动力学2习题课
大学物理课件第二章质点动力学

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
结构动力学_克拉夫(第二版)课后习题

例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。
为了计算此结构的动力特性,对这个体系进行了自由振动试验。
试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。
在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。
在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。
从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。
2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。
如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求(a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。
2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。
如果体系在初始条件in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。
假设:(a) c=0(无阻尼体系); (b) c=2.8 kips ·s/in 。
2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。
如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。
例题E3-1 一种便携式谐振荷载激振器,为在现场测量结构的动力特性提供了一种有效的手段。
用此激振器对结构施以两种不同频率的荷载,并分别测出每种情况下结构反应的幅值与相位。
由此可以确定单自由度体系的质量、刚度和阻尼比。
高等动力学课后习题答案及考题解答

J ξη =
w
(V )
∫ ρξη dV = ρ ∫ ( x cos θ + y sin θ )( y cos θ − x sin θ )dV
(V )
w w
⎧ξ = x cos θ + y sin θ ⎩η = y cos θ − x sin θ
= ( ∫ ρ y 2 dV −
(V ) z =0
.n
∫ ρ x dV ) sin θ cos θ + (cos
ψ = ψ t = 15t
ω y = ω sinψ = 20sin15t
i
ω x = ω cosψ = 20 cos15t
∴ω = 20 cos15ti + 20sin15t j ⇒ ε = −300sin15ti + 300 cos15t j ⇒ ε = 300
理工大机械论坛让你学习更轻松!
.cn
2 (V )
2 (V )
∫ ρ(x
(V )
∫ ρ(z
∫ ρ(x
tjx
(V )
∵ Jz =
∫ ρ (x
2
+ y 2 )dV
Jx =
∫ ρ (z
2
+ y 2 )dV
Jy =
+ z 2 )dV ⇒
即该刚体为薄片平面
2、 ξ 轴在 xoy 中的方向余弦为 (cos θ ,sin θ )
J ξ = α ξ2 J x + βξ2 J y − 2α ξ βξ J xy = cos 2 θ J x + sin 2 θ J y − 2sin θ cos θ J xy
= ω × j' ⋅ k ' = ω ⋅ ( j' × k ' ) = ω ⋅ i' = p
物理化学全程导学及习题全解259-186 第十二章化学动力学基础(二)

第十二章 化学动力学基础 (二)本章知识要点与公式1. 碰撞理论双分子碰撞频率 :2AB AB A B Z pd L c = 22AA AA A 2Z d L π= 临界能c E 与活化能a E 的关系:12a c E E RT =+ 用简单碰撞理论计算双 分子反应的速率常数:2AB aEk d RT π⎛⎫=- ⎪⎝⎭ 2AA 2a E k d RT π⎛⎫=- ⎪⎝⎭ 概率子Pexp a E k PA RT ⎛⎫=- ⎪⎝⎭2ABA d π= A P A =n n n n 2. 过渡态理论用统计热力学方法计算速率常数:,0B B B exp E k T f k h f RT π≠⎛⎫=- ⎪⎝⎭用热力学方法计算速率常数:()0010B r m r m exp exp nk T S H k c h R RT ≠≠-⎛⎫⎛⎫∆∆=- ⎪ ⎪⎝⎭⎝⎭对于双分子理想气体反应:1n000B r m r m exp exp k T S H P k h RT R RT -≠≠⎛⎫⎛⎫⎛⎫∆∆=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.原盐效应稀溶液中,离子强度对反应速率的影响: A B 0lg2kz z k = A z 与B z 同号,产生正的原盐效应,I ↑ k ↑;A z 与B z 昇号,产生负的原盐效应,I k ↑↓。
4. 光化学反应光化学第一定律:只有被分子吸收的光才能引起分子的光化学反应。
光化学第二定律:在初级反应中, 一个反应分子吸收一个光子而被活化。
1 mol 光子能量(1 Einstein ) 101197J m mol Lhcu Lh νλλ-.===⋅⋅量子产率 ar I ϕ=5. 催化反应催化剂通过改变反应历程,改变反应的表观活化能来改变反应速率,只能缩短达到平蘅的时间,而不能改变平蘅的组成。
酶催化反应历程( Michaelis – Menten 机理)米氏常数12m 1k kK k -+=当[]S →∞ 时 []m m m111S K r r r =⋅+将1r对[]1S 作图,可求m K 和m r .典型俐题讲解例 1 500K 时,实验测得 NO 2 分解反应的提前因子为 61312.0010mol m s --⨯⋅⋅,碰撞截面为1921.0010m -⨯,试计算该反应的概率因子 P解 :2AA2A d π=c 2σ= ()()19223-12 1.0010m 602310mol-=⨯⨯⨯.⨯7-13133710mol m s -=.⨯⋅⋅61371320010mol m s 33710mol m s A P A --1∞--1∞.⨯⋅⋅==.⨯⋅⋅ 例 2 实验测得 N 2O 5 分解反应在不同温度时的反应速率常数,数据列于表中。
飞行动力学习题课(二)2014讲解

2 1 2i 0.1826 0.3651i v2 0.9129 Flight Dynamics
(3)
由
1,2 n in 1 2
பைடு நூலகம்
得: 0.4461 (4)
0
n 2.2418
( )
-0.5 -1
-1.5 0
0.5
2、横航向三种典型模态及其物理成因 3、模态简化分析的依据及方法 4、横航向动操纵性和静操纵性的概念 5、飞机对方向舵和副翼操纵的响应特性
Flight Dynamics
10.1试说明横航向动稳定性和静稳定性的 区别与联系
动稳定性:飞机在受扰作用后,会偏离其平衡状 态的基准状态,扰动作用停止后,飞机能否恢复 到它基准状态的一种全过程特性。
Flight Dynamics
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
定载静稳定性:飞机受扰动后,会引起迎角和飞行
Flight Dynamics
7.1 何谓飞行器全机焦点?分析影响焦 点位置的主要因素。
全机焦点为迎角变化时全机升力增量的作用点,在 焦点处当迎角变化时,气动力对该点的力矩不变。 全机焦点取决于翼身组合体的焦点位置和平尾所引 起的焦点后移量,因此影响焦点位置的因素有飞机 的气动布局。另外 Ma 影响焦点的位置,亚音速时 Ma 增大,全机焦点变化不大;跨音速全机焦点迅 速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
拉格朗日方程刚体动力学振动 习题课

x
A vA
vCA
m 1 g c B
m 2g
解:系统的主动力均为有势力
分析系统的动能和势能
vT A 1 2xm 1 vA 2 A1 2 JA rx A 2 1 2 Am B2 v C 2 1 2JCA 2 B
vC vAvCA
T 3 4 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 22 1 2 m 2 x L c o s T ( x ,,)
V L2m2g(1cos)
拉格朗日函数 LTVL(x ,,)中不显含广义坐标x和时间t
7
BUAA
习题课
T x3 2m 1xm 2x1 2m 2L co sC 系统的什么广义动量守恒?
研究整体:
x
A vA
研究圆盘:
LrA12mAr2A12m1rxF Ay
A
F
vCA LrA Fr
A
r
F Ax
c m 1 g
T V 1 2 m 1 x 2 1 2 m 2 x 2 1 6 m 2 L 2 2 1 2 m 2 x L c o s L 2 m 2 g ( 1 c o s ) E
6
BUAA
习题课
例:机构在铅垂面内运动,均质圆盘质量m1在地面上纯滚动,均 质杆AB质量m2用光滑铰链与圆盘连接。求系统首次积分。AB=L
拉格朗日方程刚体动力学振动 习 题课
BUAA
第二类拉格朗日方程的总结
对于具有完整理想约束的质点系,若系统的自由度为k,
则系统的动力学方程为:
d dt
L qj
qLj
Q'j
(j1, ,k)
其中:LTV T:为系统的动能,V:为系统的势能
Q
第二章动力学选择题习题课

A
1 Mg 2
a 绳地
Mg
v N mg cos m r 减 , v增 小 大 N增 大
2
N
B
mg
质点的动能定理
1 1 2 2 A mv 2 mv1 2 2
合外力对质点所做的功=质点动能的增量
1 2 A f mgh mv 0 2
N mg mv 2 R
A
物体下降整个过程机械能守恒 碗顶为势能零点
解: 1 )功的定义
dr v A sin ti B cos tj v x i v y j dt
2 2 x 2 y
2
2 2 2 2 2 2 2
2)质点的动能定理
1 1 2 2 A mv 2 mv1 2 2
v v v
2 1 2
v A sin t B cos t
( A)2m / s ( B)3m / s (C )5 m / s ( D)6 m / s
解:起跳前后人和船的速度如图
m
M
V
1 V ?? 2
1 V 2
D
起跳前后人和船水平方向的动 量守恒
11 1 ( ( m M )V M V mv V ?? ) )V M V m( 22 2
A外力 Ek Ek 0 1 2 fd 0 m 对整个过程 2 1 对后半个过程 2 fd / 2 0 m 2 1 2
D
物体平衡时有
mg kd
物体下降整个过程机械能守恒 弹簧原长为势能零点
mg k d
1 2 0 mgx kx 2
C
B
1、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以 加速度 a1 上升时,绳中的张力正好等于绳子所能承受的最大张 力的一半,问升降机以多大的加速度上升时,绳子刚好被拉断?
习题课II北航理论力学王琪

A: 速度的模增加;
2009-11-18
B: 速度的模减小
10
理论力学
讲解过
A
演示过
o
过
θ
u
x
2009-11-18
11
理论力学
试题:已知图示瞬时圆盘中心O的速度和加速度,求此瞬时 AB 杆的角速度和角加速度。
动点:圆盘中心O A 动系:AB杆 速度分析
aa
vr a n e o ve t a e v B Ra a
2009-11-18 2
理论力学
•元功(elementary work):
虚位移原理
δW = F • vd t = F • d r
等效力系作功定理: 若作用于刚体上的力系等效 即:{F1 , F2 , L , Fn } = { P1 , L , Pm } = {FR , M O } 则
n m
∑W (F ) = ∑W ( P ) = W (F ) + W ( M
• 点的复合运动
– 绝对运动、相对运动、牵连运动 – 绝对速度、相对速度、牵连速度 – 绝对加速度、相对加速度、牵连加速度、科氏加速度
• 基本定理与方程
– 速度合成定理、加速度合成定理 – 质点动力学方程(惯性参考系和非惯性参考系)
2009-11-18 6
理论力学
基本公式
&⎫ vx = x ⎪ &⎬ vy = y ⎪ &⎭ vz = z
反映速度方向的变化
mar = ∑ F + Fe + FC
7
理论力学
• •
解决问题的方法与基本步骤
受力分析-根据约束条件和已知量,,确定力的方向、分析哪些是未知量 运动分析-利用几何性质和约束条件,建立运动学(包括几何、速度和 加速度)关系,确定系统的自由度和未知量数目。
《大学物理》习题训练及详细解答二

练习三 质点动力学(一)
1.质量分别为mA和mB的两滑块A和B 通过一轻弹簧 水平连结后置于水平桌面上,滑块与桌面间的摩擦系
数均为μ,系统后瞬间,二者的加速
度aA和aB分别为: (A) aA=0, aB=0 ; (C) aA<0, aB>0;
这个问题有两个物理过程:
第一过程为木块M沿光滑的固定斜面下滑,到达B点时
速度的大小为
练习四 质点动力学(二)
1. 一块很长的木板,下面装有活动轮子,静止地置于 光滑的水平面上,如图1。质量分别为mA和mB的两个人 A和B站在板的两头,他们由静止开始相向而行,若 mB>mA,A和B对地的速度大小相同,则木板将: [ C ]
(A)向左运动; (B)静止不动; (C)向右运动; (D)不能确定;
地加速度为a0取向下为正,m1对地
的加速度为a1向上为正。
T
mT2gm1Tg
m1a1 m2a0
解得:
a1
m1
m2 g
m1 m2
m2a2
T 2g a2 m1m2
a0 a1 a2
m1 m2
a0
m1
m2 g
m1 m2
m1a2
则在2s末物体速度的大小等于______2_4_m. / s
dI Fdt (30 40t)dt
I 30t 20t 2
I mv mv0
4.如图2两块并排的木块A和B,质量分别为m1和m2,静 止地放置在光滑的水平面上,一子弹水平地穿过两木块, 设子弹穿过两木块所用的时间分别为△t1和△t2,木块 对 小子 为弹__的__阻__力_m_F1恒__为,tm1 2F木,块则B子的弹速穿度出大后小,为木__块__A__的_mF1_速_tm1_2度_F.m大2t2
飞行动力学习题课(二)014

7.1 何谓飞行器全机焦点?分析影响焦 点位置的主要因素。
全机焦点为迎角变化时全机升力增量的作用点,在 焦点处当迎角变化时,气动力对该点的力矩不变。
全机焦点取决于翼身组合体的焦点位置和平尾所引 起的焦点后移量,因此影响焦点位置的因素有飞机
的气动布局。另外Ma 影响焦点的位置,亚音速时 Ma增大,全机焦点变化不大;跨音速全机焦点迅
重心移动后 ➢ 变化的量: ➢ 不变的量:
Cm C m 焦点位 置C L、升力曲线
Cm
Cm0
Cm C L
CL
Cm0
C L ( xcg
xac )
Cm CL xcg
CL
x cg
x
' cg
x cg
Cm0
x ac
➢ 定义:
C L C L 0 C L 来流与机体X轴的夹角
C L C L
静稳定性:飞机在受瞬时干扰后是否具有恢复到 原来平衡状态的趋势。
静稳定性关注的是飞机是否具有具有恢复到原来 平衡状态的趋势;动稳定性关注的是飞机响应的 整个过程的特性,如超调等。 具有动稳定性的飞机一定是静稳定的;静稳定的 飞机不一定是动稳定的。
9.2 试说明纵向扰动两种典型模态的特点、 物理成因以及影响模态特性的主要气动导数。
影响短周期模态特性的主要导数:
Cm Cmq Cm
9.2 试说明纵向扰动两种典型模态的特点、 物理成因以及影响模态特性的主要气动导数。
长周期:主要表现为飞行速度和俯仰角的缓慢变化。 主要原因:由于飞机的质量较大,而起恢复和阻尼作
用的气动力 ZVV和 XVV相对比较小,所以作用在
飞机上的外力处于不平衡状态持续较长时间,重力和 升力的作用使飞机航迹和速度变化。
大学物理化学7-动力学课后习题及答案-推荐下载

对行反应 A
moldm3,cY,0=0,计算 30 s 后 Y 的浓度。
- 2000 T/K
-(
dpA dt
)t=0,kA 及气体
,试求反应在 800K,pA0=pB,0=2666Pa
- 4000 + 8.00 T/K
+ 4.00
Y,都为一级,k1=1×102 s1,反应平衡常数 Kc=4,如果 cA0=0.01
设前两个元反应达平衡,试用平衡态处理法建立总反应的动力学方程式,并求表观活化能。
习题 11
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据护过生高管产中线工资0不艺料仅高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时各卷,类调需管控要路试在习验最题;大到对限位设度。备内在进来管行确路调保敷整机设使组过其高程在中1正资中常料,工试要况卷加下安强与全看过,25度并52工且22作尽护下可1关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术5写、卷交重电保底要气护。设设装管备备置线4高调、动敷中试电作设资高气,技料中课并术3试资件且、中卷料中拒管包试试调绝路含验卷试动敷线方技作设槽案术,技、以来术管及避架系免等统不多启必项动要方方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
大学物理(机械工业出版社)第二章课后答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图902n (sin )m cos 3cos '3cos ,e v vdv rg d v v rv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理第二章习题课

6
作业. 两块并排的木块A和B,质量分别为m1和m2,静止地放置在光滑的水 平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为t1 和t2,木块对子弹的阻力为恒力F,则子弹穿出后,木块A的速度为______, 木块B的速度大小为_______.
F t1 m1 m2
F t1 F t2 m1 m2 m2
u dt
l
船岸
0
M m 0 狗船
M m
S
狗离岸的距离为 S S0 S
S
L l
S
S0
S
S0
M M
m
l
S l L l(1 m ) M l M m M m 17
17
作业. 有两个自由质点,质量分别为 m1和m2 ,他们之间只有万有引 力作用,开始时,两质点相距为 l ,处于静止状态。求当它们相距 l /2
[ C]
(A) ①、②是正确的。
(B) ②、③是正确的。
(C) 只有②是正确的。
(D) 只有③是正确的。
势能与保守力作功的一般关系: W Δ E p
物体沿闭合路径运动一周时, 保守力对它所作的功等于零。 l F保 d r 0
功不仅与力有关,还与位移有关!
5
2.填空题
教材、作业. 质量为m的小球,用轻绳AB、
L1
Δ
L
质点系的角动量定理(积分形式):作用于质点组的合
外力矩的冲量矩等于质点组角动量的增量。
4
教材. 对功的概念有以下几种说法:
① 保守力作正功时,系统内相应的势能增加。
② 质点运动经一闭合路径,保守力对质点作的功为零。
③ 作用力与反作用力大小相等、方向相反,所以两者所作功的
【2019年整理】化学反应动力学习题(可打印修改) (2)

二、 选择题 1.(C);2.(B);
三、 填空题 1. 一、是非题 下列各题中的叙述是否正确?正确的选“√”,错误的选“×”。
√ × 1. 设对行反应正方向是放热的,并假定正、逆都是元反应,则升高温度更利 于增大正反应的速率系数。
√ × 2.若反应 A
Y,对 A 为零级,则 A 的半衰期
。
二、选择题
2. 3. kA=0.01 mol-1×dm3×s-1 t1/2=100 s
4. t1/2=15min 5. k(310K)/k(300K)=25.36
1. 二甲醚的气相分解是一级反应:CH3OCH3(g)
CH4(g)+ H2(g) + CO(g)
504℃时把二甲醚充入真空的定容反应器内,测得时间 t 时总压力 pt, 总数据如下:
N2O2 (快);
N2O2+O2
2NO2 (慢)。
又已知 2NO
U Δ N2O2 的 r m <0。试导出总反应的动力学方程式,并解释其反应级数及
对比实验 1, 2:
B 过量: 实验 1: 实验 3
则 b=2。
两式相除,得 4=4×2a-1,则 a=1。反应速率方程为:-dpA/dt=kApApB2
由实验 1 数据,
=1.13×10-10 Pa2×h-1。
4.[题解]:(1)据 Arrhenius 方程的不定积分式: 给 kA=f(T)的经验式对比,得
在以下各小题的“
”处填上答案。
1.链反应的一般步骤是(i)
;(ii)
;(iii)
。
答案:一、是非题 1. √; 2. √;
二、选择题 1.(B); 2.(B); 3.(C);
三、填空题 1.链的引发 链的传递 链的终止
飞行动力学习题课二详解演示文稿

8.4试推导因非对称装载在飞行器上作用有不
对称滚转力矩L 时,为保持定直飞行所需要
的副翼、方向舵偏角的表达式(设 Cna可忽略)。
速后移;超音速机翼焦点变化不大,但是机翼引起 的下洗减小,使平尾引起的焦点后移显著增加。
7.2 纵向定速静稳定性和定载静稳定性
定速静稳定性(迎角静稳定性):给定速度和升降
舵偏角,飞机在某一平衡状态,受瞬时扰动,Δα增加 ,能够产生小于0的恢复力矩ΔM,趋于减小Δα 。具 有恢复到原平衡状态的趋势。称飞机在原平衡状态是 定速静稳定的。
定载静稳定性:飞机受扰动后,会引起迎角和飞行
速度均发生变化,但二者的变化满足 nn 1 的约束。 即研究飞机作定直水平飞行时,受到瞬态扰动,飞机 有无恢复原平衡状态的趋势,称之为定载静稳定性。
7.3 说明飞行器在跨声速区飞行时出现 “自动俯冲”现象的物理原因。
在跨音速区,出现自动俯冲现象主要原因是由于 空气压缩性使全机焦点迅速后移,产生低头力矩, 使得飞机失去了定载静稳定性。
Cm
Cm CL
焦点位置、升力曲线
Cm
Cm0
Cm CL
CL
Cm0
CL (xcg
xac )
Cm CL xcg
CL
xcg
xc' g
xcg
➢ 定义:
CL CL0 CL
CL CL
Cm0
xac
来流与机体X轴的夹角 来流与零升力线的夹角
第八章知识要点
横航向静稳定性定义 飞机构形和飞行状态对飞机横航向静稳定性的
化学动力学基础(习题课)20121212

k
298K
ln 2
H t1/
2
ln 2 0.01moldm3 1.0h
69.3
mol dm 3
h1
k
308K
ln 2
H t1/
2
ln 2 0.01moldm3
0.5h
138.6
mol dm 3
(3)
ln
k (308K) k (298K)
解:
k1
1 t
ln
1
1
y
1 1h
ln
1
1 0.75
ln
4h1
当 t=2h 时
ln4=
1 2
ln
1
1
y
1-y = 6.25%
(2)运用 a=b 的二级反应公式
k2
1 ta
1
y
y
1 1h
a
0.75 1 0.75
3 h1 a
当 t=2h 时
3 a
1 2a
1
y
k2[H2
](
k1 k5
)
1 2
[Br2
1
]2
k3[Br2 ] k4[HBr]
(6)代入(4),得:
d[HBr] dt
2k2k3
(
k1 k5
)
1 2
[Br2
3
]2
k3[Br2 ] k4[HBr]
(7)式分子、分母消去 k3[Br2 ] ;
空气动力学:2 课本习题答案

第二章流体运动学与动力学基础2-1 什么叫流线、流管?流线与迹线有什么区别? 答:流线是某瞬时在流场中的一条空间几何曲线,该曲线上任意一点的切线方向和该点的流体质点速度方向平行。
由通过空间某封闭曲线(非流线)的所有流线围成的管叫做流管。
流线是欧拉观点下描述流动的曲线,是由同一时刻不同质点组成的;迹线是拉格朗日观点下描述流动的曲线,是给定质点在空间走过的轨迹。
2-2 在直角坐标系中,流场速度分量的分布为222,2u xy v x y ==试证明过点(1,7)的流线方程为2248y x -=证明:流线的控制方程为dx dy u v=(1) 将题中,u v 的表达式带入(1)中,有2222dx dyxy x y=(2) 对(2)进行整理,可得22xdx ydy =(3)对(3)进行积分,可得22y x C -=(4)将点(1,7)的坐标带入(4)式可得48C =。
从而过点(1,7)的流线方程为2248y x -=(5)2-3设流场中的速度大小及流线的表达式为22V y xy C =+=求速度的分量的表达式。
解:对流线表达式两端取全微分,有()()22220y xy y xy dx dy xy∂+∂++=∂∂(1)整理(1)式可得()220ydx y x dy ++=(2)dy ydx x y-=+(3) 流线的控制方程为dy vdx u=(4) 结合(3)式与(4)式,可得v yu x y-=+(5) 对速度大小表达式两边取平方,可得2222222V u v x xy y =+=++(6)联立求解方程(5)和(6),可得两组速度分量的表达式()(),u x y u x y v yv y⎧=+⎧=-+⎨⎨=-=⎩⎩(7) 2-4求第23题中速度分量u 的最大变化率及方向。
解:速度分量u 的方向导数为()u i j ∇=±+(1)则其最大的变化率为u ∇=2222n i j ⎛⎫=±+ ⎪ ⎪⎝⎭。
大学物理 质点运动学动力学习题课

的直线运动的叠加(矢量加法)。
——运动的独立性原理或运动叠加原理
2
第一、二章习题课
自然坐标系中的速度和加速度
v
v
ds
dt
a
a
an
dv
dt
v2
n
a
a
an
圆周运动中的切向加速度和法向加速度
a dv v2 n
dt R
3
二、圆周运动的角量描述 t A 角位置 t t B 角位移
r
v
a
dxri
yj
dx
i
zk
dy
dt
dv
dt
dv x
i
dt
dv y
dt dt dt
j
j
dz dt
dvz dt
k
k
vxi vy j vzk
axi ay j azk
任意曲线运动都可以视为沿x,y,z轴的三个各自独立
4m/s的速率从北面驶近A船。
(1)在湖岸上看,B船的速度如何?
(2)如果A船的速度变为6m/s(方向不变),在A船上看B
船的速度又为多少?
解:(1)设B船岸的上速的度人为看v到BA船A的船速看度到为B船v的A 速度为 v
vA
vA
由伽利略速度变换,可有
v
vB
v vB vA
的速度的大小。
y
H Ox
解:建立如图坐标,t时刻头顶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点系动量矩的计算
y’
1、计算圆盘对O轴的动量矩:
x
O
ωA
u A
x’
C1
m2vr
C2
m2 u B
Lo
rC1 mvC1
Lr C1
Lz1
Rm1u
1 2
m1R
2
A
2、计算AB杆对O轴的动量矩:
Lo
rC 2
mvC2
Lr C2
ω
vC2 u vr
第一项 (L cos R)m2u
Lo
rC 2
m2u rC2
vC2y' vr sin u L sin
AB杆的动量:pAB m2vC2
p m1ui'm2vC 2 x'i'm2vC 2 y' j' 问题:
如何求该系统质心速度?
4
质点系动量矩的计算
质点系对固定点O点的动量矩:
n
Lo (ri mivi )
z
mi
vi
i1
设动参考系Ax’y’z’平移,
m2vr
Lr C2
第二项 (L cos R)m2vr cos (x L sin )m2vr sin
(L cos R)m2L cos (x L sin )m2L sin
第三项
1 12
m2
(2
L)
2
Lz2 三项和
6
质点系动能的计算
n
质点系的动能 T
1 2
mi
vi2
i 1
vA
vr cos
mA mB
vr cos
2
T2
T1
W (e) 12
W (i) 12
1
2
mAvA2
1 2
mB
(vA vr cos )2 (vr sin )2
mB gS
sin
1 2
kS
2
Cvr2
mgS
sin
1 2
kS
2
2Car
mg sin kS
S [0, 2mg / k]
ar
mg 10 2C
y
B
猜想一下:系统将如何运动.
O
I
A
运动过程: x 第一阶段:冲击过程
第二阶段:非冲击过程
15
基本定理的综合应用
(1):求小球B的运动方程,初始时,B点的坐标为(0,L/2)。
y
B
y’
θ
2mvc
O C
I
ω
A
xB
xC
L sin ,
2
x’
yB
L 2
cos
n
应用冲量定理:p2
p1
I (e) i
i 1
2mvC 0 I
vC
I 2m
பைடு நூலகம்应用冲量矩定理:
x
n
LC2
LC1
M
C
(
I
(e) i
)
i 1
2(m L) L 0 I L I
22
2
mL
xc vCt, t
(2):求冲击结束后杆的内力。
F m 2 L
2
16
基本定理的综合应用
(3)求当杆AB与x轴平行时,小球B运动轨迹的曲率半径.
y B
O
I
A
vC
I 2m
动点:B;动系cx’y’ y’
y
A
(1)用什么方法求图示
瞬时OA杆的角加速度?
u
O h B
(2)用什么方法求轴承
F
O的约束力?
x (3)用什么方法求地面
作用在滑块B上的约束力
2h
(大小和作用线)?
18
思考题
思考题:均质木箱放在斜面上,木箱是否会翻到。
b
b
a
a
A: 斜面有摩擦 f tan
B: 斜面光滑, 滑块无初速释放 19
x
O
ωA u A
B
ω
n
质点系的动量:p mivi i 1
质点系对固定点O点的动量矩:
n
Lo (ri mivi )
i1 n
质点系的动能: T
1 2
mi
vi2
i 1
2
有关动量的基本计算
质心矢径 质心速度
一般质点系
n
miri
rc
i 1
m
n
mivi
vC
rc
i 1
m
系统动量
n
p mivi mvC i 1
一般刚体系
n
mCi rCi rc i1 m
n
mCi vCi vc i1 m
n
p mCivCi mvC i 1
3
质点系的动量
x
O
y’
ωA u A
C1
vr
n
p mCivCi mvC i 1
p m1vC1 m2vC 2
x’
圆盘的动量: pA m1u
C2 B
ω
va ve vr u vr vC2x u vr cos u L cos
(2L)2
2
C2 B
ω
vC2 u vr
7
基本定理的综合应用
质点系动力学基本定理
dp
dt
n
Fi(e)
i1
FR(e)
mac FR(e)
m
dv dt
FR(e)
dm dt
vr
dLrA
dt
n i1
M A (Fi(e) ) rAC (maA )
rAC (maA ) 表示质点系的牵连惯性力(作用在质心C)对A点之矩
y : mAaA mBaB 0 mEaE
F1 F2 mA g mB g mD g mE g
1 2
ma
E
F1
F2
6mg
F2
13 mg 3
aE
4g 27
F1
43 27
mg
14
基本定理的综合应用
例: 两个相同的小球用长为L (不计其质量)的细杆AB固连,静止放在光滑 的水平面上。若每个小球的质量为m,当小球A受到冲量I的作用后,(1): 求小球B的运动方程,初始时,B点的坐标为(0,L/2)(2)求冲击结束后 杆的内力。(3)求当杆AB与x轴平行时,小球B运动轨迹的曲率半径;
9
基本定理的综合应用
应用质心运动定理:
mAaA mB (aA ar ) F mA g mB g
x : mAaA mB (aA ar cos ) 0 y : mBar sin F mAg mB g
ar
mB g a A mA g
F
x : mAvA mB (vA vr cos ) 0
F1
F2
应用动能定理: dT W
D
B
y
mg
mg 2mg E
A
2mg
a
T
1 2
m
Av
2 A
1 2
mB
vB2
1 2
J
2
BB
1 2
J
2
DD
1 2
mE vE2
27 16
mvE2
vE 2vA 2vB RD 2RB
W mAgvAdt mB gvBdt mE gvEdt
1 2
mgvE
dt
dvE dt
基本定理的综合应用
F1
F2
D
B
mg
mg 2mg E
A
2mg
a
受力分析:有两个未知的约束力 做功的力为已知力。
已知:两个均质滑轮质 量均为m,半径为R,两 个物块的质量为2m,绳 索相对滑轮无滑动。求 物块E的加速度和图示 的约束力。
解:取整体为研究对象
运动分析:系统有一个自由度 11
基本定理的综合应用
动力学第二章习题课
• 基本物理量的计算 • 基本定理、定律与公式的应用
1
基本物理量的计算
问题:质量为 m1半径为 R 的均质圆盘在地面上滚动,质量为 m2 长为 2L 的均质杆AB用铰链与圆盘中心连接(如图所示),
若圆盘的角速度为ωA,轮心的速度为u,杆的角速度为ω,求
图示瞬时系统的动量、对O轴的动量矩和系统的动能。
微分形式 dT Fi(e) • dri Fi(i) • dri
积分形式 T2 T1
W (e) 12
W (i) 12
8
基本定理的综合应用
已知:两个物块的质量 均为m,弹簧刚度为k, 忽略所有摩擦。系统初 始静止,弹簧为原长。 求地面约束力的最大值 和最小值。
mAaA mBaB F mA g mB g mAaA mB (aA ar ) F mA g mB g
B
mg
vA mg
2mg E
A
2mg
vE
LO M O
27 4
maE
R
3F2
R
14mgR
aE
4g 27
F2
13 mg 3
13
F1
F2
O D
B
mg
aA mg
2mg E
A
2mg
aE
基本定理的综合应用
应用质心运动定理:
mAaA mBaB mDaD mEaE F1 F2 mA g mB g mD g mE g
O ri
y
质点系相对动系上A点的动量矩:
x
n
LrA (ri 'mivir )
i1
mi vri
质点系相对固定点O与相对运动点A动量矩的关系
Lo rA mvC rAC mvA LrA