苏教版五年级数学下册知识点

合集下载

苏教版五年级数学知识点总结

苏教版五年级数学知识点总结

苏教版五年级数学知识点总结一、数的认识与应用1. 数的认识与数的读法- 了解整数的概念,正数、负数的定义及相互关系- 掌握数码读法和数词读法,能熟练读写整数、小数和分数- 熟悉百、十、个位的读法和表示方法- 能将数按大小顺序排列- 能够在数线上表示数的位置2. 数中的奇偶性- 理解奇数和偶数的概念- 能判断一个数是奇数还是偶数3. 数的性质- 了解数的相反数和绝对值的概念- 能够判断数的大小关系- 理解数的分数形式和小数形式的相互转化- 能够对数进行估算和近似4. 数的应用- 能将数应用到日常生活中,如身高、体重等的测量二、小数1. 小数的定义与认识- 理解小数的概念,了解小数的意义- 会读写小数,熟悉小数点的位置和使用方法2. 小数的比较与排序- 掌握小数的大小比较方法- 能够将一组小数按大小排序3. 小数的加减运算- 掌握小数的加减法运算方法- 能够进行简单的小数加减法运算4. 小数的乘除运算- 理解小数的乘法运算- 熟悉小数的乘法运算规则- 了解小数的除法运算,能够进行小数的除法运算5. 小数与百分数之间的转化- 掌握小数与百分数之间的转化方法- 能够将小数转化为百分数,或将百分数转化为小数6. 学会使用小数进行实际问题解答- 能够运用小数解决生活中的实际问题三、分数1. 分数的认识- 理解分数的含义,了解分数的意义和表示方法- 能够将物体的部分与整体、图形的部分与整体用分数表示2. 分数的简化与扩展- 掌握分数的简化和扩展方法- 能够将一个分数化为最简形式,或将最简分数扩展为相等的分数3. 分数的比较与排序- 掌握分数的大小比较方法- 能够将一组分数按大小排序4. 分数的加法与减法- 掌握分数的加减法运算方法- 能够进行简单的分数加减法运算5. 分数的乘法与除法- 理解分数的乘法运算- 熟悉分数的乘法运算规则- 了解分数的除法运算,能够进行分数的除法运算6. 学会使用分数进行实际问题解答- 能够运用分数解决生活中的实际问题四、整数1. 整数的认识与应用- 理解整数的概念和意义- 能够在数线上表示整数的位置- 掌握整数的读法和书写方法2. 整数间的加法与减法运算- 理解整数的加法和减法运算规则,掌握运算法则- 能够进行整数的加减法运算,包括正数相加、负数相加、正数相减、负数相减等情况3. 整数的乘法与除法运算- 掌握整数的乘法和除法运算规则- 能够进行整数的乘除法运算,包括正数相乘、负数相乘、正数相除、负数相除等情况4. 整数的应用- 能够将整数应用到生活中的实际问题中,如温度变化、海拔高度等五、图形的认识与应用1. 图形与常见物体形状的关系- 理解图形与物体形状之间的对应关系,能够根据图形名称画出相应形状2. 直角、直线- 了解直角和直线的概念,能够根据题意画出具有直角的图形- 能够根据给定直线段的长度判断两点间是否垂直或平行3. 角的认识与度量- 了解角的概念,掌握角的命名和记号方法- 能够判断角的大小,如锐角、直角、钝角4. 三角形- 了解三角形的概念,掌握三角形的分类和命名方法- 能够根据给定条件画出特殊的三角形,如等边三角形、等腰三角形和直角三角形等5. 四边形- 了解四边形的概念,掌握四边形的分类和命名方法- 能够根据给定条件画出特殊的四边形,如矩形、正方形、菱形和平行四边形等6. 园的认识与运用- 了解圆的概念,掌握圆的性质和命名方法- 能够计算圆的面积和周长7. 体的认识与应用- 了解各种常见的几何体,如立方体、长方体、球体等- 掌握这些几何体的性质、面积和体积的计算方法。

新苏教版五年级数学下册第三单元因数和倍数

新苏教版五年级数学下册第三单元因数和倍数

2.判断。 (1)相邻的两个自然数,一定是一个奇数和一个偶数。 ( ) (2)偶数加1一定得到奇数。 ( ) (3)3的倍数的个数比2的倍数的个数少。 ( ) (4)一个数的个位上是0,这个数一定不是3的倍数。 ( ) (5)两个奇数的和一定是偶数。 ( ) (6)一个数是6的倍数,这个数一定是2和3的倍数。 ( )
О知识达标
1.在横线上填上合适的数。
14 23 39 35 48 2 20 34 43 1
(1)奇数有_____________________;
(2)偶数有______________________;
(3)质数有______________________; (4)合数有______________________。
2.填空。
(1)在1~20中,既是奇数又是质数的有( ), 既是奇数又是合数的有( ),既是偶数又是质数 的是( ),既是偶数又是合数的有( ),既不是质 数也不是合数的是( )。 (2)自然数中,最小的质数是( ),最小的合数是 ( ),它们之间相差( )。
3.判断。
(1)1是奇数,也是质数。 ( )
分析 求符合要求的最小三位数,百位上的数最小应是1;个位上的数 较容易判断,可通过5,2的倍数的特征来确定,这个三位数个位上的数 应是0;3的倍数需要这个三位数各位上数的和是3的倍数,所有十位 上的数可由此特征确定,要满足这个三位数最小的条件,十位上的数 应是2.
解答 这个三位数最小是120。
提示 同时考虑5,2和3的倍数的特征和“最小三位数” 是解决此题的关键。
2、1既不是质数,也不是合数。
【知识点二】 判断一个数是质数还是合数的方法
判断一个数是质数还是合数,只需要看这个数除了1和它本 身两个因数外,是否还有其他因数。如果没有,这个数就是 质数;如果有,这个数就是合数。

(苏教版)小学五年级数学上下册知识点归纳

(苏教版)小学五年级数学上下册知识点归纳

小学五年级数学知识点归纳五年级上册知识点概念总结1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。

但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化(1)小数化成分数原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数先把百分数改写成分数,能约分的要约成最简分数。

苏教版五年级数学下册各单元知识点

苏教版五年级数学下册各单元知识点

苏教版五年级数学下册各单元知识点一、第一单元:数和数的运算- 理解整数的概念,包括正整数、负整数和零。

- 掌握整数的大小比较和顺序排列。

- 学会整数的加法和减法运算,包括正整数之间的加减运算,负整数之间的加减运算,以及正负整数之间的加减运算。

二、第二单元:小数的认识与认识- 理解小数的概念,包括小数的读法和写法。

- 掌握小数的大小比较和顺序排列。

- 学会小数的加减法运算,包括小数之间的加减运算和整数与小数之间的加减运算。

三、第三单元:长度的认识- 认识长度单位,包括厘米、分米和米,并能够互相转换。

- 了解不同物体的长度,并能够用适当的长度单位进行测量和比较。

- 研究长度的加法和减法运算,包括相同单位的长度加减运算和不同单位的长度加减运算。

四、第四单元:容积的认识- 认识容积单位,包括毫升和升,并能够互相转换。

- 掌握不同的容积,并能够用适当的容积单位进行测量和比较。

- 研究容积的加法和减法运算,包括相同单位的容积加减运算和不同单位的容积加减运算。

五、第五单元:质量的认识- 认识质量单位,包括克和千克,并能够互相转换。

- 了解不同物体的质量,并能够用适当的质量单位进行测量和比较。

- 研究质量的加法和减法运算,包括相同单位的质量加减运算和不同单位的质量加减运算。

六、第六单元:时间的认识- 认识时间的单位,包括秒、分、时和天,并能够互相转换。

- 掌握不同活动所需时间的概念。

- 研究时间的加法和减法运算,包括相同单位的时间加减运算和不同单位的时间加减运算。

七、第七单元:角度的认识- 认识角度的概念,包括直角、钝角和锐角。

- 了解不同角度的特征和分类。

- 研究角度的度量和比较,包括用直尺度量角度的大小。

八、第八单元:平方与平方根的认识- 了解平方的概念,包括正整数的平方和负整数的平方。

- 认识平方根的概念,包括正整数的平方根和非正整数的平方根。

- 研究求平方与开平方的计算方法。

九、第九单元:数据图的认识- 认识常见的数据图形式,包括条形图、折线图和饼图,并能够读取和分析图形中的数据。

苏教版五年级数学下册公倍数、公因数相关知识点

苏教版五年级数学下册公倍数、公因数相关知识点
12ab=72 ab=6 a=1,b=6或a=2,b=3 当a=1,b=6时,这两个数是12和72,和为84 当a=2,b=3时,这两个数是24和36,和为60
11
【练习】
3、两个数的最大公因数是18,最小公倍数是180,两个数的差是54, 求这两个数的和。
可设这两个数为18a和18b(a和b互质) 18ab=180 ab=10 a=1,b=10或a=2,b=5 当a=1,b=10时,这两个数是18和180,不符合题意 当a=2,b=5时,这两个数是36和90,符合差是54,和为,126
8
【例题】
例1 两个数的最大公因数为21,最小公倍数为126,求这两个数的和。
可设这两个数为21a和21b(a和b互质) 21ab=126 ab=6 a=1,b=6或a=2,b=3 当a=1,b=6时,这两个数是21和126,和是147 当a=2,b=3时,这两个数是42和69,和是111
9
【练习】
5
例1 两个自然数的和是50,它们的最大公因数是5,求这两个数的差
可设这两个数为5a和5b(a和b互质) 5a+5b=50 a+b=10 a=1,b=9或a=3,b=7 当a=1,b=9时,这两个数是5和45,差是40 当a=3,b=7时,这两个数是15和35,差是20
6
【练习】
1.两个自然数的和是56,它们的最大公因数是7,求这两个数。
3
【练习】
3.甲数和乙数的最大公因数是6,最小公倍数是90,且小数不能整除大
数,求这两个数。
因为小数不能整除大数,因此这两个数不可能是6和90
可设这两个数为6a和6b
6a×6b=540
ab=15
a和b互质
所以a=3,b=5符合题意

苏教版数学五年级下册教案同分母分数加、减法

苏教版数学五年级下册教案同分母分数加、减法

苏教版数学五年级下册教案:同分母分数加、减法一、知识点概述同分母分数的加减法是数学五年级下册内容的重点之一。

在同分母分数加减法中,我们需要处理同种分数的加减问题。

要完成这一任务,我们需要掌握以下几个知识点:1.分数的基本概念,包括分子、分母、真分数、假分数等概念;2.分数的化简和扩展;3.分数的比较大小;4.分数的加减法运算。

二、知识点详解1. 分数的基本概念分数由分子和分母两个元素组成,其中分子表示分数中有几份,分母表示一份被分成几份。

例如,2/5表示分成 5 份中的 2 份。

分数还分为真分数和假分数两种,其区别为分子是否小于分母。

2. 分数的化简和扩展在同分母分数的加减法中,我们需要用到分数的化简和扩展。

分数的化简指的是将一个分数变为分子分母互质的分数,例如,4/8化简后为1/2。

分数的扩展指的是将分数的分母变为某个数的倍数,例如,将1/3扩展成2/6。

3. 分数的比较大小在同分母分数的加减法中,我们需要对分数的大小关系有一定的了解。

当两个分数的分母相等时,比较它们的大小时只需要比较它们的分子大小即可。

当两个分数的分母不等时,我们需要将它们转化为相同的分母进行比较。

4. 分数的加减法运算在同分母分数加减法中,我们需要将两个分数的分母调整为相等,然后将分子相加或相减即可。

例如,2/5+3/5=5/5,5/5可以化简为1,因此2/5+3/5= 1。

三、授课建议1.教师应该先帮助学生了解分数的基本概念,并练习分数的化简和扩展;2.在进行同分母分数的加减法时,教师应该让学生先练习将分数的分母转化为相同的数;3.教师应该让学生掌握分数的大小比较方法,能够根据分数的大小进行加减法运算;4.教师应该利用教材提供的习题进行练习,并适当增加一些趣味性的练习,提高学生对同分母分数的加减法的兴趣和掌握程度。

四、课堂案例以下是一道题目的解法,以帮助学生更好地理解同分母分数加减法:计算:$3/4+2/4=?$答:将 $3/4$ 和 $2/4$ 的分母调整为相同的 $4$,得到 $3/4+2/4=5/4$。

苏教版五年级下册数学总复习知识点回顾(提纲+练习)

苏教版五年级下册数学总复习知识点回顾(提纲+练习)

苏教版五年级下册数学总复习知识点回顾(提纲+练习) 第一单元方程1、左右两边相等关系的式子叫做等式。

(通俗的说就是含有“=”号的式子就是等式。

) 2、含有未知数的等式是方程。

[注:(判断题)含有未知数的式子是方程(?)] 3、(背诵)方程一定是等式;等式不一定是方程。

4、等式的性质。

(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。

(2)等式两边同时乘或除以同一个(不等于0)的数,所得结果仍然是等式。

用途:解方程5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:加法:加数+加数=和和-一个加数=另一个加数减法:被减数-减数=差被减数-差=减数差+减数=被减数乘法:因数×因数=积积÷一个因数=另一个因数除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:解完方程,要养成检验的好习惯。

6、3个、5个或7个连续的自然数(或连续的奇数,连续的偶数)它们的和=中间的数×3、5或7。

中间的数=连续数的和÷3、5或7 (个数为奇数)比如:1、2、3、4、5 1+2+3+4+5=15 即:3×5=15 15÷5=3 又比如:6÷3=2 1、2、3 35÷5=7 3、5、7、9、11 7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。

B、理清题目的等量关系。

C、设未知数,一般是把所求的数用X表示。

D、根据等量关系列出方程E、解方程F、检验G、作答。

第一单元相应练习题1、哪些是等式,哪些是方程,请填入相应的横线上。

(填序号) ①3+x=12 ②3.6+x ③ 4+17.5=21.5 ④48+x��63等式________________________;方程:________________________ 2、含有未知数的式子叫方程。

()【判断】 3、等式都是方程,方程都是等式。

2_苏教版五年级数学下册知识点整理2017版

2_苏教版五年级数学下册知识点整理2017版

苏教版数学五年级下册知识点整理第一单元 简易方程一、知识点梳理(一)方程1.等式的意义:表示相等关系的式子叫做等式。

2.方程的意义:像x +50=150、2x =200 这样含有未知数的等式是方程。

3.方程与等式的关系:方程是等式,但等式不一定是方程,它们之间可以用右图表示:4.方程必须满足的条件:(1)必须是等式。

(2)必须含有未知数。

(二)解方程5.方程的解和解方程:使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

6.等式的性质:(1)等式的两边加上或减去同一个数,所得结果仍然是等式。

(即左右两边仍然相等)(2)等式的两边乘或除以同一个不是0的数,所得结果仍然是等式。

7.四则运算各部分的关系:一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数8.解方程的常用方法:(1)等式的性质 (2)四则运算各部分的关系 (3)移项9.方程的检验:将方程的解代入原方程看方程左右两边是否相等。

(三)列方程解决问题10.一般步骤:(1)审:认真审题,理解题意,寻找等量关系。

(2)设:设未知数。

(一般设所求的未知数为x ,如果未知数有几个,可以设其中一个,然后根据关系表示其他未知数;也可以间接设某个量为x ,再通过这个量去求未知数。

)(3)列:根据题中所设的未知数和已知条件,按照等量关系式列出方程(4)解:求出所列方程的解。

(5)验:检验方程的解是否正确,检验方程的解是否符合题意。

(6)答:回答题目所问,写出答句。

11.注意点:(1)找到等量关系是列方程解决问题的关键。

(2)列方程解决问题时一般不把未知数x 单独放在一边。

(3)设未知数x 时要在后面写上单位名称,求出的x 的值不带单位名称。

等式 方程(四)其他相关知识点12.连续的自然数(或连续的奇数,连续的偶数)的和:3个连续自然数(或连续奇数、偶数)的和等于中间的一个数的3倍。

五年级家庭作业数学下册苏教版内容。

五年级家庭作业数学下册苏教版内容。

五年级家庭作业数学下册苏教版内容。

五年级下册数学苏教版包含以下内容:1. 分数- 分数的概念:分子、分母、真分数和假分数。

- 分数的大小比较:同分母比较、同分子比较、借助相等分母比较。

- 分数的加减法:同分母分数的加减法、不同分母分数的加法(通分)。

- 分数的乘除法:分数的乘法、分数的除法。

- 分数的简便计算:化非简分数成带分数、化带分数成真分数、化真分数成百分数。

2. 小数- 小数的概念:小数的整数部分、小数点、小数的数字位数。

- 小数的读法和写法:小数的读法、小数的写法。

- 小数的大小比较:相同位数的小数大小比较、不同位数的小数的大小比较、相同小数位数的小数大小比较。

- 小数的加减法:小数的加减法计算。

- 小数与分数的关系:小数转换为分数、分数转换为小数。

3. 角- 角的概念:角的顶点、角的两条边。

- 角的度量:角的度量单位、角的度数。

- 角的比较:角的大小比较。

4. 长方体- 长方体的概念:长方体的面、棱和顶点。

- 长方体的表面积:长方体的表面积计算。

5. 数据统计与图形- 统计调查和收集数据:数据的收集、数据的整理、数据的统计和分析。

- 图形:长方形、正方形、圆形的面积计算。

6. 时、刻、分、秒- 时刻与时间的关系:一个小时有60分钟、一分钟有60秒的概念。

- 时、刻、分、秒的读表和计算。

以上只是五年级数学下册苏教版的一部分内容,具体的章节和内容可能会有所不同,但这是基本的涵盖了五年级数学的主要内容。

这些内容按照学习的顺序进行教学,帮助孩子掌握基本的数学知识和技能,培养他们的数学思维和解题能力。

通过实际问题的解决,培养孩子的逻辑思维和创新意识。

五年级下册数学讲义-05讲 分数的意义和性质①无答案苏教版

五年级下册数学讲义-05讲 分数的意义和性质①无答案苏教版

第四单元 分数的意义和性质1【知识点1:分数的意义】1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

2、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,叫做分数单位。

一个分数的分母是几,它的分数单位就是几分之一。

3、分母越大,分数单位越小,最大的分数单位是21 4、举例说明一个分数的意义:73表示把单位“1”平均分成7份,表示这样的3份;还表示把3平均分成7份,表示这样的1份。

73吨表示把1吨平均分成7份,表示这样的3份;还表示把3吨平均分成7份,表示这样的1份。

例1 用分数表示图中的阴影部分。

( ) ( ) ( ) ( ) 例2 判断1、一堆苹果分成4份,每份占这堆苹果的41。

( ) 2、把5米长的绳子平均分成7段,每段占全长的75。

( ) 3、自然数1和单位“1”相同。

( )4、有一个质量为5千克的西瓜,把它平均切成8块,每块的质量是85。

( ) 5、甲看了一本书的41,乙看了一本书的41。

他们看的页数同样多。

( )6、把4片面包分给5个小朋友,每个小朋友分得54。

( ) 7、小亮买书用去所带钱数61,小明买同一本书用去所带钱数的71。

小亮带的钱多。

( ) 8、小明看一本书,第一天看全书的101,第二天看了剩下的101,第二天看的页数多。

( ) 例3 填空 1、83表示把单位“1”平均分成( )份,取其中的( )份。

2、把一块蛋糕平均分成4份,表示其中的3份就是( ),这里的单位“1”表示的是( )。

3、在生活垃圾中,废纸约占35。

35的分数单位是( ),它有( )个这样的单位。

4、海洋约占地球总面积的71100,71100的分数单位是( ),它有( )个这样的单位。

5、1根木料长3米,平均截成7段,每段长( )( )米。

6、一项工程计划10天完成,平均每天完成这项工程的( )( ),7天完成这项工程的( )( )。

[苏教版]五年级数学下册全册知识点整理

[苏教版]五年级数学下册全册知识点整理

苏教版五年级数学(下册)知识点总结姓名:第一单元:简易方程一、概念部分1、表示相等关系的式子叫做等式。

2、含有未知数的等式叫方程。

3、方程一定是等式;等式不一定是方程。

4、等式的性质(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

这也是等式的性质。

5、解方程(1)使方程左右两边相等的未知数的值叫做方程的解。

(2)求方程中未知数的过程,叫做解方程。

6、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题,设未知数,一般是把问题中的量用X表示。

②、理清题目的数量关系,根据数量关系列出方程。

③、解方程④、检验、答。

二、例题分析部分1、方程与等式下列式子:8+3=11;x-5=5;7x+8;…6x>9;a+6=17;14+5<24;4x=26哪些是等式,哪些是方程?等式的有:8+3=11;x-5=5;a+6=17;4x=26方程的有:x-5=5;a+6=17;4x=26注意:集合图表示包含关系,因而x-5=5;a+6=17; 4x=26 只能填入内圈方程处。

2、解方程 方法:主要依据等式的性质求解,当未知数是减数或除数时有时也可利用加、减、乘、除各个部分之间的关系进行解题。

(熟练了左边可以简写即变成了移项变号)40.8+x=57.3 2x-0.82﹦8.2 2x +0.4x=488x-0.8×9﹦26.4 13-0.5x ﹦7 20÷χ= 8解方程注意:①写解、②等于号对齐、③要养成检验的好习惯。

3、列方程解应用题(1)几倍多(少) 几的问题例题:食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少?解:设食堂运来面粉x 千克 面粉重量的3倍-30=大米的重量3x-30=150解:40.8+X-40.8=57.3-40.8 X=16.5利用了等式性质1进行解题解:2x-0.82+0.82=8.2+0.82 2X=9.02 2x ÷2=9.02÷2X=4.51两步计算的方程先利用了等式性质1再利用等式性质2 进行求解解: 2.4x=48 2.4X ÷2.4=48÷2.4 X=20含有相同未知数的方程先合并化简再利用了等式性质2进行求解解:8x-7.2=26.2 8X-7.2+7.2=26.4+7.2 8x=33.4 8X ÷8=33.6÷8x=4.2 三步计算的方程先计算然后分别利用等式性质1和等式性质2 求解解: 13-0.5x+0.5x=7+0.5x 0.5x=17-7 0.5x=10 X=20当x 在减号后可利用等式性质1也可利用减数=被减数-差直接得出0.5x=17-7解: 20÷χ×χ=8×χ20=8χX=2.5当x 在除号后可利用等式性质2也可利用除数=被除数÷商直接得出8x=203x-30=1503x=180 X=60面粉重量的3倍-大米的重量=303x-150=303x=180 X=60答:食堂运来面粉60千克。

苏教版小学数学五年级下学期精品课件-《第一单元知识点梳理与练习》

苏教版小学数学五年级下学期精品课件-《第一单元知识点梳理与练习》
a+16=b+32 a=b+32-16 a=b+16
拓展练习
练习3: 明明买了1支钢笔和4张贴纸,君君买了1支钢笔和 6支铅笔,两人用去的钱同样多。如果买1支钢笔 和3支铅笔用去的钱同样多,那么1支钢笔的价钱 等于几张贴纸的价钱?
思考:可以先列出等式,再使用等式的性质试试。
1支钢笔的钱+4张贴纸的钱=1支钢笔的钱+6支铅笔的钱
C. 2x-4=20
D.3x+8=23
第一单元知识点梳理与练习(2)
苏教版 五年级数学下册
知识点梳理
等式 方程
等式
方程
方程的解 解方程
列方程解决 实际问题
等式的性质
一般步骤
校园里有75棵松树,是柏树棵数的3倍,校园里有多少棵柏树?
75÷3=25(棵)
弄清题意 找等量关系 列方程求解
检验结果
柏树棵数×3=松树棵数
小英的路程+小婷的路程=总路程 速度和×相遇时间=总路程
解:设x秒后两人相遇。
6x+4x=100
(6+4)x=100
10x=100
10x=100
x=100÷10
x=100÷10
x=10
x=10
答:10秒后两人相遇。
稍复杂实际问题
4、甲乙两车同时从同一地点向相反方向开去,甲车每小时行 62千米,乙车每小时行54千米。几小时后两车相距174千米?
4、小刚今年x岁,小红今年(x+3)岁。再过10年,他们相差 ( )岁。
A. x+3 B. 3 C. x
5、甲、乙两筐苹果,甲筐重32千克,乙筐重x千克。从甲 筐拿4千克放入乙筐,两筐苹果就一样重。下列方程中,正 确的是( )。

苏教版五年级下册数学期末重点复习

苏教版五年级下册数学期末重点复习

苏教版五年级下册数学期末重点复习一,知识点整理:1,方程:解方程和方程的解2,确定位置3,最小公倍数和最大公因数4,认识分数5,异分母分数的加减法6,找规律…7,统计和解决问题的策略8,圆:圆的位置,大小,面积,周长,半圆的面积和周长,圆环的面积二,经典例题:例1, 有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。

一共可以裁出多少个这样的正方形?%例2:把3米长的铁丝平均截成8段,每段长( )( ) 米,每段长是3米的( )( ) 。

一块3公顷的菜地平均分成8份,每份占这块菜地的( )( ) ,每份是( )( ) 公顷。

5米的19 和1米的( )( ) 相等,例3:把一根铁丝平均剪成15段,用去5段,剩下的占全长的几分之几~洗衣机厂计划25天生产1200台洗衣机,实际提前5天就完成了任务,实际每天完成了这项任务的几分之几?三:课堂练习1、A 是B 倍数,那么它们的最小公倍数是( )。

A 、AB B 、AC 、B2、两个数的最大公因数是15,最小公倍数是90,这两个数一定不是( )。

A 、15和90B 、45和90C 、45和303,54的分子加上12,要使分数的大小不变,分母应该加上( )\4、把两根长度分别是120厘米和180厘米的铁丝,截成长度相等的小段,每根都不能有剩余。

每小段最长多少厘米?5,三个连续的奇数的和是57,中间的数是M ,你能列方程求M 的值吗?6,小明和小红共有邮票50张,如果小明给小红8张,那么两人的邮票张数相等,小明原来有多少张?7,一个正方形的周长与一个圆的周长相等,已知正方形的边长是6.28厘米,圆的半径是多少厘米?·8,一个长方形纸的长是20厘米,周长是60厘米,在这张纸上剪下一个最大的圆,这个圆的周长是( )厘米,面积是( )平方厘米。

苏教版五年级下质数与合数

苏教版五年级下质数与合数

苏教版五年级下质数与合数在苏教版五年级下册的数学学习中,质数与合数是一个重要的知识点。

它就像是数学世界里的一个个小精灵,有着独特的特点和规律。

首先,咱们来聊聊什么是质数。

质数呀,就是指一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数。

比如说 2、3、5、7、11 等等,这些数都只有 1 和它本身两个因数。

那合数又是什么呢?合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

比如说 4、6、8、9、10 等等。

为了更好地理解质数与合数,咱们来举几个例子。

就拿 7 来说,它只能被 1 和 7 整除,所以 7 是质数。

再看 8 ,它除了能被 1 和 8 整除,还能被 2 和 4 整除,所以 8 是合数。

那么,怎么判断一个数是质数还是合数呢?这就需要我们去找出这个数的因数。

如果一个数的因数只有 1 和它本身,那它就是质数;如果除了 1 和它本身还有其他因数,那它就是合数。

但要注意,1 既不是质数也不是合数。

在实际生活中,质数与合数的应用也不少呢。

比如说在密码学中,质数的特性被广泛应用来保护信息的安全。

还有在计算机编程中,判断一个数是质数还是合数也是常见的操作。

学习质数与合数,对于我们五年级的小朋友来说,不仅能提高数学思维能力,还能为以后学习更复杂的数学知识打下基础。

那怎么才能学好质数与合数这部分知识呢?首先,要多做练习题,通过练习来加深对概念的理解和掌握。

比如说,找出 1 到 100 中的质数和合数,或者判断给定的数是质数还是合数。

其次,要善于总结规律。

比如,我们会发现质数中除了 2 以外,其他的都是奇数。

而且,个位上是 0、2、4、6、8 的数一般都不是质数(2 除外)。

另外,和同学们一起讨论交流也是个不错的方法。

大家可以分享自己的解题思路和方法,互相学习,共同进步。

在学习质数与合数的过程中,可能会遇到一些困难。

比如,有时候会把质数和合数弄混,或者在判断因数的时候出现错误。

苏教版五年级下册数学讲义-分数知识点讲解:一个数是另一个数的几分之几 (无答案)

苏教版五年级下册数学讲义-分数知识点讲解:一个数是另一个数的几分之几  (无答案)

求一个数是另一个数的几分之几(百分之几)——教师用一.知识点求一个数是另一个数的几分之几(或百分之几),是指知道比较量和标准量,求比较量是标准量的几分之几(百分之几)。

比较量一般为前者,标准量为后者,标准量通常看为“1”例如:黄彩带的长是红彩带的几分之几?分析:把红彩带的长看作单位“1”,,红彩带是“标准量”,平均分成了4份黄彩带和红彩带进行比较,黄彩带是“比较量”,它的长度相当于红彩带的一份。

1黄彩带的长是红彩带的4二.方法与技巧问题:一个数是另一个数的几分之几?方法:用一个数(前者比较量)除以另一个数(后者标准量)公式:比较量÷标准量=几分之几一个数÷另一个数=几分之几注意理清谁是标准量,谁是比较量。

例题示范例:三个兴趣小组的人数如下表。

现在我们将三个小组的人数进行比较:(一)以文艺小组人数为标准量。

1、英语小组人数是文艺小组的几分之几?解答:英语小组是比较量,文艺小组是标准量比较量÷标准量=几分之几550÷40=42、体育小组的人数是文艺小组的几倍?解答:体育小组是比较量,文艺小组是标准量比较量÷标准量=几分之几80÷40=2(二)以体育小组为标准量。

1、英语小组的人数是体育小组的几分之几?解答:英语小组是比较量,体育小组是标准量比较量÷标准量=几分之几550÷80=82、文艺小组的人数是体育小组的几分之几?解答:英语小组是比较量,体育小组是标准量比较量÷标准量=几分之几440÷80=8通过上面的举例可以看出,“求一个数是另一个数的几分之几”就是“求一个数是另一个数的几倍”都是先选定一个标准量,用比较量去和它比。

此类题目中比较量为前者,标准量为后者。

方法都是:比较量÷标准量=几分之几。

三.例题讲解例1 红旗小学有学生1600人,育才小学有学生850人。

红旗小学的人数是育才小学的几倍?育才小学是红旗小学的几分之几?分析求“红旗小学的人数是育才小学的几倍”,以育才小学人数为标准量,红旗小学的人数为比较量,倍数=比较量÷标准量=红旗小学人数÷育才小学人数。

苏教版五年级数学下册第六单元《圆》单元复习知识点归纳总结

苏教版五年级数学下册第六单元《圆》单元复习知识点归纳总结

一、圆的认识1.圆的特征。

圆是由曲线围成的封闭图形,没有顶点。

2.圆和多边形的异同。

(1)相同点:圆和多边形都是平面图形。

(2)不同点:多边形由线段围成,有顶点;圆由曲线围成,没有顶点。

圆的画法:(1)把圆规的两脚分开,定好两脚间的距离。

(2)把有针尖的脚固定在一点上。

(3)把装有铅笔芯的脚旋转一周,就画成了一个圆。

旋转圆规时,两脚间的距离不能变。

3.圆的各部分的名称。

(1)圆心:用圆规画圆时,针尖固定的一点是圆心,通常用字母O表示,圆心决定圆的位置。

(2)半径:连接圆心和圆上任意一点的线段(如线段OA)是半径,通常用字母r表示。

半径决定圆的大小,半径越长,圆越大;半径越短,圆越小。

(3)直径:通过圆心并且两端都在圆上的线段(如线段BC)是直径,通常用字母d表示。

如图:4.半径和直径的特征及圆的对称性。

(1)圆有无数条直径和半径。

在同圆或者等圆中,直径的长度是半径的2倍,半径的长度是直径的一半,用字母表示是d=2r或r=d2。

(2)圆是轴对称图形,有无数条对称轴。

二、扇形1.扇形。

一条弧和经过这条弧两端点的两条半径所围成的图形叫作扇形。

2.扇形各部分的名称。

易错提示:生活中的球不是圆,球是立体图形,圆是平面图形。

重点提示:画圆时,固定住针尖,不可以移动。

旋转时要捏住圆规的顶端。

知识巧记:圆的认识并不难,心径特征要记全。

圆心一点定位置,大小二径说了算。

直径半径都无数,圆心圆上线段连。

二者关系有条件,同圆等圆说在前。

直径为兄半径弟,兄长弟短二倍牵。

圆规画圆挺容易,半径即在两脚间。

针尖定在圆心位,笔芯一转就画完。

重点提示:扇形是轴对称图形,只有一条对称轴。

通过扇形两条半径的交点(即圆心)和曲线中点的直线就是它的对称轴。

苏教版五年级下册数学全册单元知识小结

苏教版五年级下册数学全册单元知识小结
1。2x=24 x=20 检验:2。2×20—20=24 2.2x=2。2×20=44 答:四年级植树 20 棵,五年级植树 44 棵.
第 2 单元 归纳总结
重要考点
单式折线 统计图
复式折线 统计图
考点解析 1。折线统计图的 特点是既可以反映 出数量的多少,又 能清晰地反映出数 量的增减变化情 况。 2。绘制折线统计 图的方法:(1)用 纵轴表示一种量, 横轴表示另一种 量;(2)根据数据 的大小确定单位长 度表示的数量; (3)根据所给数 据描点;(4)用线 段顺次连接各点, 在各点旁边注明数 据。 3.折线统计图的应 用:可以根据折线 统计图发现问题、 解决问题,并进行 简单的预测。 1。复式折线统计 图:在一个统计图 中,用两组不同的 折线表示两组不同 数据的变化情况, 这就是复式折线统 计图. 2。复式折线统计 图的特点:能表示 出两组数据数量的 多少,还能表示出 两组数据数量的增 减变化情况,便于 对两组数据进行比 较。 3。复式折线统计
树的几分之几?
4
3
【解答】 40÷30=3 30÷40=4
一个数 另一个数
4
3
答:梨树的棵数是杏树的3,杏树的棵数是梨树的4
1.真分数:分子比分 母小的分数叫作真分 数.真分数都小于 1。 2.假分数:分子大于或 等于分母的分数叫作 假分数。假分数大于

判断下面分数,哪些是真分数?哪些是假分
数?
3 7 8 2 1 8 11
典型例题
2014 年~2018 年某地区旅游人数情况统计如下 表所示。
年份 2014 2015 2016 2017 2018 人数/亿人 5.5 4.8 8.2 10.5 12。4 (1)根据上表制作折线统计图。 (2)哪一年的旅游人数最多?哪一年的最少? (3)哪两个年份间增长的幅度最大? (4)该地区旅游人数总趋势是上升还是下降? 【解答】 (1)如图所示。 2014 年~2018 年某地区旅游人数统计图

苏教版五年级(下册)数学知识点梳理归纳及复习要点

苏教版五年级(下册)数学知识点梳理归纳及复习要点

苏教版五年级(下册)数学知识点梳理归纳及复习要点一、知识点梳理归纳第一单元:简易方程1、表示相等关系的式子叫作等式。

如:20+30=50a+20=302、含有未知数的等式是方程。

如:X+Y=40,30+b=503、方程一定是等式;等式不一定是方程。

如:20+30=50是等式,但不是方程,它不含有未知数。

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式。

这也是等式的性质。

5、使方程左右两边相等的未知数的值叫作方程的解。

如x=30是20+x=50的解,不能说30是20+x=50的解。

6、求方程的解的过程,叫作解方程。

解方程步骤:(1)写解;(2)=上下对齐;(3)运用等式的性质解方程;(4)注意:解完方程,要养成检验的好习惯,把求得的解代入原方程,看等号左右两边是否相等。

7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。

五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

8、列方程解应用题的思路:①审题并弄懂题目的已知条件和所求问题。

②理清题目的数量关系,找准等量关系式。

③设未知数,一般是把问题中的量用X表示。

④根据数量关系列出方程。

⑤解方程。

⑥检验。

(把方程结果代入原题检验)⑦写答句。

注意书写应规范:设句中要有单位名称,求得的x的值的后面不写单位名称。

9、找等量关系的方法:①根据条件想数量间的相等关系。

②根据计算公式确定等量关系。

③稍复杂的条件可以画出线段图找等量关系。

第二单元:折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,直接表示增减变化的速度,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元方程1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。

等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。

这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。

B、理清题目的等量关系。

C、设未知数,一般是把所求的数用X表示。

D、根据等量关系列出方程E、解方程F、检验G、作答。

第二单元确定位置1、确定位置时,竖排叫做列,横排叫做行。

确定第几列一般从左往右数,确定第几行一般从前往后数。

2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。

4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。

举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。

5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。

举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。

第三单元公倍数和公因数1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。

几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。

两个数的公因数也是有限的。

4、两个素数的积一定是合数。

举例:3×5=15,15是合数。

5、两个数的最小公倍数一定是它们的最大公因数的倍数。

举例:[6,8]=24,(6,8)=2,24是2的倍数。

6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例:15和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例:[3,7]=21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。

[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。

(详见课本31页内容)数字与信息1、我国目前采用的邮政编码为“四级六码”制。

第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。

2、身份证编码规则:1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。

7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。

18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符χ表示。

第四单元认识分数1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,叫做分数单位。

一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是12。

3、举例说明一个分数的意义:37表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。

37吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的15 和1米的45同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

6、真分数小于1。

假分数大于或等于1。

真分数总是小于假分数。

7、男生人数是女生人数的34 ,则女生人数是男生人数的43。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=被除数 除数 如果用a 表示被除数,b 表示除数,可以写成a ÷b =a b(b ≠0)9、能化成整数的假分数,它们的分子都是分母的倍数。

反过来,分子是分母倍数的假分数,都能化成整数。

(用分子除以分母)10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。

带分数是假分数的另一种形式。

例如,43 就可以看作是33 (就是1)和13合成的数,写作1 13,读作一又三分之一。

带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于37 而小于57 的分数有无数个;分数单位是17 只有47一个。

17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

18、一些特殊分数的值:1 2 = 0.514= 0.2534=0.7515=0.225=0.435=0.64 5 =0.818=0.12538=0.37558=0.62578=0.875110=0.1116=0.06253 16 =0.1875516=0.3125120=0.05125=0.04150=0.021100=0.0119、求一个数是(占)另一个数的几分之几,用除法列算式计算。

第五单元找规律1、单向平移求不同的和的个数规律:方格的总个数—每次框出的个数+1=得到不同和的个数2、双向平移如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。

一共有多少种贴法=沿着长的贴法×沿着宽的贴法3、中间的数×框出的个数=框出的每个数的和框出的每个数的和÷框出的个数=中间的数(注意:有些数字的和是不能框出来的,(1)是框出的每个数的和÷框出的个数≠中间的数;(2)是虽然“框出的每个数的和÷框出的个数=中间的数”,但中间的数在边上;(3)出现有空白方格。

)第六单元分数的基本性质1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。

它和整数除法中的商不变规律类似。

2、分子和分母只有公因数1,这样的分数叫最简分数。

约分时,通常要约成最简分数。

3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

约分方法:直接除以分子、分母的最大公因数。

例如:4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。

通分过程中,相同的分母叫做这几个分数的公分母。

通分时,一般用原来几个分母的最小公倍数作公分母。

5、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。

(2)化成小数后再比较。

(3)先通分转化成同分子的分数再比较。

(4)十字相乘法。

球的反弹实验球的反弹高度实验的结论:(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。

第七单元 统计1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。

不能同时描点画线,以免混淆。

(也可以先画虚线的统计图)第八单元 分数加法和减法1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。

2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。

分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

举例:21+31=3223⨯+=65 21-31=3223⨯-=61 3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近12;分子分母越接近,分数就越接近1。

举例:101≈0,115≈21,98≈1 4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。

没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。

乘法分配律也适用分数的简便计算。

相关文档
最新文档