高级高中物理典型物理模型及方法

合集下载

盘点30条高中物理模型及隐含条件,解题关键所在!

盘点30条高中物理模型及隐含条件,解题关键所在!

盘点30条高中物理模型及隐含条件,解题关键所在!在物理学习中,事实上好多的物理模型,而每一种模型,都相伴着隐含条件,这些隐含条件会是解题的关键所在!下面是三十条大伙儿在做题中容易遇到的模型和隐含条件,不管你是高几,都期望大伙儿多体会体会,在审题做题过程中能够总结领会。

1、绳:只能拉,不能压,即受到拉力时F≠0,受压时F=0.2、杆:既能拉也能压,即受到拉力、压力时,有F≠0.3、绳刚要断:现在绳的拉力差不多达到最大值,即F=Fmax.4、光滑:意味着无摩擦力.5、长导线:意味着长度L可看成无穷大.6、足够大的平板:意味着平板的面积S可看成无穷大.7、轻杆、轻绳、轻滑轮:意味着质量m=0.8、物体刚要离开地面、物体刚要飞离轨道等物体和接触面之间作用力:FN=0.9、绳恰好被拉直,现在绳中拉力:F=0.10、物体开始运动、自由开释:表示初速度为0.11、锤打桩无反弹:碰撞后,锤与桩有共同速度.12、理想变压器:无功率损耗的变压器.13、细杆:体积为零,仅有长度.14、质点:具有质量,但可忽略其大小、形状和内部结构而视为几何点的物体.15、点电荷:在研究带电体间的相互作用时,假如带电体的大小比它们之间的距离小得多,即可认为分布在带电体上的电荷是集中在一点上的.16、差不多粒子如电子、质子、离子等是不考虑重力的粒子,而带电的质点、液滴、小球等(除说明不考虑重力外)则要考虑重力.17、“轻绳、弹簧、轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动力学问题和功能问题.18、“挂件”模型:考查物体的平稳问题、死结与活结问题,常采纳正交分解法,图解法,三角形法则和极值法解题.19、“追碰”模型:考查运动规律、碰撞规律、临界问题.常通过数学法(函数极值法、图像法等)和物理方法(参照物变换法、守恒法)等解题.20、“皮带”模型:注意摩擦力的大小和方向.常考查牛顿运动定律、功能关系及摩擦生热等问题.21、“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解、牛顿运动定律、动能定理等知识.22、“行星”模型:万有引力提供向心力.注意相关物理量、功能问题、数理问题(圆心、半径、临界问题).23、“人船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.通过类比和等效方法,能够使许多动量守恒问题的分析思路和解答步骤变得简捷.24、“子弹打木块”模型:子弹和木块组成的系统动量守恒,机械能不守恒.系统缺失的机械能等于阻力乘以相对位移.25、“限流与分压器”模型:电路设计中经常遇到.考查串、并联电路规律及闭合电路的欧姆定律、电能、电功率以及实际应用等.26、“电路的动态变化”模型:考查闭合电路的欧姆定律.27、“回旋加速器”模型:考查带电粒子在磁场中运动的典型模型.注意加速电场的平行极板接的是交变电压,且它的周期和粒子的运动周期相同.28、电磁场中的“单杆”模型:导体棒要紧是以棒生电或电生棒的内容显现,从组合情形来看有棒与电阻、棒与电容、棒与电感、棒与弹簧等.导体棒所在的导轨有平面导轨、竖直导轨等.29、电磁场中的“双电源”模型:考查力学中的三大定律、闭合电路的欧姆定律、电磁感应定律等知识.30、“远距离输电变压器”模型. 注意变压器的三个制约问题.。

高中物理48个解题模型高考物理题型全归纳

高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

高中物理基础知识-总结几种典型的运动模型

高中物理基础知识-总结几种典型的运动模型

⾼中物理基础知识-总结⼏种典型的运动模型⾼考物理知识点总结⼏种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动两个基本公式(规律): V t = V 0 + a t S = v o t +12a t 2及⼏个重要推论: (1) 推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: V t/ 2 =V V t 02+=st(若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度: V s/2 =v v o t222+V t/ 2 =V =V V t 02+=s t=T S S NN 21++= V N ≤ V s/2 =v v o t222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2(4) S 第t 秒 = S t -S (t-1)= (v o t +12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 + a (t -12) (5) 初速为零的匀加速直线运动规律①在1s 末、2s 末、3s 末……ns 末的速度⽐为1:2:3……n ;②在1s 、2s 、3s ……ns 内的位移之⽐为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之⽐为1:3:5……(2n-1);④从静⽌开始通过连续相等位移所⽤时间之⽐为1:()21-:32-)……(n n --1)⑤通过连续相等位移末速度⽐为1:2:3……n(6)匀减速直线运动⾄停可等效认为反⽅向初速为零的匀加速直线运动.(先考虑减速⾄停的时间).“刹车陷井”实验规律:(7) 通过打点计时器在纸带上打点(或频闪照像法记录在底⽚上)来研究物体的运动规律:此⽅法称留迹法。

=-+=+=+==axv v at t v x at v v v v v t v x tt t22122022000①②③初速⽆论是否为零,只要是匀变速直线运动的质点,就具有下⾯两个很重要的特点:在连续相邻相等时间间隔内的位移之差为⼀常数;?s = aT2(判断物体是否作匀变速运动的依据)。

爆炸与类爆炸模型(解析版)--2024届新课标高中物理模型与方法

爆炸与类爆炸模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法爆炸与类爆炸模型目录【模型一】爆炸模型【模型二】弹簧的“爆炸”模型【模型三】人船模型与类人船模型【模型四】类爆炸(人船)模型和类碰撞模型的比较【模型一】爆炸模型一、爆炸模型的特点1.动量守恒:由于爆炸是极短时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的总动量守恒。

2.动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加。

3.位置不变:由于爆炸的时间极短。

因而作用过程中,物体产生的位移很小,一般可以忽略不计,可认为物体爆炸后仍然从爆炸前的位置以新的动量开始运动。

二、爆炸模型讲解1.如图:质量分别为m A 、m B 的可视为质点A 、B 间夹着质量可忽略的火药.一开始二者静止,点燃火药(此时间极短且不会影响各物体的质量和各表面的光滑程度),则:A 、B 组成的系统动量守恒:m A v A =m B v B ①得:v A v B =m B m A②②式表明在爆炸过程中相互作用的两个物体间获得的速度与它们的质量成反比。

A 、B 组成的系统能量守恒:E 化学能=12m A v 2A +12m B v 2B ③①式也可以写为:P A =P B ④又根据动量与动能的关系P =2mE k 得2m A E kA =2m B E kB ④进一步化简得:E kA E kB =mB m A⑤⑤式表明在爆炸过程中相互作用的两个物体间获得的动能与它们的质量成反比。

②⑤联立可得:E kA =m Bm A +m B E 化学能E kB =m A m A +m B E 化学能⑥2.若原来A 、B 组成的系统以初速度v 在运动,运动过程中发生了爆炸现象则:A 、B 组成的系统动量守恒:(mA +mB )v =m A v A +m B v B ⑦A、B组成的系统能量守恒:E化学能=12m A v2A+12m B v2B-12(m A+m B)v=12m A m Bm A+m B(v A−v B)2⑧1(2023·全国·模拟预测)皮划艇射击是一种比赛运动,比赛时,运动员站在静止的皮划艇上,持枪向岸上的枪靶水平射击。

“等效重力场”模型(解析版)--2024届新课标高中物理模型与方法

“等效重力场”模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法“等效重力场”模型目录一.“等效重力场”模型解法综述二.“等效重力场”中的直线运动模型三.“等效重力场”中的抛体类运动模型四.“等效重力场”中的单摆类模型五.“等效重力场”中的圆周运动类模型一.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.“等效重力场”中的直线运动模型【运动模型】如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30° ①S AB=12g t2 ②由①②两式解得t=3L g“等效重力场”的直线运动的几种常见情况匀速直线运动匀加速直线运动匀减速直线运动1如图所示,相距为d的平行板A和B之间有电场强度为E、方向竖直向下的匀强电场.电场中C点距B板的距离为0.3d,D点距A板的距离为0.2d,有一个质量为m的带电微粒沿图中虚线所示的直线从C点运动至D点,若重力加速度为g,则下列说法正确的是()A.该微粒在D点时的电势能比在C点时的大B.该微粒做匀变速直线运动C.在此过程中电场力对微粒做的功为0.5mgdD.该微粒带正电,所带电荷量大小为q=mg E【答案】 C【解析】 由题知,微粒沿直线运动,可知重力和电场力二力平衡,微粒做匀速直线运动,微粒带负电,B、D 错误;微粒从C点运动至D点,电场力做正功,电势能减小,A错误;此过程中电场力对微粒做的功为W= Fx=mg(d-0.3d-0.2d)=0.5mgd,C正确.2(2023·全国·高三专题练习)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。

(word完整版)高中典型物理模型及方法(精华)汇总,文档

(word完整版)高中典型物理模型及方法(精华)汇总,文档

高中典型物理模型及方法〔精华〕◆ 1. 连接体模型: 是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的根本方法是整体法和隔断法。

整体法 是指连接体内的物体间无相对运动时,能够把物体组作为整体,对整体用牛二定律列方程隔断法 是指在需要求连接体内各局部间的互相作用 (如求互相间的压力或互相间的摩擦力等)时,把某物体从连接体中隔断出来进行解析的方法。

连接体的圆周运动:两球有同样的角速度;两球组成的系统机械能守恒 (单个球机械能不守恒 )与运动方向和有无摩擦 ( μ 同样 ) 没关,及与两物体放置的方式都没关。

平面、斜面、竖直都同样。

只要两物体保持相对静止m 1记住: N= m Fm F(N 为两物体间互相作用力),2 11 2m 1 m 2m2一起加快运动的物体的分子 m 1F 2 和 m 2F 1 两项的规律并能应用Nm m 2mF12谈论:① F 1≠0; F 2=0FF=(m 1+m 2 )am 1 m 2N=m 2am 2N=Fm 1 m 2② F 1≠ 0;F 2≠0m 2 F m F211N=m 2m 1( F 20 就是上面的情F= m 1 (m 2 g)m 2 (m 1g)m 1 m 2F= m 1 (m 2 g) m 2 (m 1gsin )m 1 m 2m A (m B g) m B FF=m 1 m 2况 )F 1>F 2 m 1>m 2 N 1<N 2(为什么 )N 5 对 6=mF (m 为第 6 个此后的质量 ) 第 12 对 13 的作用力N 12 对13= (n - 12)m FM nm◆ 2. 水流星模型 ( 竖直平面内的圆周运动—— 是典型的变速圆周运动 )研究物体经过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例 )①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,翱翔员对座位的压力。

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

高中物理模型清单和126招

高中物理模型清单和126招

高中物理模型清单和126招
传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)
挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

“爆炸”模型:动量守恒定律,能量守恒定律。

“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中物理最全模型归纳总结

高中物理最全模型归纳总结

高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。

本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。

第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。

这个模型可以解释为何我们在车上突然刹车时会向前倾斜。

2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。

这个模型可以帮助我们计算物体受到的合力以及其加速度。

3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。

这个模型可以解释为何我们划船时推水就能向后移动。

4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。

这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。

第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。

这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。

2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。

它遵循热量自高温物体向低温物体传递的规律。

这个模型可以解释为何我们触摸金属杯时会感觉更冷。

3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。

热辐射是指物体由于其温度而产生的电磁波辐射。

这个模型可以帮助我们理解太阳能的产生和传递。

第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。

根据电荷的性质,带电物体可能相互吸引或者相互排斥。

这个模型可以解释为何我们的头发梳理之后会挑起纸片。

2. 电流模型电流模型用于描述电荷在导体中流动的现象。

根据导体的电阻和电压差,电流的大小和方向也会发生变化。

这个模型可以帮助我们计算电路中的电流和电压。

热学中常见的模型(解析版)--2024届新课标高中物理模型与方法

热学中常见的模型(解析版)--2024届新课标高中物理模型与方法

热学中常见的模型1.目录一.“玻璃管液封”模型二.“汽缸活塞类”模型三.“变质量气体”模型一.“玻璃管液封”模型【模型如图】1.三大气体实验定律(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数).(2)查理定律(等容变化):p 1T 1=p 2T 2或p T=C (常数).(3)盖-吕萨克定律(等压变化):V 1T 1=V 2T 2或V T=C (常数).2.利用气体实验定律及气态方程解决问题的基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为p =ρgh (其中h 为至液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理--连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg ”等,使计算过程简捷.1(广东省潮州市2022-2023学年高三下学期期末教学质量检测物理试题)如图所示,一足够长的玻璃管竖直放置,开口向上,用长19cm 的水银封闭一段长为20cm 的空气柱,大气压强为76cmHg ,环境温度为300K ,则:(1)若气体温度变为360K 时,空气柱长度变为多少;(2)若气体温度仍为300K ,将玻璃管缓慢旋转至水平,将空气柱长度又是多少。

【答案】(1)24cm ;(2)25cm【详解】(1)根据题意可知,气体做等压变化,设玻璃管的横截面积为S ,当气体温度变为360K 时,由盖吕萨克定律得L 1S T 1=L 2S T 2代入数据得L 2=24cm(2)根据题意可知,气体做等温变化,初状态压强P 1=76cmHg +19cmHg =95cmHg末状态压强P 3=76cmHg由玻意耳定律得P 1L 1S =P 3L 3S 代入数据得L 3=25cm2(2023春·黑龙江大庆·高三大庆实验中学校考期末)一根一端封闭的玻璃管竖直放置,内有一段高h 1=0.25m 的水银柱,当温度为t 1=27°C 时,封闭空气柱长为h 2=0.60m ,则(外界大气压相当于L 0=0.75m 高的水银柱产生的压强,取T =t +273K )(1)如图所示,若玻璃管足够长,缓慢地将管转至开口向下,求此时封闭气柱的长度(此过程中气体温度不变);(2)若玻璃管长L =0.95m ,温度至少升到多少开尔文时,水银柱会全部从管中溢出?【答案】(1)1.20m ;(2)361.25k【详解】(1)设玻璃管内部横截面积为S ,对水银柱分析可知,气体初状态的压强p 1=h 1+L 0=1.00mHg初状态的体积V 1=0.60S管转至开口向下后,气体的压强p 2=L 0-h 1=0.50mHg体积为V 2=hS气体做等温变化,由玻意耳定律可得p 1V 1=p 2V 2代入数据解得h =1.00×0.60S 0.50S=1.20m (2)由理想气体状态方程pV T=C 可知,pV 乘积越大,对应的温度T 越高,假设管中还有长为x 的水银柱尚未溢出,pV 值最大,即L 0+x (L -x )S 的值最大,因为L 0+x +(L -x )=L 0+L 由数学知识可知当L 0+x =L -x 时,取得最大值,代入数据解得x =L 0-L 2=0.10m 即管中水银柱由0.25m 溢出到还剩下0.10m 的过程中,pV 的乘积越来越大,这一过程必须是升温的,此后温度不必再升高(但是要继续给气体加热),水银柱也将继续外溢,直至全部溢出,由理想气体状态方程p 1V 1T 1=p 2V 2T 2得T 2=p 2V 2T 1p 1V 1=L 0+x (L -x )ST 1L 0+h 1 h 2S代入数据得T 2=361.25K3(2023春·江西九江·高三江西省湖口中学校考期末)有一内壁光滑,导热性良好的汽缸,横截面积为30cm 2,总长度为20cm 。

高中物理典型物理模型与方法

高中物理典型物理模型与方法

高中典型物理模型及方法(精华)◆ 1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等 )时,把某物体从连 接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止m1 记住:N= m 2F 1 m 1F 2 (N 为两物体间相互作用力), m 1 m 2 m2一起加速运动的物体的分子 2 1 m 2 FN m 1F 2和mF 两项的规律并能应用m 2 m 1 讨论:①F 1≠0;F 2=0FF=(m 1+m 2)am1 m2 N=m 2am 2 FN= m 1 m 2②F 1≠0;F 2≠0 F= m 1(m 2g)m 2(m 1g)m 1 m 2 m 2F 1 m 1F2m 1(m 2g)m 2(m 1gsin ) N=F= m 1 m 2 m 1 m 2(F 20就是上面的情m A(m B g) m B FF= m 1 m 2况)F1>F2 m1>m2 N1<N2(为什么)N5对6=m F (m 为第6个以后的质量) 第12对13的作用力N 12对13=(n-12)mF M nm◆2.水流星模型(竖直平面内的圆周运动—— 是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

2024届新课标高中物理模型与方法-常见的电路模型(解析版)

2024届新课标高中物理模型与方法-常见的电路模型(解析版)

2024版新课标高中物理模型与方法常见的电路模型目录一.电路动态分析模型1二.含容电路模型6三.关于U I ,ΔU ΔI的物理意义模型11四.电源的输出功率随外电阻变化的讨论及电源的等效思想22五.电路故障的分析模型30一.电路动态分析模型1.电路的动态分析问题:是指由于断开或闭合开关、滑动变阻器滑片的滑动等造成电路结构发生了变化,某处电路变化又引起其他电路的一系列变化;对它们的分析要熟练掌握闭合电路欧姆定律,部分电路欧姆定律,串、并联电路中电压和电流的关系.2.电路动态分析的三种常用方法(1)程序法【需要记住的几个结论】:①当外电路的任何一个电阻增大(或减小)时,整个电路的总电阻一定增大(或减小)。

②若电键的通断使串联的用电器增多时,总电阻增大;若电键的通断使并联的用电器增多时,总电阻减小③用电器断路相当于该处电阻增大至无穷大,用电器短路相当于该处电阻减小至零。

(2)“串反并同”结论法①所谓“串反”,即某一电阻增大时,与它串联或间接串联的电阻中的电流、两端电压、电功率都将减小,反之则增大。

②所谓“并同”,即某一电阻增大时,与它并联或间接并联的电阻中的电流、两端电压、电功率都将增大,反之则减小。

即:U 串↓I 串↓P 串↓ ←R ↑→U 并↑I 并↑P 并↑【注意】此时电源要有内阻或有等效内阻,“串反并同”的规律仅作为一种解题技巧供参考。

(3)极限法因变阻器滑片滑动引起电路变化的问题,可将变阻器的滑片分别滑至两个极端,让电阻最大或为零再讨论。

3.电路动态变化的常见类型:①滑动变阻器滑片移动引起的动态变化:限流接法时注意哪部分是有效电阻,分压接法两部分电阻一增一减,双臂环路接法有最值;②半导体传感器引起的动态变化:热敏电阻、光敏电阻、压敏电阻等随温度、光强、压力的增大阻值减小;③开关的通断引起的动态变化:开关视为电阻,接通时其阻值为零,断开时其阻值为无穷大,所以,由通而断阻值变大,由断而通阻值变小。

物理必背高中物理解题模型详解归纳

物理必背高中物理解题模型详解归纳

高考物理解题模型目录第一章运动和力 (1)一、追及、相遇模型 (1)二、先加快后减速模型 (4)三、斜面模型 (6)四、挂件模型 (11)五、弹簧模型(动力学) (18)第二章圆周运动 (20)一、水平方向的圆盘模型 (20)二、行星模型 (23)第三章功和能 (1)一、水平方向的弹性碰撞 (1)二、水平方向的非弹性碰撞 (6)三、人船模型 (9)四、爆炸反冲模型 (11)第四章力学综合 (13)一、解题模型: (13)二、滑轮模型 (19)三、渡河模型 (23)第五章电路 (1)一、电路的动向变化 (1)二、交变电流 (6)第六章电磁场 (10)一、电磁场中的单杆模型 (10)二、电磁流量计模型 (16)三、盘旋加快模型 (19)四、磁偏转模型 (24)第一章运动和力一、追及、相遇模型模型解说:1.火车甲正以速度v1向前行驶,司机忽然发现前面距甲 d 处有火车乙正以较小速度v2同向匀速行驶,于是他立刻刹车,使火车做匀减速运动。

为了使两车不相撞,加快度 a 应知足什么条件?分析:设以火车乙为参照物,则甲相对乙做初速为(v1v2 ) 、加快度为 a 的匀减速运动。

若甲相对乙的速度为零时两车不相撞,则今后就不会相撞。

所以,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d。

即: 0 (v1 v2 ) 2 2ad, a (v1 v2 ) 2 ,2d故不相撞的条件为a(v1v2) 22d2.甲、乙两物体相距s,在同向来线上同方向做匀减速运动,速度减为零后就保持静止不动。

甲物体在前,初速度为 v1,加快度大小为a1。

乙物体在后,初速度为v2,加快度大小为a2且知 v1<v 2,但两物体向来没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?分析:若是v1v2,说明甲物体先停止运动或甲、乙同时停止运动。

在运动过程中,乙的速度a1a2向来大于甲的速度,只有两物体都停止运动时,才相距近来,可得近来距离为s s v12 v22 2a1 2a2若是v1 v2 ,说明乙物体先停止运动那么两物体在运动过程中总存在速度相等的时刻,此时a2 a2两物体相距近来,依据v共v1 a1t v2 a2 t ,求得t v2 v1 a2 a1在 t 时间内第1 页甲的位移 s1 v共v1t2乙的位移 s2 v共v2t2代入表达式s s s1s2求得s s(v2v1)2(a2a1 )3.如图 1.01 所示,声源S 和察看者 A 都沿x 轴正方向运动,相对于地面的速率分别为v S和v A。

108个高中物理模型

108个高中物理模型

108个高中物理模型1. 力的作用点模型:描述力在物体上的作用位置和方向。

2. 弹簧振子模型:描述弹簧的伸缩和振动过程。

3. 摆锤模型:描述摆锤的摆动过程和周期。

4. 斜面滑动模型:描述物体在斜面上的滑动过程和摩擦力的影响。

5. 圆周运动模型:描述物体在圆形轨道上的运动过程和向心力的作用。

6. 万有引力模型:描述两个物体之间的引力作用和距离的关系。

7. 电磁感应模型:描述磁场变化时产生的电动势和电流。

8. 静电场模型:描述带电粒子在静电场中的受力和运动。

9. 电荷分布模型:描述电荷在物体表面的分布和电场强度的关系。

10. 电路模型:描述电流在电路中的流动和电阻、电容等元件的作用。

11. 磁通量模型:描述磁场通过闭合曲面的数量和磁通量密度的关系。

12. 热传导模型:描述热量在物体内部的传递和导热系数的关系。

13. 热辐射模型:描述物体表面辐射出的热量和温度的关系。

14. 气体分子运动模型:描述气体分子的运动状态和温度、压力的关系。

15. 液体静力学模型:描述液体中的压力分布和液体高度的关系。

16. 液体动力学模型:描述液体中的速度分布和黏度的关系。

17. 声波传播模型:描述声波在介质中的传播和速度的关系。

18. 光的传播模型:描述光在介质中的传播和折射、反射等现象。

19. 光的干涉模型:描述两束或多束光的叠加和干涉现象。

20. 光的衍射模型:描述光通过狭缝或小孔时的衍射现象。

21. 光的偏振模型:描述光的振动方向和偏振现象。

22. 光的吸收和散射模型:描述光在物质中的吸收和散射现象。

23. 光电效应模型:描述光子与物质相互作用时产生的电子和能量转移。

24. 原子结构模型:描述原子中电子的能级结构和原子光谱。

25. 核反应模型:描述核子之间的相互作用和核反应过程。

26. 量子力学模型:描述微观粒子的行为和量子态的变化。

27. 相对论模型:描述高速运动物体的时间、长度等物理量的相对性变化。

28. 黑洞模型:描述黑洞的形成和引力场的极端情况。

碰撞与类碰撞模型(解析版)--2024届新课标高中物理模型与方法

碰撞与类碰撞模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法专题碰撞与类碰撞模型目录【模型一】弹性碰撞模型【模型二】非弹性碰撞、完全非弹性碰撞模型【模型三】碰撞模型三原则【模型四】小球-曲面模型【模型五】小球-弹簧模型【模型六】子弹打木块模型【模型七】滑块木板模型【模型一】弹性碰撞模型1.弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m1和m2,碰前速度为v1,v2,碰后速度分别为v1ˊ,v2ˊ,则有:m1v1+m2v2=m1v1ˊ+m2v2ˊ(1)1 2m1v21+12m2v22=12m1v1ˊ2+12m2v2ˊ2(2)联立(1)、(2)解得:v1ˊ=2m1v1+m2v2m1+m2-v1,v2ˊ=2m1v1+m2v2m1+m2-v2.特殊情况:若m1=m2,v1ˊ=v2,v2ˊ=v1 .2.“动静相碰型”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′1 2m1v21=12m1v1′2+12m2v2′2解得:v1′=(m1-m2)v1m1+m2,v2′=2m1v1m1+m2结论:(1)当m1=m2时,v1′=0,v2′=v1(质量相等,速度交换)(2)当m1>m2时,v1′>0,v2′>0,且v2′>v1′(大碰小,一起跑)(3)当m1<m2时,v1′<0,v2′>0(小碰大,要反弹)(4)当m1≫m2时,v1′=v0,v2′=2v1(极大碰极小,大不变,小加倍)(5)当m1≪m2时,v1′=-v1,v2′=0(极小碰极大,小等速率反弹,大不变)1(2023·全国·高三专题练习)如图所示,用不可伸长的轻绳将质量为m1的小球悬挂在O点,绳长L= 0.8m,轻绳处于水平拉直状态。

现将小球由静止释放,下摆至最低点与静止在A点的小物块发生碰撞,碰后小球向左摆的最大高度h=0.2m,小物块沿水平地面滑到B点停止运动。

斜面模型(解析版)-2024届新课标高中物理模型与方法

斜面模型(解析版)-2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法斜面模型目录【模型一】斜面上物体静摩擦力突变模型【模型二】斜面体静摩擦力有无模型【模型三】物体在斜面上自由运动的性质【模型四】斜面模型的衍生模型----“等时圆”模型1.“光滑斜面”模型常用结论2.“等时圆”模型及其等时性的证明【模型五】功能关系中的斜面模型1.物体在斜面上摩擦力做功的特点2.动能变化量与机械能变化量的区别【模型一】斜面上物体静摩擦力突变模型【模型构建】1.如图所示,一个质量为m的物体静止在倾角为θ的斜面上。

1.试分析m受摩擦力的大小和方向【解析】:假设斜面光滑,那么物体将在重力和斜面支持力的作用下沿斜面下滑。

说明物体有沿斜面向下运动的趋势,物体一定受到沿斜面向上的静摩擦力作用。

由平衡条件易得:f=mg sinθ2.若斜面上放置的物体沿着斜面匀速下滑时,判断地面对静止斜面有无摩擦力。

【解析】:因地面对斜面的摩擦力只可能在水平方向,只需考查斜面体水平方向合力是否为零即可。

斜面所受各力中在水平方向有分量的只有物体A对斜面的压力N和摩擦力f。

若设物体A的质量为m,则N 和f的水平分量分别为N x=mg cosθsinθ,方向向右,f x=mg sinθcosθ,方向向左。

可见斜面在水平方向所受合力为零。

无左右运动的趋势,地面对斜面无摩擦力作用。

3.如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上。

若要物块在斜面上保持静止,F的取值应有一定的范围,已知其最大值和最小值分别为F1和F2(F2>0)。

设斜面倾角为θ,斜面对物块的静摩擦力为f。

(1).当F=mg sinθ时斜面对物块无静摩擦力(2).当F>mg sinθ时物块有相对于斜面向上运动的趋势静摩擦力方向向下平衡方程为:F=f+mg sinθ随着F的增大静摩擦力增大,当静摩擦力达到最大值时外力F取最大值F1时,由平衡条件可得:F1=f+ mg sinθ---------------(1);(3).当F<mg sinθ时物块有相对于斜面向下运动的趋势静摩擦力方向向上平衡方程为:F+f=mg sinθ随着F的增大静摩擦力减小当静摩擦力减小为0时突变为(2)中的情形,随着F的减小静摩擦力增大,当静摩擦力达到最大值时外力F取最小值F2时,由平衡条件可得:f+F2=mg sinθ-------(2);联立(1)(2)解得物块与斜面的最大静摩擦力f=(F2-F1)/2.1(2019·高考全国卷Ⅰ)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N.另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加【答案】BD【解析】 对N进行受力分析如图所示因为N的重力与水平拉力F的合力和细绳的拉力T是一对平衡力,从图中可以看出水平拉力的大小逐渐增大,细绳的拉力也一直增大,A错误,B正确;M的质量与N的质量的大小关系不确定,设斜面倾角为θ,若m N g≥m M g sinθ,则M所受斜面的摩擦力大小会一直增大,若m N g<m M g sinθ,则M所受斜面的摩擦力大小可能先减小后增大,D正确,C错误.2(2023·河北沧州·沧县中学校考模拟预测)如图甲所示,倾角为θ的斜面体C置于水平地面上,物块B置于斜面上,通过细绳跨过光滑的定滑轮与物块A连接,连接B的一段细绳与斜面平行,整个装置处于静止状态。

高中物理常见十种模型

高中物理常见十种模型

(2)当 0<v< mg=mvr2,FN
gr时,-FN+ 背离圆心且随
对球产生弹力 FN
v 的增大而减小
(2)不能过最高点时 v< (3)当 v= gr时,FN=0
gr,在到达最高点前小 (4)当 v> gr时,FN+mg=
球已经脱离了圆轨道
mvr2,FN 指向圆心并随 v 的
增大而增大
(多选)(2015·东城区模拟)长为 L 的轻杆,一端固 定一个小球,另一端固定在光滑的水平轴上,使小球在竖直 平面内做圆周运动,关于小球在最高点的速度 v,下列说法 中正确的是( ABD ) A.当 v 的值为 gL时,杆对小球的弹力为零 B.当 v 由 gL逐渐增大时,杆对小球的拉力逐渐增大 C.当 v 由 gL逐渐减小时,杆对小球的支持力逐渐减小 D.当 v 由零逐渐增大时,向心力也逐渐增大
[规范解答]—————————该得的分一分不丢!
(1)煤块刚放上时,受到向下的摩擦力,如图甲,其加速度为
a1=g(sin θ+μcos θ)=10 m/s2, t1=va01=1 s,
(2 分) (1 分)
x1=12a1t21=5 m<L,
即下滑 5 m 与传送带速度相等.
(2 分)
达到 v0 后,受到向上的摩擦力,由于 μ<tan 37°,煤块仍将 加速下滑,如图乙,
Fcos α+F1sin 37°=F2
Fsin α+F1cos 37°=G
代入数据解得:F=5 N,α=53°

即杆对小球的作用力大小约为 5 N,方向与水平方向
成 53°角斜向右上方.
(2)弹簧对小球向右推时:
小球受力如图乙所示:
由平衡条件得:
Fcos α+F1sin 37°+F2=0

高考的常用24个物理模型

高考的常用24个物理模型

Fm高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。

主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面a搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。

隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止记住:N= 211212m F m Fm m++(N为两物体间相互作用力),一起加速运动的物体的分子m1F2和m2F1两项的规律并能应用⇒F212mmmN+=讨论:①F1≠0;F2=0122F=(m+m)aN=m am2m1Fm1m2╰ αN=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++(20F=是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m Fm m g ++F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力N 12对13=Fnm12)m -(n模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

(是内外轨对火车都无摩擦力的临界条件)m 2m 1 Fm 1 m 2①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。

能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道) 讨论:① 恰能通过最高点时:mg=Rm2临v ,临界速度V 临=gR ;可认为距此点2R h = (或距圆的最低点)25R h =处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg② 最高点状态: mg+T 1=L2m高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)最低点状态: T 2- mg = L2m低v 高到低过程机械能守恒:mg2L m m 221221+=高低v v T 2- T 1=6mg (g 可看为等效加速度) ② 半圆:过程mgR=221mv 最低点T-mg=R 2v m ⇒绳上拉力T=3mg ; 过低点的速度为V低=gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成?角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,此时绳子拉力T=mg(3-2cos ?)(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点) 恰好过最高点时,此时从高到低过程 mg2R=221mv低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况) 2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。

╰α ╰α (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。

(3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。

当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。

其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)◆4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

如图:杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g⇐mgR=221Bmv 整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'B V 2V ==gR 256> V B =R 2g所以AB 杆对B 做正功,AB 杆对A 做负功 ◆ 5.通过轻绳连接的物体①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。

讨论:若作圆周运动最高点速度 V 0<gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒m L·F mS 1S 20 Ft t s例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? ◆6.碰撞模型:两个相当重要典型的物理模型,后面的动量守恒中专题讲解◆7.子弹打击木块模型: ◆8.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d⇒s=d Mm M+ M/m=L m /L M 载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。

⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。

●模型法常常有下面三种情况(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型), 实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等;常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

20mMmO Ra图9?有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

相关文档
最新文档