不是很稳定。

(4)广义对象传函符合高阶特性,但 PID 控制不要求对象模型精度很高,故可以用一阶传递函数来模拟。

(5)系统仿真分析该控制系统具备两个闭合回路,主回路和副回路,两个回路通过比值器相连,主回路的输出量是副回路的输入量,两个回路相辅相成,但是又相互独立。

比值控制

比值控制

比值控制系统问题的提出:在工业生产过程中,要求两种或多种物料流量成一定比例关系,要求严格控制比例。

最常见的是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产和环保的要求:造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆;许多化学反应的诸个进料要保持一定的比例。

例如:1、氨合成生产过程:3H2+1N2=2NH3要求H2和N2完全按照3:1进料。

2、造纸过程中,对纸浆浓度有要求,进料浓纸浆和水的进料就要满足一定比例。

如果有三个进料,对三个进料之间需要满足一定比例关系。

而我们之前学习的控制系统的控制达不到这样的控制要求。

因此就要用到一个新的控制————比值控制系统基本概念:1.比值控制系统(流量比值控制系统):实现两个或两个以上参数符合一定比例关系的控制系统。

2.主物料或主动量:在保持比例关系的两种物料中处于主导地位的物料,称为主物料;表征主物料的参数,称为主动量(主流量),用F1表示。

3.从物料或从动量:按照主物料进行配比,在控制过程中跟随主物料变化而变化的物料,称为从物料;表征从物料特性的参数,称为从动量(副流量),用F2表示。

4.有些场合,用不可控物料为主物料,用改变可控物料即从物料来实现比值关系。

5. 比值控制系统就是要实现从动量与主动量成一定的比值关系:K= F2/ F1 F2—为从动量A , F1—为主动量B (从动量/主动量=K 常数)在比值控制系统中,从动量是跟随主动量变化的物料流量,因此,比值控制系统实际上是一种随动控制系统。

比值控制系统的类型开环比值控制系统单闭环比值控制系统双闭环比值控制系统变比值比值控制系统(串级比值控制系统)开环比值控制系统开环比值控制系统是最简单的比值控制系统,同时也是一个开环控制系统。

随着F1的变化,F2跟着变化,满足F2=KF1的要求(阀门开度与F1之间成一定的比例关系。

(图P162 图5.1)开环比值控制缺点1.当F2因管线两端压力波动而发生变化时,系统不起控制作用,即:F2本身无抗干扰能力。

PID参数整定方法

PID参数整定方法

2·2 用试凑法确定PID 控制器参数试凑法就是根据控制器各参数对系统性能的影响程度;边观察系统的运行;边修改参数;直到满意为止..一般情况下;增大比例系数KP 会加快系统的响应速度;有利于减少静差..但过大的比例系数会使系统有较大的超调;并产生振荡使稳定性变差..减小积分系数KI 将减少积分作用;有利于减少超调使系统稳定;但系统消除静差的速度慢..增加微分系数KD 有利于加快系统的响应;是超调减少;稳定性增加;但对干扰的抑制能力会减弱..在试凑时;一般可根据以上参数对控制过程的影响趋势;对参数实行先比例、后积分、再微分的步骤进行整定..2·2·1 比例部分整定..首先将积分系数KI 和微分系数KD 取零;即取消微分和积分作用;采用纯比例控制..将比例系数KP 由小到大变化;观察系统的响应;直至速度快;且有一定范围的超调为止..如果系统静差在规定范围之内;且响应曲线已满足设计要求;那么只需用纯比例调节器即可..2·2·2 积分部分整定..如果比例控制系统的静差达不到设计要求;这时可以加入积分作用..在整定时将积分系数KI 由小逐渐增加;积分作用就逐渐增强;观察输出会发现;系统的静差会逐渐减少直至消除..反复试验几次;直到消除静差的速度满意为止..注意这时的超调量会比原来加大;应适当的降低一点比例系数KP..2·2·3 微分部分整定..若使用比例积分PI 控制器经反复调整仍达不到设计要求;或不稳定;这时应加入微分作用;整定时先将微分系数KD 从零逐渐增加;观察超调量和稳定性;同时相应地微调比例系数KP 、积分系数KI;逐步使凑;直到满意为止2·3 扩充临界比例度法这种方法适用于有自平衡的被控对象;是模拟系统中临界比例度法的扩充..其整定步骤如下:1选择一个足够短的采样周期T..所谓足够短;就是采样周期小于对象的纯之后时间的1 /10..2让系统作纯比例控制;并逐渐缩小比例度 =1/KP 是系统产生临界振荡..此时的比例度和振荡周期就是临界比例度 K 和临界振荡周期TK..3选定控制度..所谓控制度;就是以模拟调节器为基准;将系统的控制效果与模拟调节器的控制效果相比较;其比值即控制度..对于电机快速跟随调节;一般采用PD 控制算法;积分项的加入会导致系统的滞后;使得电机无法做到快速跟随运动..此外电机为一阶惯性环节为111+s T k ..小车的传递函数为s e s T s T K s T k s T k s G s G s G τ-++=++==)1)(1(1*1)()()(21221121 T1和T2为小车两电机的时间常数..。

PID参数整定方法

PID参数整定方法

2.3 PID参数整定方法2.3.1 工程整定法PID数字调节器的参数,除了比例系数K p,积分时间T i和微分时间T d外,还有1个重要参数即采样周期T。

1.采样周期T的选择确定从理论上讲,采样频率越高,失真越小。

但是,对于控制器,由于是依靠偏差信号来进行调节计算的,当采样周期T 太小,偏差信号也会过小,此时计算机将失去调节作用;若采样周期T太长,则将引起误差。

因此采样周期T必须综合考虑。

采样周期的选择方法有两种,一种是计算法,另一种是经验法。

计算法由于比较复杂,特别是被控对象各环节时间常数难以确定,工程上较少用。

经验法是一种凑试法,即根据人们在控制工作实践中积累的经验以及被控对象的特点,先选择一个采样周期T,进行试验,再反复改变T,直到满意为止。

2.K p,T i,T d的选择方法1)扩充临界比例度法扩充临界比例度法是简易工程整定方法之一,用它整定K p,T i,T d的步骤如下。

选择最短采样周期T min,求出临界比例度S u和临界振荡周期T u。

具体方法是将T min输入计算机,只有P环节控制,逐渐缩小比例度,直到系统产生等幅振荡。

此时的比例度即为临界比例度S u,振荡周期称为临界振荡周期T u。

选择控制度为:(2-15)通常当控制度为1.05时,表示数字控制方式与模拟方式效果相当。

根据计算度,查表2-1可求出K p,T i,T d。

表2-1 扩充临界比例度法整定参数表控制度控制规律参数T K p T i T d1.05PIPID0.03T u0.014T u0.53S u0.63S u0.88T u0.49T u/0.14T u1.2PIPID 0.05T u0.43T u0.49S u0.47S u0.91T u0.47T u/0.16T u1.5PIPID 0.14T u0.09T u0.42S u0.34S u0.99T u0.43T u/0.20Tu2.0PIPID 0.22T u0.16T u0.36S u0.27S u1.05T u0.4T u/0.22T u2)扩充响应曲线法若已知系统的动态特性曲线,可以采用和模拟调节方法一样的响应曲线法进行整定,其步骤如下。

PID参数调节原理和整定方法ppt课件

PID参数调节原理和整定方法ppt课件
34
13
纯P作用下的阶跃响应
纯P调节为有差调节 比例作用越强,稳态误差越小,响应快,但超调大
14
PI作用下的阶跃响应
引入积分,消除了余差 积分作用越强,响应速度越快,超调大,振荡加剧
15
PI作用下的阶跃响应
在同样积分作用下,减小比例作用,可增加系统稳定。
16
PD作用下的阶跃响应
引入微分项,提高了响应速度,增加了系统的稳定性, 但不能消除系统余差
D微分调节
D:微分调节
微分调节一般只与偏差的变化成比例,偏差变化越剧 烈,调节输出作用越强。从而及时抑制偏差增长,提 高系统稳定性。
微分调节主要用于调节对象有大的传递滞后和容量滞 后。(例如温度与大容量液位)
微分一般用微分时间表示,单位S,用TD表示。在实 际使用过程中,值越大作用越强。
要注意,微分调节器不能单独作用,必须配合使用,并且微分 调节无法消除余差,只对偏差变化速度有反应,与偏差大小无 关。
32
总结
控制回路自控的投用并不简单在于PID参 数的好坏,它与现场阀门响应速度及灵敏 度相关、测量的准确性息息相关;
因此希望优秀的工艺人员与用心的仪表人 员共同努力,共同提高我们国际化的大石 化自控率,同时也为减轻大家的劳动强度。
33
总结
PID参数整定顺口溜
参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低
PID参数调节原理和整定方法

PID参数调节原理和整定方法

PID参数调节原理和整定方法

实时曲线观察窗口
CS3000系统PID参数整定方法

无扰动切换பைடு நூலகம்


勿扰动切换:控制回路手动(MAN)到自动 (AUT)状态切换时,保证设定值(SV)与测 量值(PV)保持一致或相当。 PID控制只有在控制回路处于AUT状态,也就 是负反馈回路时才有用。
CS3000系统PID参数整定方法



改变模式
手动
自动
串级
CS3000 调整窗口
进行PID参数调节时,建议按下保留按钮 ,以方便在切换画面后观察保留的趋势 ,PID参数调整完后必须取消。 要进行PID参数调节,首先必须要有权限 。显示“=”表示可以进行参数修改,显 示“:”表示不能对参数进行修改。默 认值班长有权限修改。
比例带表;值越大,作用越小,范围0-1000 % 积分时间;值越大,作用越小,范围0.1-10000s 微分时间;值越大,作用越大,范围0-10000s
CS3000系统常用PID参数
P (%) 20~60 30~70 20~80 40~100 I D (s) (s) 180~600 3~180 24~180 60~300 6~60
温度 压力 液位 流量
IA 系统PID参数整定
要进行PID参数调节,首先必须要有权限 ,默认情况下值班长有权限修改。
CS3000系统PID参数整定方法

串级回路PID参数调整

因为串级调节系统一般应用于容量滞后较大的 场合,必须加微分,所以主调一般取PID,而 副调一般取P就可以了。但是副参数是流量, 压力时,可加一定的I作用,这里也不是为了 消除余差,只是流量,压力付对象时间常数太 小,导致副调节器的P不能太小,调节作用弱, 加上积分是为了使副参数偏离给定值太远。

第7章 new杨延西版

第7章 new杨延西版
生产过程中,经常需要几种物料的流量保持一 定的比例关系。例如,在锅炉的燃烧系统中,要保 持燃料和空气量的一定比例,以保证燃烧的经济性。 定义:实现两个或多个参数符合一定比例关系 的控制系统,称为比值控制系统。 例如:要实现两种物料的比例关系,则表示为: Q2=K Q1 其中:K—比值系数;Q1—主流量; Q2—副流量 。
主讲教师:杨延西 教授 联系电话:82312006-276 办公地点:教学五楼107
过程控制与自动化仪表 第7章
——西安理工大学信控中心
教学内容

本章主要介绍实现特殊要求的过程控制 系统,它们分别是:
– 1) 比值控制系统
– 2) 均匀控制系统 – 3) 分程控制系统 – 4) 自动选择性控制系统
而仪表比值公式:
(I 2 4) K (I1 4)
'
得换算公式:
Q1max K K Q 2max
'
过程控制与自动化仪表 第7章
——西安理工大学信控中心
(2)流量与测量信号之间成非线性关系 利用节流原理测流量时,如差压流量传感器(孔 板),流量计输出信号与流量的平方成正比: Q C P , 则I CQ 2 2 则 Q1 Q2
I1 Q
2 1max
16 4
I2
2
Q
代入工艺比值公式:
2 2max
16 4
2 2 2 Q ( I - 4) Q Q ' 2max 2 2max K2 2 K 2 2 Q12 Q1max ( I1 - 4) Q1max
得换算公式:
2 Q K ' K 2 1max 2 Q2max
0.766 0.766 I0 4 (20 4) 4 16 12.27 mA 1 0 1 0.875 或I 0 4 16 18 mA 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目五 比值控制系统
5.1 概述
工业生产过程中,经常需要两种或两种以上的物 料按一定比例混合或进行反应。一旦比例失调,就会 影响生产的正常进行,影响产品质量,浪费原料,消 耗动力,造成环境污染,甚至造成生产事故。最常见 的是燃烧过程,燃料与空气要保持一定的比例关系, 才能满足生产和环保的要求;造纸过程中,浓纸浆与 水要以一定的比例混合,才能制造出合格的纸浆;许 多化学反应的多个进料要保持一定的比例。因此,凡 是用来实现两种或两种以上的物料量自动地保持一定 比例关系以达到某种控制目的的控制系统,称为比值 控制系统。
项目五 比值控制系统
比值控制系统
内容提要 生产过程中经常要求两种或两种以上的物料 以一定的比例混合以后参加化学反应,以保证反 应安全、充分并节约能量,由此提出了比值控制。 本章将重点讲述比值控制系统的常见结构类型、 比值系数的计算、比值控制系统方案的实施、实 施中的有关问题及比值控制系统的投运与整定的 步骤。
项目五 比值控制系统 如图5.3所示,为单闭环比值控制系统 实例。丁烯洗涤塔的任务是用水除去丁烯馏 分中所夹带的微量乙腈。为了保证洗涤质量, 要求根据进料流量配以一定比例的洗涤水量。 总之,单闭环比值控制系统不仅能使从 动量的流量跟随主动量的变化而变化,实现 主、从动量的精确流量比值,还能克服进入 从动量控制回路的扰动影响。因此,其主、 从动量的比值较为精确,而且比开环比值控 制系统的控制质量要好。单闭环比值控制系 统的结构形式较简单。所增加的仪表投资较 少,实施起来亦较方便,而控制品质却有很 大提高,因而被大量应用于生产过程控制, 尤其适用于主物料在工艺上不允许进行控制 的场合。
项目五 比值控制系统
通常,工业生产过程中采用闭环比值控制系统。为了调节从 动量,从动量应组成闭环,因此,根据主动量是否组成闭环,可 分为单闭环比值控制系统和双闭环比值控制系统。如果比值K来 自于另一个控制器,即主、副物料的流量比不是一个固定值,则 该比值控制系统就是变比值控制系统。
项目五 比值控制系统
项目五 比值控制系统 比值控制系统是控制两种物料流量比值的控制系统,一种物料 需要跟随另一种物料流量的变化。在需要保持比例关系的两种物料 中,必有一种物料处于主导地位,称此物料为主动量(或主物料), 用表示;而另一种物料以一定的比例随的变化而变化,称为从动量 (或从物料),用表示。由于主、从物料均为流量参数,故又分别 称为主流量和副流量。例如,在燃烧过程的比值控制系统中,当燃 料量增加或减少时,空气流量也要随之增加或减少,因此,燃料量 应为主动量,而空气量为从动量。比值控制系统就是要实现从动量 与主动量的对应比值关系,即满足关系式
项目五 比值控制系统
5.2.2 双闭环比值控制系统
双闭环比值控制系统是为了克服单闭环比值控制系统主动量 不受控、生产负荷在较大范围内波动的不足而设计的。在主动量 也需要控制的情况下,增加一个主动量控制回路,单闭环比值控 制系统就成为双闭环比值控制系统,如图5.4所示。
图5.4 双闭环比值控制系统
项目五 比值控制系统 如图5.5所示,为某溶剂厂生产中采用的二氧化碳与氧气流量 的双闭环比值控制系统的实例。双闭环比值控制系统由于主动量 控制回路的存在,实现了对主动量的定值控制,大大克服了主流 量干扰的影响,使主流量变得比较平稳,通过比值控制副流量也 将比较平稳。这样不仅实现了比较精确的流量比值,而且也确保 了两物料的总流量(即生产负荷)能保持稳定,这是双闭环比值 控制的一个主要优点。
5.2.1 单闭环比值控制系统
单闭环比值控制系统是为了克服开环比值控制方案的不足, 在开环比值控制系统的基础上,增加一个从动量的闭环控制系统, 如图5.2所示。
图5.2 单闭环比值控制系统与串级控制系ຫໍສະໝຸດ 的区别?项目五 比值控制系统
在稳定状态下,主、副流量满足工艺要求的比 值,F2/F1=K。当主流量变化时,其主流量信号F1 经变送器送到比值计算装置(通常为乘法器或比值 器),比值计算装置则按预先设置好的比值使输出 成比例地变化,也就是成比例地改变副流量控制器 的设定值,此时副流量闭环系统为一个随动控制系 统,从而使F2跟随F1变化,使得在新的工况下,流 量比值K保持不变。当主流量没有变化而副流量由 于自身扰动发生变化时,副流量闭环系统相当于一 个定值控制系统,通过自行控制克服扰动,使工艺 要求的流量比值仍保持不变。
图5.5 二氧化碳与氧气流量双闭环比值控制系统
F2 =K F 1
(5-1)
式中,K为从动量与主动量的比值。 由此可见,在比值控制系统中,从动量是跟随主动量变化的物 料流量,因此,比值控制系统实际上是一种随动控制系统。
项目五 比值控制系统
5.2 比值控制系统的类型
按照系统结构,可将比值控制系统分为单闭环、双闭环和变 比值控制系统三种结构类型。 从控制原理看,比值控制系统属于前馈控制系统。开环比值 控制系统是最简单的比值控制系统。当F2因管线两端的压力波动 而发生变化时,系统不起控制作用,此时难以保证F2与F1间的比 值关系。也就是说,开环比值控制系统对来自于从动量所在管线 的扰动并无抗干扰能力,只能适用于从动量较平稳且对比值要求 不高的场合。而实际生产过程中,对F2的扰动常常是不可避免的, 因此生产上很少采用开环比值控制系统。
图5.3 丁烯洗涤塔进料与 洗涤水之比值控制
项目五 比值控制系统
单闭环比值控制系统中,虽然两物料比值一 定,但由于主动量是不受控制的,所以总物料量 (即生产负荷)是不固定的,这对于负荷变化幅度 大—物料又直接去化学反应器的场合是不适合的。 因负荷的波动有可能造成反应不完全,或反应放出 的热量不能及时被带走等,从而给反应带来一定的 影响,甚至造成事故。此外,这种方案对于严格要 求动态比值的场合也是不适应的。因为这种方案的 主动量是不定值的,当主动量出现大幅度波动时, 从动量相对于控制器的设定值会出现较大的偏差, 也就是说,在这段时间里,主、从动量的比值会较 大地偏离工艺要求的流量比,即不能保证动态比值。
相关文档
最新文档