量子力学基础习题
量子力学习题
= Ly z − Lz y + yLz − zLy = ( Ly z − zLy ) + ( yLz − Lz y ) = [ Ly , z ] + [ y, Lz ] = 2ix = (2ir ) x
= Ly pz − Lz p y + p y Lz − pz Ly = ( Ly pz − pz Ly ) + ( p y Lz − Lz p y ) = [ Ly , pz ] + [ p y , Lz ]
① 写出Ψ(x,t); ② 求在Ψ(x,t)态中测量粒子的能量的可能值及其概率。 ③ 求 t=0 时的<x>(即坐标的平均值),并问<x>是否随时间 t 变化。
x 2 + y 2 + z 2 , k、α 是实
的正常数。求: ① 粒子的角动量是多少? ② 角动量 z 方向的分量的平均值。 ③ 若角动量的 z 分量 L z 被测量,求 L z = + 的概率有多大? ④ 发现粒子在θ、φ方向上 dΩ立体角内的概率是多少?θ、φ是通常球 坐标中的方向角。
二、 算符的本征态及力学量的测量
1、证明:若两个算符具有共同的本征态,而且这些本征态构成体系状态的完备 集,则这两个算符对易。
Axe− λ x ( x > 0) ψ ( x) (λ > 0) = 0( x < 0) 2、一维运动的粒子处在 求动量和坐标的不确定度,
并验证不确定关系
并说明算符 A、B 厄米性。 5、证明:设 A、B 都是矢量算符 F 是标量算符,证明: F , A ⋅= B F , A ×= B F , A ⋅ B + A ⋅ F , B F , A × B + A × F , B
第一章 量子力学基础 例题与习题
第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。
和是属于同一本征值得本征函数,证明常数。
大学物理 第16章量子力学基本原理-例题及练习题
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0
一二三习题答案
B18.原子轨道指的是下列的哪一种说法?
(A)原子的运动轨迹(B)原子的单电子波函数(C)原子的振动态(D)原子状态
C19.钠原子光谱D线是双重线,其原因是下列的哪一个:
(A)电子的轨道角动量(B)外磁场;(C)自旋轨道耦合(D)3p能级高
C20.对于原子中电子的总能量,下列的哪一个说法是正确的?
D15.如果氢原子的电离能是13.6 eV,则Li2+的电离能是下列的哪一个?
(A)13.6eV,(B)27.2 eV;(C)54.4 eV;(D)122.4 eV
A16.在氢原子中,对于电子的能量,下列的哪一种说法正确?
(A)只与n有关;(B)只与l有关;(C)只与m有关;(D)与n和l有关
B17.测量3d态氢原子的轨道角动量的z轴分量,可得到几个数值?
(C)动量一定有确定值;(D)几个力学量可同时有确定值;
7.试将指数函数e±ix表示成三角函数的形式cosex±isinex
8.微观粒子的任何一个状态都可以用波函数来描述;ψψ*表示粒子出现的概率密度。
D9.Planck常数h的值为下列的哪一个?D
(A)1.38×10-30J/s(B)1.38×10-16J/s(C)6.02×10-27J·s(D)6.62×10-34J·s
(A)CA=0.90,CB=0.10;(B)CA=0.95,CB=0.32;
(C)CA=CB;(D)CA=0.10,CB=0.90;
B7.下列分子的基态中哪个是三重态?
(A)F2(B)O2(C)N2(D)H2+
B8.对分子的三重态,下列哪种说法正确?
(A)分子有一个未成对的电子(B)分子有两个自旋平行的电子
(A)Zeeman(B)Gouy(C)Stark(D)Stern-Gerlach
基本习题和答案解析量子力学
WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。
结构化学练习之量子力学基础习题附参考答案
量子力学基础习题一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。
1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。
1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。
1104、测不准关系是_____________________,它说明了_____________________。
1105、一组正交、归一的波函数ψ1, ψ2, ψ3,…。
正交性的数学表达式为 ,归一性的表达式为 。
1106、│ψ (x 1, y 1, z 1, x 2, y 2, z 2)│2代表______________________。
1107、物理量xp y - yp x 的量子力学算符在直角坐标系中的表达式是_____。
1108、质量为 m 的一个粒子在长为l 的一维势箱中运动,(1)体系哈密顿算符的本征函数集为_______________________________ ;(2)体系的本征值谱为____________________, 最低能量为____________ ;(3)体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ;(4)势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________ ;(5)若该粒子在长l 、宽为2l 的长方形势箱中运动, 则其本征函数集为____________,本征值谱为 _______________________________。
1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。
波函数ψ211(x ,y ,z )= _________________________;当粒子处于状态ψ211时,概率密度最大处坐标是_______________________;若体系的能量为2247ma h ,其简并度是_______________。
周世勋量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
结构化学练习之量子力学基础习题附参考答案汇总
量子力学基础习题一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。
1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。
1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。
1104、测不准关系是_____________________,它说明了_____________________。
1105、一组正交、归一的波函数ψ1, ψ2, ψ3,…。
正交性的数学表达式为 ,归一性的表达式为 。
1106、│ψ (x 1, y 1, z 1, x 2, y 2, z 2)│2代表______________________。
1107、物理量xp y - yp x 的量子力学算符在直角坐标系中的表达式是_____。
1108、质量为 m 的一个粒子在长为l 的一维势箱中运动,(1)体系哈密顿算符的本征函数集为_______________________________ ;(2)体系的本征值谱为____________________, 最低能量为____________ ;(3)体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ;(4)势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________ ;(5)若该粒子在长l 、宽为2l 的长方形势箱中运动, 则其本征函数集为____________,本征值谱为 _______________________________。
1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。
波函数ψ211(x ,y ,z )= _________________________;当粒子处于状态ψ211时,概率密度最大处坐标是_______________________;若体系的能量为2247ma h ,其简并度是_______________。
第一章 量子力学基础习题20111019
E
0 a 0
a
Hdx
(4 E1 9 E 2 ) 1 (4 E1 9 E 2 ) 2 49 13 dx
1 h2 4h 2 (4 9 ) 2 2 13 8m a 8m a 5h 2 13m a2
习题
1.49-51 处于状态的一维箱中的粒子的动量和动量平方有无 确定值,若有,求确定值;若没有,求平均值。
基本知识
5.态叠加原理
若Ψ1、 Ψ2、••• Ψi、••• Ψn为某一微观体系的可能状态,由 它们线性组合也是该体系的可能状态。
c1 1 c2 2 cn n ci i
i 1
n
式中Ci是任意常数,数值的大小反应了Ψi对Ψ的贡献 的大小。
ˆ A i ai i a
基本知识
4.Schrodinger方程
在量子力学中,决定微观体系运动状态的是定态Schrodinger 方程:
ˆ H (r) E (r )
2 2 [ V (r )] (r ) E (r ) 2m
实质是能量算符的本征方程。 解法:一维箱 精确求解 三维箱 分离变量法 平面刚性转子
Ci ai
2
C
2 i
ci ai
i 1
n
2
基本知识
三.简单应用
1.一维箱中粒子
n 2 x sin x x a a
h2 2 E nx 8m a2
2.三维箱中粒子 三个方向一维箱的叠加。
n y nx 8 n ( xyz) sin x sin y sin z z abc a b c
n 解: = 83 sin n x x sin yx y sin nz z a a a a
量子力学习题
1 hc 2 m v m h A A 2 6.63 10 34 3 108 2.30 1.84[eV] 9 19 300 10 1.6 10
例1. 设有一个电子在宽为0.20nm一维无限深的方势阱
中, (1)计算电子在最低能级的能量;
(2)当电子处于第一激发态时,在势阱何处出 现的概率最小,其值为多少?
16
5. (1) 用 4 个量子数描述原子中电子的量子态,这 4 个 量子数各称做什么,它们取值范围怎样? (2) 4 个量子数取值的不同组合表示不同的量子态, 当 n = 2 时,包括几个量子态? (3) 写出磷 (P) 的电子排布,并求每个电子的轨道角动量。
答:(1) 4 个量子数包括: 主量子数 n, n = 1, 2, 3,… 角量子数 l, l = 0, 1, 2,…, n-1 轨道磁量子数 ml, ml = 0, 1, …, l 自旋磁量子数 ms, ms = 1/2
一.量子力学基本原理之一——波函数
微观粒子的运动状态可以用波函数 完全描述。
2 r , t r , t r , t
表示 t 时刻, 微观粒子在空间
点出现的相对概率密度。 r
1) 空间任何有限体积元中找到粒子的概率为有限值 2) 要求 r , t 单值
2
3) 波函数的连续性 4) 粒子在空间各点的概率的总和为 1
--之二——薛定谔方程
2 2 i ( r , t ) [ U ( r , t )] ( r , t ) t 2m
(1)它的解满足态的叠加原理
若 1 ( r , t ) 和 2 (r , t ) 是薛定谔方程的解, 则 c11 (r , t ) c2 2 (r , t ) 也是薛定谔方程的解。
量子力学习题
一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),其中p,q 分别表示力学系统的广义坐标及其对应的广义动量,⎰ 表示在坐标空间中沿闭合轨道积分一周期。
2.德布罗意关系为:h E h p k γωλ====; 。
3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-,式中m 式电子的质量,V 是电子脱出金属表面后的速度,A 是电子脱出金属表面所需要做的功即脱出功。
4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。
这是量子力学的基本原理之一。
波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。
5.波函数的标准条件为:连续性,有限性,单值性 。
6. , 为单位矩阵,则算符 的本征值为:1± 。
7.力学量算符应满足的两个性质是 实数性和正交完备性 。
8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。
即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或 。
9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。
10. i ; ˆx i L ; 0。
11.如两力学量算符 有共同本征函数完全系,则_0__。
12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。
13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。
14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
15. 为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。
第1章 量子力学基础-习题与答案
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
量子力学习题集
量⼦⼒学习题集量⼦⼒学习题第⼀章绪论1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T=b (常量);并近似计算b 的数值,准确到⼆位有效数字。
1.2 在0K 附近,钠的价电⼦能量约为3eV ,求其德布罗意波长。
1.3 氦原⼦的动能是E=3kT/2(k 为玻⽿兹曼常数),求T=1K 时,氦原⼦的德布罗意波长。
1.4 利⽤玻尔-索末菲的量⼦化条件,求:(1)⼀维谐振⼦的能量;(2)在均匀磁场中作圆周运动的电⼦轨道的可能半径。
已知外磁场H =10特斯拉,玻尔磁⼦M B =9×10-24焦⽿/特斯拉,试计算动能的量⼦化间隔?E ,并与T =4K 及T =100K 的热运动能量相⽐较。
1.5 两个光⼦在⼀定条件下可以转化为正负电⼦对。
如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?第⼆章波函数和薛定谔⽅程2.1 由下列两定态波函数计算⼏率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r .从所得结果说明ψ1表⽰向外传播的球⾯波,ψ2表⽰向内(即向原点)传播的球⾯波。
2.2 ⼀粒⼦在⼀维势场ax a x x x U >≤≤∞∞=00,,0,)(中运动,求粒⼦的能级和对应的波函数。
2.3 求⼀维谐振⼦处在第⼀激发态时⼏率最⼤的位置。
2.4 ⼀粒⼦在⼀维势阱ax a x U x U ≤>??>=,0,0)(0中运动,求束缚态(02.5 对于⼀维⽆限深势阱(0x 和?x ,并与经典⼒学结果⽐较。
2.6 粒⼦在势场xa a x x V x V ≤<<≤??-∞=00,0,,)(0中运动,求存在束缚态(E <0)的条件( ,m ,a ,V 0关系)以及能级⽅程。
2.7 求⼆维各向同性谐振⼦[V =21k (x 2+y 2)]的能级,并讨论各能级的简并度。
2.8粒⼦束以动能E =mk222从左⽅⼊射,遇势垒00,,0)(0≥=x x V x V求反射系数、透射系数。
第一章 量子力学基础课后习题
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
结构化学章节习题(含答案)
结构化学章节习题(含答案)第⼀章量⼦⼒学基础⼀、单选题: 1、32/sinx l lπ为⼀维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节⾯有( b )个,其中( b )个球⾯。
A 、3 B 、2 C 、1 D 、03、⽴⽅箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知⼀维谐振⼦的势能表达式为V = kx 2/2,则该体系的定态薛定谔⽅程应当为( c )。
A [-m 22 2?+21kx 2]Ψ= E ΨB [m 22 2?- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx2 8、粒⼦处于定态意味着:( c )A 、粒⼦处于概率最⼤的状态B 、粒⼦处于势能为0的状态C 、粒⼦的⼒学量平均值及概率密度分布都与时间⽆关系的状态.D 、粒⼦处于静⽌状态9、氢原⼦处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,⼜是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离⼦n=4的状态有( c )(A )4个(B )8个(C )16个(D )20个 11、测不准关系的含义是指( d ) (A) 粒⼦太⼩,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒⼦的坐标的动量都不能准确地测定;(D )不能同时准确地测定粒⼦的坐标与动量12、若⽤电⼦束与中⼦束分别作衍射实验,得到⼤⼩相同的环纹,则说明⼆者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、为了写出⼀个经典⼒学量对应的量⼦⼒学算符,若坐标算符取作坐标本⾝,动量算符应是(以⼀维运动为例) ( a )(A) mv (B) i x ?? (C)222x ?-? 14、若∫|ψ|2d τ=K ,利⽤下列哪个常数乘ψ可以使之归⼀化:( c )(A) K (B) K 2 (C) 1/K15、丁⼆烯等共轭分⼦中π电⼦的离域化可降低体系的能量,这与简单的⼀维势阱模型是⼀致的,因为⼀维势阱中粒⼦的能量( b )(A) 反⽐于势阱长度平⽅ (B) 正⽐于势阱长度 (C) 正⽐于量⼦数16、对于厄⽶算符, 下⾯哪种说法是对的( b )(A) 厄⽶算符中必然不包含虚数 (B) 厄⽶算符的本征值必定是实数(C) 厄⽶算符的本征函数中必然不包含虚数17、对于算符?的⾮本征态Ψ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值.(C) 本征值与平均值均可测量,且⼆者相等18、将⼏个⾮简并的本征函数进⾏线形组合,结果( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电⼦动能与⼊射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电⼦德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将⼏个⾮简并的本征函数进⾏线形组合,结果( A) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒⼦在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B)A .越⼩ B. 越⼤ C.与τ⽆关24. 实物微粒具有波粒⼆象性, ⼀个质量为m 速度为v 的粒⼦的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄⽶算符, 下⾯哪种说法是对的 ( B )A .厄⽶算符中必然不包含虚数B .厄⽶算符的本征值必定是实数C .厄⽶算符的本征函数中必然不包含虚数 26. 对于算符?的⾮本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值.C .本征值与平均值均可测得,且⼆者相等 27. 下列哪⼀组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22⼆填空题1、能量为100eV 的⾃由电⼦的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原⼦的哈密顿算符,在(定核)近似的基础上是:(()23213212232221223222123332?r e r e r e r e r e r e mH +++---?+?+?-= )三简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光⼦的能量。
量子力学习题
第二章 波函数与薛定谔方程(1)一、填空题1、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 连续性 ;单值性 。
根据玻恩对波函数的统计解释,电子呈现的波动性只是反映客体运动的一种统计规律,称为 概率 波,波函数模的平方()2r ψ 表示粒子在空间的几率分布,称为 概率密度 。
而()2r d ψτ 表示在空间体积 dt 中概率,要表示粒子出现的绝对几率,波函数必须 归一化 。
2r 点处小体积元dτ内粒子出现的几率与波函数模的平方(|Ψ|2)成正比。
3、根据波函数的统计解释,dx t x 2),(ψ的物理意义为 粒子在xdx 范围内的概率 。
4、在量子力学中,描述系统的运动状态用波函数()r ψ,一般要求波函数满足三个条件即 有限性 ; 单值性 ;连续的。
5、波函数的标准条件为(1)波函数可归一化(2)波函数的模单值(3)波函数有限。
6、三维空间自由粒子的归一化波函数为()r pψ= ,()()=⎰+∞∞-*'τψψd r r p p见书P18 。
7、动量算符的归一化本征态=)(r p ψ ,='∞⎰τψψd r r p p )()(* 见书P18 。
8、按照量子力学理论,微观粒子的几率密度w = 见网页收藏 ,几率流密度= 。
9、设)(r ψ描写粒子的状态,2)(r ψ是 概率波 ,在)(rψ中力学量Fˆ的平均值为F = 。
10、波函数ψ和ψc 是描写 状态,δψi e 中的δi e 称为 ,δi e 不影响波函数ψ的归一化,因为 。
11、定态是指 的状态,束缚态是指 的状态。
12、定态波函数的形式为 。
13、)i exp()()iexp()(),(2211t Ex t E x t x-+-=ψψψ是定态的条件是 ,这时几率密度和 都与时间无关。
14、波函数的统计解释 15.描述微观粒子状态的波函数ψ应满足的三个标准条件 。
16、粒子作自由运动时,能量本征值是 ___ __。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。
解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。
解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。
已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410p m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095227.3210k d λϕ--⨯===⨯⨯ , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。
22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。
解:由测不准关系: 3424101.0510 5.2510220.110h p x ---⨯∆===⨯∆⨯⨯ 由波长关系式:E ch =λ 可推出: EE c h ∆=∆λ2151.2410E E E J hc pcλ-∆∆===⨯∆ 22-6.氢原子的吸收谱线A 5.4340=λ的谱线宽度为A 102-,计算原子处在被激发态上的平均寿命。
解:能量hcE h νλ==,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两者之间的关系为:2hcE λλ∆=∆由测不准关系,/2,E t ∆∆≥平均寿命τ=Δt ,则 22224t E hc c λλτλπλ=∆===∆∆∆ 102112108(4340.510)510s 4 3.141010310----⨯==⨯⨯⨯⨯⨯⨯ 22-7.若红宝石发出中心波长m 103.67-⨯=λ的短脉冲信号,时距为)s 10(ns 19-,计算该信号的波长宽度λ∆。
解:光波列长度与原子发光寿命有如下关系: x c t ∆=∆2224x x p λλπλλ∆==≈∆∆∆722389(6.310) 1.32310nm 31010c t λλ---⨯∆===⨯∆⨯⨯22-8.设粒子作圆周运动,试证其不确定性关系可以表示为h L ≥∆∆θ,式中L ∆为粒子角动量的不确定度,θ∆为粒子角位置的不确定度。
证明:当粒子做圆周运动时,半径为r ,角动量为:L=rmv=rp 其不确定度P r L ∆=∆而做圆周运动时: θ∆=∆r x利用:h x P ≥∆∙∆ 代入,可得到:h L ≥∆∆θ。
22-9.计算一维无限深势阱中基态粒子处在0=x 到3/L x =区间的几率。
设粒子的势能分布函数为:⎩⎨⎧><∞=<<=L x x x U L x x U 和0,)(0,0)( 解:根据一维无限深势阱的态函数的计算,当粒子被限定在0<x<l 之间运动时,其定态归一化的波函数为:⎪⎩⎪⎨⎧><=ψ<<=ψL x x x L x x ln l x nn 和0,0)(0,sin 2)(π概率密度为: L x x ln l x P n <<=0,sin 2)(2π粒子处在0=x 到3/L x =区间的几率:32sin 2131sin 2)(230πππn n x l n l x P ln -==⎰如果是基态,n=1,则3202112()sin sin 0.195323ln P x x l l πππ==-=⎰22-10.一个质子放在一维无限深阱中,阱宽m 1014-=L 。
(1)质子的零点能量有多大?(2)由2=n 态跃迁到1=n 态时,质子放出多大能量的光子?解:(1)由一维无限深势阱粒子的能级表达式:228n ma h E n =n=1时为零点能量:。
J mah E n 1321029.38-⨯== (2)由n=2态跃迁到n=1态时,质子放出光子的能量为:。
)(J mah E E E 132121087.9814-⨯=-=-=∆22-11.对应于氢原子中电子轨道运动,试计算3=n 时氢原子可能具有的轨道角动量。
解:当n=3,l 的可能取值为:0,1,2。
而轨道角动量h l l L )(1+= 所以 L 的取值为:0,h 222-12.氢原子处于1,2==l n 的激发态时,原子的轨道角动量在空间有哪些可能取向?并计算各种可能取向的角动量与z 轴的夹角? 解:l=1,所以轨道角动量:h h l l L 21=+=)(10±=,m 三个取向。
夹角分别为:20πθ==,z L 4πθ==,h L z 43πθ=-=,h L z思考题22-1.证明玻尔理论中氢原于中的电子轨道是电子德布罗意波长的整数倍。
证明:分别看这两个内容是什么:玻尔理论中氢原于中的电子轨道:220202meh n r n r n πε== 电子德布罗意波长: 先求其能量:2204281hme n E n ε= 再代入德布罗意波长求解式子中:2202me h n mEhπελ== 可见:λn r n = 是它的整数倍。
22-2.为什么说电子既不是经典意义的波,也不是经典意义的粒子?答:因为单个的电子是不具有波动的性质的,所以它不是经典意义的波,同时对于经典意义的粒子它的整体行为也不具有波动性,而电子却具有这个性质,所以电子也不是经典意义的粒子。
22-3.图中所示为电子波干涉实验示意图,S 为电子束发射源,发射出沿不同方向运动的电子,F 为极细的带强正电的金属丝,电子被吸引后改变运动方向,下方的电子折向上方,上方的电子折向下方,在前方交叉区放一电子感光板A ,1S 、2S 分别为上、下方电子束的虚电子源,21SS S S =,底板A 离源S 的距离为D ,设a D >>,电子的动量为p ,试求: (1)电子几率密度最大的位置; (2)相邻暗条纹的距离(近似计算)。
答:(1)电子的德布罗意波长:ph=λ 类似于波的干涉现象,在两边的第一级明纹之间分布的电子最多,所以其几率最大的位置应该在apDh d D 2±=±λ之间。
(2)相邻暗条纹的距离:apDhd D x 2==∆λ22-4.在一维势箱中运动的粒子,它的一个定态波函数如图a 所示,对应的总能量为eV 4,若它处于另一个波函数(如图b 所示)的态上时,它的总能量是多少?粒子的零点能是多少?答:由一维无限深势阱粒子的能级表达式:20n E E n = 。
在a 图中,n=2,所以粒子的零点能E 0=1。
若它处于另一个波函数(n=3)的态上时,它的总能量是9320203===E n E E22-5.图中所示为一有限深势阱,宽为a ,高为U 。
(1)写出各区域的定态薛定谔方程和边界条件; (2)比较具有相同宽度的有限深势阱和无限深势阱中粒子的最低能量值的大小。
答:第I 区域定态薛定谔方程:0212212=+)()(x hmE dx x d ψψ 第II 区域定态薛定谔方程:0222222=-+)()()(x h U E m dx x d ψψ边界条件:)()(2221a a-=-ψψ )()(2221a a ψψ=22-6.在钠光谱中,主线系的第一条谱线(钠黄线)是由3s 3p -之间的电子跃迁产生的,它由两条谱线组成,波长分别为 A 963.58891=λ和A 930.58952=λ。
试用电子自旋来解释产生双线的原因。
答:Na 光谱双线产生的原因是比电相互作用小的磁相互作用的结果,是自旋—轨道相互作用能,是一个小量。
即电子轨道运动产生的磁场和电子自旋磁矩的作用,使原子的能级发生改变,其中电子自旋磁矩S mes -=μ,在Z 方向投影有两条,所以Na 光谱产生了双线。