高考数学总复习第五章数列31数列求和课时作业文

合集下载

2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案

2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案

第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。

2015届高考数学总复习 第五章 第五节数列的求和课时精练试题 文(含解析)

2015届高考数学总复习 第五章 第五节数列的求和课时精练试题 文(含解析)

1.(2012·佛山二模)设等差数列{a n }的前n 项和是S n ,且a 1=10,a 2=9,那么下列不等式中不成立的是( )A .a 10+a 11>0B .S 21<0C .a 11+a 12<0D .n =10时,S n 最大解析:依题意可得d =-1,a n =a 1+(n -1)d =11-n ,所以a 10=1,a 11=0,a 12=-1,a 10+a 11>0,S 21=21a 11=0,a 11+a 12=-1<0,n =10或11时,S n 最大.故选D.答案:D 2.(2013·皖北模拟)等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42解析:∵{a n }成等差数列,∴S 2,S 4-S 2,S 6-S 4也成等差数列. ∴2(S 4-S 2)=S 2+(S 6-S 4).即2×(10-2)=2+S 6-10.∴S 6=24. 故选C. 答案:C3.(2013·江南十校联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝ ⎛⎭⎪⎫1-14nD.23⎝ ⎛⎭⎪⎫1-12n解析:a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n .故选C.答案:C4.(2013·浙江省五校联盟下学期第一次联考)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .85B .135C .95D .23解析:由a 2+a 4=4得a 3=2,由a 3+a 5=10,得a 4=5,设公差为d ,则d =a 4-a 3=3,所以a 5=8,a 6=11,所以S 10=a 1+a 102=a 5+a 62=95.故选C.答案:C5.(2012·北京海淀区模拟)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5a 2n -5=22n(n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:由a 5a 2n -5=22n (n ≥3),得a 2n =22n ,a n >0,则a n =2n.所以log 2a 1+log 2a 3+…+log 2a 2n-1=1+3+…+(2n -1)=n 2.故选C.答案:C6.(2013·西安模拟)数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1 020,那么n 的最小值是( )A .7B .8C .9D .10解析:∵1+2+22+…+2n -1=1-2n1-2=2n-1,∴S n =(2+22+…+2n )-n =2-2n +11-2-n =2n +1-2-n .若S n >1 020,则2n +1-2-n >1 020,∴n ≥10. 故选D. 答案:D7.(2013·福州质检)在正项等比数列{a n }中,已知a 3·a 5=64,则a 1+a 7的最小值为( )A .64B .32C .16D .8解析:a 1+a 7≥2a 1a 7=2a 3a 5=264=16,当且仅当a 3=a 5=8时,a 1+a 7取得最小值16,此时数列{a n }是常数列.答案:C8.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( )A.n 24+7n 4B.n 23+5n 3C.n 22+3n 4D .n 2+n解析:设数列的公差为d ,则根据题意得()2+2d 2=2()2+5d ,解得d =12或d =0(舍去),所以数列{a n }的前n 项和S n =2n +n n -2×12=n 24+7n4.故选A.答案:A9.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为________.解析:∵a n =1n +n +1=n +1-n ,∴S n =n +1-1=10,∴n =120.答案:12010.观察下表: 12 3 43 4 5 6 74 5 6 7 8 9 10 …则第________行的各数之和等于2 0092.答案:1 00511.(2012·汕头模拟)一次展览会上展出一套由宝石串联制成的工艺品,如图所示.若按照这种规律依次增加一定数量的宝石,则第5件工艺品所用的宝石数为______颗;第n 件工艺品所用的宝石数为______________颗(结果用n 表示).答案:66 2n 2+3n +112.(2013·苏州模拟)定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若数列{a n }满足⎪⎪⎪⎪⎪⎪⎪⎪a 1 122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.解析:由题意得a 1-1=1,3a n +1-3a n =12即a 1=2,a n +1-a n =4. ∴{a n }是以2为首项,4为公差的等差数列, ∴a n =2+4(n -1)=4n -2,a 3=4×3-2=10. 答案:10 4n -213.(2013·佛山一模)数列{a n }的前n 项和为S n =2n +1-2,数列{b n }是首项为a 1,公差为d (d ≠0)的等差数列,且b 1,b 3,b 11成等比数列.(1)求数列{a n }与{b n }的通项公式;(2)设c n =b na n,求数列{c n }的前n 项和T n .解析:(1)当n ≥2时,a n =S n -S n -1=2n +1-2n =2n,又a 1=S 1=21+1-2=2,也满足上式,所以数列{a n }的通项公式为a n =2n.b 1=a 1=2,设公差为d ,由b 1,b 3,b 11成等比数列,得(2+2d )2=2×(2+10d ),化为d 2-3d =0. 解得d =0(舍去)或d =3,所以数列{b n }的通项公式为b n =3n -1(n ∈N *).(2)由(1)可得C n =b n a n =3n -12n ,则T n =221+522+823+…+3n -12n ,∴2T n =2+521+822+…+3n -12n -1,两式相减得T n =2+321+322+…+32n -1-3n -12n ,=2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .14.(2013·河南六市第二次联考文改编)在公差不为0的等差数列{a n }中,a 1,a 4,a 8成等比数列.(1)已知数列{a n }的前6项和为23,求数列{a n }的通项公式;(2)若b n =1a n a n +1,且数列{b n }的前n 项和为T n ,若T n =19-1n +9,求数列{a n }的公差.解析:设数列{a n }的公差为d ,由a 1,a 4,a 8成等比数列可得a 24=a 1a 8,即(a 1+3d )2=a 1(a 1+7d ),所以a 21+6a 1d +9d 2=a 21+7a 1d ,而d ≠0, 所以a 1=9d .(1)由数列{a n }的前6项和为23,可得S 6=6a 1+6×52d =23,即6a 1+15d =23,故d =13,a 1=3,故数列{a n }的通项公式为a n =3+(n -1)×13=13(n +8)(n ∈N *).(2)b n =1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,则数列{b n }的前n 项和为T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ⎝ ⎛⎭⎪⎫19d -19d +nd =1d 219-1n +9=19-1n +9, 所以d 2=1,即d =1或d =-1. 15.(2012·东莞一模)已知函数f (x )=log 3(ax +b )的图象经过点A (2,1)和B (5,2),记a n =3f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =a n2n ,T n =b 1+b 2+…+b n ,若T n <m (m ∈Z )对n ∈N *恒成立,求m 的最小值.解析:(1)由题意得⎩⎪⎨⎪⎧ log 3a +b =1,log 3a +b =2,解得⎩⎪⎨⎪⎧a =2,b =-1, 所以f (x )=log 3(2x -1),a n =3log 3(2n -1) =2n -1(n ∈N *).(2)由(1)得b n =2n -12n ,所以T n =121+322+523+…+2n -32n -1+2n -12n ,①12T n =122+323+…+2n -52n -1+2n -32n +2n -12n +1.② ①-②得 12T n =121+222+223+…+22n -1+22n -2n -12n +1=121+⎝ ⎛⎭⎪⎫121+122+…+12n -2+12n -1-2n -12n +1=32-12n -1-2n -12n +1. 所以T n =3-12n -2-2n -12n =3-2n +32n ,设f (n )=2n +32n (n ∈N *),则由f n +fn =2n +52n +12n +32n =2n +5n +=12+12n +3≤12+15<1,得f (n )=2n +32n (n ∈N *)随n 的增大而减小,T n 随n 的增大而增大. 所以当n →+∞时,T n →3,又T n <m (m ∈Z )恒成立,所以m 的最小值为3.。

高考数学一轮复习课时作业(三十六) 数列求和 (3)

高考数学一轮复习课时作业(三十六) 数列求和 (3)

课时作业(三十六) 数列求和1.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121 A [a n =1n +n +1 =n +1-n(n +1+n )(n +1-n )=n +1 -n ,所以a 1+a 2+…+a n =( 2 -1)+( 3 - 2 )+…+(n +1 -n )=n +1 -1=10.即n +1 =11,所以n +1=121,n =120.]2.(2021·山东济南实验中学检测)已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( )A .41B .48C .49D .56C [设S n =An 2+Bn ,由题意知⎩⎪⎨⎪⎧S3=9A +3B =9,S5=25A +5B =25, 解得A =1,B =0,所以S 7=49,故选C 项.]3.数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1D .n +2+2nC [由题意得a n =1+2n -1,所以S n =1+20+1+21+…+1+2n -1=n +1-2n1-2 =n +2n -1.故选C 项.]4.(多选)已知数列{a n }:12 ,13 +23 ,14 +24 +34 ,…,110 +210 +…+910 ,…,若b n =1an·an -1,设数列{b n }的前n 项和为S n ,则( )A .a n =n2B .a n =nC .S n =4nn +1D .S n =5nn +1AC [由题意得a n =1n +1 +2n +1 +…+n n +1 =1+2+3+…+n n +1 =n 2 ,所以b n =1n2·n +12 =4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1 ,所以数列{b n }的前n 项和S n =b 1+b 2+b 3+…+b n =4⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1 =4nn +1.故选AC 项.] 5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 020等于( ) A .22 020-1 B .3×21 010-3 C .3×22 021-1D .3×21 009-2B [∵a 1=1,a 2=2a1=2,又an +2·an +1an +1·an=2n +12n =2,∴an +2an =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列, ∴S 2 020=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 019+a 2 020 =(a 1+a 3+a 5+…+a 2 019)+(a 2+a 4+a 6+…+a 2 020) =1-21 0101-2 +2(1-21 010)1-2=3×21 010-3.故选B.]6.S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析: 由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.答案: 3n -17.设S n 是数列{a n }的前n 项和,且a 1=1,a n +1+S n S n +1=0,则S n =________,数列{S n S n +1}的前n 项和为________.解析: ∵a n +1=S n +1-S n ,a n +1+S n S n +1=0, ∴S n +1-S n +S n S n +1=0, ∴1Sn +1 -1Sn=1.又∵1S1 =1a1=1,∴⎩⎨⎧⎭⎬⎫1Sn 是以1为首项,1为公差的等差数列, ∴1Sn =n ,∴S n =1n .∴S n S n +1=1n (n +1) =1n -1n +1 , ∴T n =⎝⎛⎭⎫1-12 +⎝⎛⎭⎫12-13 +…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1 =nn +1 .答案: 1n ;nn +18.(2020·南京市金陵中学适应性训练)数列{a n }的通项公式为a n =n cos nπ2 ,其前n 项和为S n ,则S 2 020=________.解析: ∵数列a n =n cos nπ2 呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. a 5=0,a 6=-6,a 7=0,a 8=8, 故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 020=2 0204 ×2=1 010.答案: 1 0109.已知等差数列{a n }满足a n +1+n =2a n +1. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,求数列{1Sn }的前n 项和T n .解析: (1)由已知{a n }为等差数列,记其公差为d .①当n ≥2时,⎩⎪⎨⎪⎧an +1+n =2an +1an +n -1=2an -1+1,所以d =1,②当n =1时,a 2+1=2a 1+1,所以a 1=1. 所以a n =n .(2)由(1)可得S n =n (n +1)2 ,所以1Sn =2n (n +1) =2(1n -1n +1),所以T n =2[(1-12 )+(12 -13 )+(13 -14 )+…+(1n -1n +1 )]=2(1-1n +1 )=2n n +1.10.(2020·福州市适应性考试)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =ann. (1)求数列{b n }的通项公式;(2)若c n =2bn -n ,求数列{c n }的前n 项和.解析: (1)法一:因为b n =ann 且na n +1-(n +1)a n =2n (n +1),所以b n +1-b n =an +1n +1 -ann =2,又b 1=a 1=2,所以{b n }是以2为首项,以2为公差的等差数列. 所以b n =2+2(n -1)=2n .法二:因为b n =ann ,所以a n =nb n ,又na n +1-(n +1)a n =2n (n +1),所以n (n +1)b n +1-(n +1)nb n =2n (n +1), 即b n +1-b n =2, 又b 1=a 1=2,所以{b n }是以2为首项,以2为公差的等差数列. 所以b n =2+2(n -1)=2n .(2)由(1)及题设得,c n =22n -n =4n -n ,所以数列{c n }的前n 项和S n =(41-1)+(42-2)+…+(4n -n ) =(41+42+…+4n )-(1+2+…+n )=4-4n×41-4 -n (1+n )2=4n +13 -n2+n 2 -43.11.(多选)(2020·江苏南京高三月考)若数列{a n }的前n 项和是S n ,且S n =2a n -2,数列{b n }满足b n =log 2a n ,则下列选项正确的是( )A .数列{a n }是等差数列B .a n =2nC .数列{a 2n }的前n 项和为22n +1-23D .数列⎩⎨⎧⎭⎬⎫1bn·bn +1 的前n 项和为T n ,则T n <1BD [当n =1时,a 1=2,当n ≥2时,由S n =2a n -2,得S n -1=2a n -1-2, 两式相减得:a n =2a n -1, 又a 2=2a 1,所以数列{a n }是以2为首项以2为公比的等比数列,所以a n =2n ,a 2n =4n ,数列{a 2n }的前n 项和为S ′n =4(1-4n )1-4 =4n +1-43 , 则b n =log 2a n =log 22n =n ,所以1bn·bn +1 =1n·(n +1) =1n -1n +1,所以T n =11 -12 +13 -14 +…+1n -1n +1 =1-1n +1 <1,故选BD.]12.(2020·天一大联考)已知数列{a n }满足a 1+4a 2+7a 3+…+(3n -2)a n =4n ,则a 2a 3+a 3a 4+…+a 21a 22=( )A .58B .34C .54D .52C [当n =1时,a 1=4.a 1+4a 2+7a 3+…+(3n -2)a n =4n ,当n ≥2时,a 1+4a 2+7a 3+…+(3n -5)·a n -1=4(n -1),两式相减,可得(3n -2)a n =4,故a n =43n -2 ,因为a 1=4也适合上式,所以a n =43n -2 ,n ∈N *.则a n +1a n +2=16(3n +1)(3n +4) =163 ·⎝ ⎛⎭⎪⎫13n +1-13n +4 ,故a 2a 3+a 3a 4+…+a 21a 22=163 ×(14 -17 +17 -110 +110 -113 +…+161 -164 )=163 ×⎝⎛⎭⎫14-164 =54.] 13.(开放题)(2020·山东模拟)在等差数列{a n }中,已知a 6=12,a 18=36. (1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4anan +1 ,②b n =(-1)n a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解.解析: (1)设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a1+5d =12,a1+17d =36,解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n·2(n +1) =1n (n +1) =1n -1n +1 ,∴S n =⎝⎛⎭⎫11-12 +⎝⎛⎭⎫12-13 +…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1 =n n +1 . 选条件②:∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n ,当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2 ×2=n ;当n 为奇数时,n -1为偶数,S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1, ∴-3S n =2×41+2×42+2×43+…+2·4n -2n ·4n +1=8(1-4n )1-4 -2n ·4n +1=8(1-4n )-3-2n ·4n +1,∴S n =89 (1-4n )+2n3·4n +1.14.已知数列{a n }的前n 项和为S n ,且满足2S n =n -n 2(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =⎩⎪⎨⎪⎧2an ,n =2k -1,2(1-an )(1-an +2),n =2k k ∈N *,数列{b n }的前n 和为T n .若T 2n =a ⎝⎛⎭⎫14 n -12n +2+b 对n ∈N *恒成立,求实数a ,b 的值. 解析: (1)①当n =1时,由2S 1=2a 1=1-12得a 1=0;②当n ≥2时,2a n =2S n -2S n -1=n -n 2-[(n -1)-(n -1)2]=2-2n ,则a n =1-n (n ≥2), 显然当n =1时也适合上式, 所以a n =1-n (n ∈N *). (2)因为2(1-an )(1-an +2)=2n (n +2) =1n -1n +2,所以T 2n =(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n )=(20+2-2+…+22-2n )+⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫12-14+⎝⎛⎭⎫14-16+…+⎝ ⎛⎭⎪⎫12n -12n +2 = 1-⎝⎛⎭⎫14n1-14+12 -12n +2 =116 -43 ⎝⎛⎭⎫14 n -12n +2 . 因为T 2n =a ⎝⎛⎭⎫14 n-12n +2+b 对n ∈N *恒成立,所以a =-43 ,b =116 .15.已知数列{a n }的所有项都是正数,且满足a1 +a2 +…+an =n 2+3n (n ∈N *),下列说法正确的是( )A .数列{a n }的通项公式为a n =4(n +1)2B .数列⎩⎨⎧⎭⎬⎫an n +1 是等差数列C .数列⎩⎨⎧⎭⎬⎫an n +1 的前n 项和是n (n +3) D .数列⎩⎨⎧⎭⎬⎫an 2n +1 是等比数列BD [当n =1时,a1 =4,可得a 1=16,当n ≥2时,由a1 +a2 +…+an -1 +an =n 2+3n ,可得a1 +a2 +…+an -1 =(n -1)2+3(n -1)=n 2+n -2,两式相减得an =2(n +1),得a n =4(n +1)2,又a 1=16也适合上式,则数列{a n }的通项公式为a n =4(n +1)2(n ∈N *),所以A 正确.因为ann +1 =4(n +1),所以a12 +a23 +…+ann +1=8+12+…+4(n +1)=(8+4n +4)n 2 =2n (n +3),所以C 不正确.结合等差数列、等比数列的定义,显然B ,D 都正确.]16.已知数列{a n }中,a 1=1,1an +1 =⎣⎡⎦⎤1-1(n +1)2 ·1an .若b n =ann2 ,数列{b n }的前n 项和为S n ,则S 100=( )A .100101B .200101C .300101D .400101B [因为1an +1 =⎣⎢⎡⎦⎥⎤1-1(n +1)2 ·1an ,所以a n +1·n +2n +1 =a n ·n +1n ,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫an·n +1n 是常数列,又a 1·1+11 =1×2=2,所以a n ·n +1n =2,解得a n =2n n +1.所以b n =an n2 =2n (n +1) =2⎝ ⎛⎭⎪⎫1n -1n +1 ,所以S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =2n n +1,所以S 100=200101 .故选B 项.]。

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。

2020版高考数学复习第31讲数列求和课件文新人教A版

2020版高考数学复习第31讲数列求和课件文新人教A版

[答案] [(3n-1)22n+1+2]
[解析] 由 bn=nan=n· 22n-1 知 Sn=1×2+2×23+3×25+…+n×22n-1①, 则 22 · Sn=1×23+2×25+3×27+…+n×22n+1②,
1 9
①-②得
(1-22)· Sn=2+23+25+…+22n-1-n×22n+1,即 Sn= [(3n-1)22n+1+2].
1 ������ ;(2)由(1) 2
(1)求数列{bn}的通项公式; (2)若数列{cn}满足 cn=anbn,求数列{cn}的前 n 项和 Sn.
可求得 an=3n-1(n∈N*),代入 an+1+3log2bn=0,可得 bn=
1 2
可知 cn=anbn=(3n-1)× ������ ,所以由错位 相减法可求得数列{cn}的前 n 项和 Sn.
=
na1+
������ (������ -1) d 2
. (其中 a1 为首项,d 为公差)
②等比数列{an}的前 n 项和公式:
当 q=1 时,Sn= na1 (2)分组求和法 ;
������ 当 q≠1 时,Sn= ������1 (1-������ )
1-������
������1 -������������ ������ = 1-������
.
课堂考点探究
探究点一 分组转化法求和
例 1[2018· 湖南益阳 4 月调研] 已知 等差数列{an}的公差为 d,且方程 a1x -dx-3=0 的两个根分别为-1,3.

高考数学总复习课时作业(三十一)第31讲数列求和理(2021年整理)

高考数学总复习课时作业(三十一)第31讲数列求和理(2021年整理)

2019年高考数学总复习课时作业(三十一)第31讲数列求和理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学总复习课时作业(三十一)第31讲数列求和理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学总复习课时作业(三十一)第31讲数列求和理的全部内容。

课时作业(三十一)第31讲数列求和基础热身1.数列4,8,16,32,…的前n项和为()A.2n+1-2—n—1B.2n+2—2-n-3C。

2n+1+2—n-1D.2n+1—2—n—1-12.[2018·山东临沂一中月考]若数列的通项公式是a n=(—1)n(3n—2),则a1+a2+…+a10=()A.15 B。

12C.—12 D。

—153。

[2017·蚌埠第二中学月考]已知函数f=且a n=f+f,则a1+a2+a3+…+a8=()A.—16 B。

—8C。

8 D。

164。

已知数列的通项公式为a n=,则数列的前40项和为.5.[2017·呼和浩特调研] 在等差数列中,a 2=8,前6项和S 6=66,设b n =,T n =b 1+b 2+…+b n ,则T n = .能力提升6.[2017·湘潭模拟] 已知T n 为数列的前n 项和,若n>T 10+1013恒成立,则整数n 的最小值为 ( ) A 。

1026B .1025C .1024D .10237.[2017·合肥调研] 已知数列满足a 1=2,4a 3=a 6,是等差数列,则数列{(—1)na n }的前10项的和S 10= ( ) A .220 B 。

辽宁省沈阳市第二十一中学13—14学年下学期高三数学课时作业32:数列求和与数列的综合应用(附答案)

辽宁省沈阳市第二十一中学13—14学年下学期高三数学课时作业32:数列求和与数列的综合应用(附答案)

辽宁省沈阳市第二十一中学13—14学年下学期高三数学课时作业32:数列求和与数列的综合应用时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n -n-1]2B.-n -1+12C.-n +12D.-n-12解析:∵数列{(-1)n }是首项与公比均为-1的等比数列, ∴S n =---n-1--=-n-12.答案:D2.数列{a n }的通项公式为a n =1n +1+n,已知它的前n 项和S n =6,则项数n 等于( )A .6B .7C .48D .49解析:将通项公式变形得: a n =1n +1+n=n +1-nn +1+nn +1-n=n +1-n ,则S n =(2-1)+(3-2)+(4-3)+…+(n +1-n )=n +1-1,由S n =6,则有n +1-1=6,∴n =48. 答案:C3.已知数列{a n }中,a 1=1,a 2=2+3,a 3=4+5+6,a 4=7+8+9+10,…,则a 10的值为( ) A .750 B .610 C .510D .505解析:因为前9项共有1+2+3+…+9=45个数,所以a 10=46+47+…+55=505. 答案:D4.若数列{a n }的通项为a n =4n -1,b n =a 1+a 2+…+a nn ,n ∈N *,则数列{b n }的前n 项和是( )A .n 2B .n (n +1)C .n (n +2)D .n (2n +1)解析:a 1+a 2+…+a n=(4×1-1)+(4×2-1)+…+(4n -1) =4(1+2+…+n )-n =2n (n +1)-n =2n 2+n ,∴b n =2n +1,b 1+b 2+…+b n =(2×1+1)+(2×2+1)+…+(2n +1) =n 2+2n =n (n +2). 答案:C5.(2013·威海模拟)数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是( )A .3B .2C .1D .0解析:依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1, ∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n+1,得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009 =(1a 1-1-1a 2-1)+(1a 2-1-1a 3-1)+…+(1a 2 009-1-1a 2 010-1) =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案:C6.(2012·上海)设a n =1n sin n π25,S n =a 1+a 2+…+a n .在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:∵a n =1n sin n25π,∴当n ≤24时,a n 均大于0,a 25=0,∴可知S 1,S 2,…,S 25均大于0. 又a 26=126sin 2625π=-126sin π25=-126a 1,∴S 26=2526a 1+a 2+…+a 25>0,而a 27=127sin 2725π=-127sin 225π=-227a 2,∴a 27+a 2>0.同理可得a 28+a 3>0,…,a 49+a 24>0,而a 51到a 74均为正项,a 75=0,a 76到a 99均为负项,且|a 76|<a 51,|a 77|<a 52,…,|a 99|<a 74,a 100=0,故{S n }中前100项均为正数. 答案:D二、填空题(每小题5分,共15分) 7.设S n =12+16+112+…+1nn +,若S n ·S n +1=34,则n 的值为__________.解析:S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1,∴S n ·S n +1=n n +1·n +1n +2=n n +2=34,解得n =6. 答案:68.已知f (x )=4x 4x +2,求f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011=__________. 解析:因为f (x )+f (1-x )=4x 4x +2+41-x41x +2=4x 4x +2+44+2·4x =4x 4x+2+22+4x=1. 所以f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011=f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911=…=f ⎝⎛⎭⎫511+f ⎝⎛⎭⎫611=1.∴f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011=5. 答案:59.(2012·福建)数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=__________.解析:∵函数y =cos n π2的周期T =2ππ2=4,∴可用分组求和法:a 1+a 5+…+a 2 009==503;a 2+a 6+…+a 2 010=(-2+1)+(-6+1)+…+(-2 010+1) =-1-5-…-2 009 =-1-2=-503×1 005;a 3+a 7+…+a 2 011==503;a 4+a 8+…+a 2 012=(4+1)+(8+1)+…+(2 012+1)=+2=503×1 009;故S 2 012=503-503×1 005+503+503×1 009 =503×(1-1 005+1+1 009)=3 018. 答案:3 018 三、解答题(共55分)10.(15分)设数列{a n }的前n 项和为S n ,a 1=1,S n =na n -2n (n -1). (1)求数列{a n }的通项公式a n ;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:15≤T n <14.解:(1)由S n =na n -2n (n -1)得 a n +1=S n +1-S n =(n +1)a n +1-na n -4n , 即a n +1-a n =4.∴数列{a n }是以1为首项,4为公差的等差数列, ∴a n =4n -3.(2)证明:T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1n -n +=14⎝⎛⎭⎫1-15+15-19+19-113+…+14n -3-14n +1 =14⎝⎛⎭⎫1-14n +1<14. 又易知T n 单调递增,故T n ≥T 1=15,得15≤T n <14.11.(20分)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n ,a n,1成等差数列. (1)求数列{a n }的通项公式; (2)若a 2n =2-bn ,设C n =b na n,求数列{C n }的前n 项和T n .解:(1)由题意知2a n =S n +1, a n >0, 当n =1时,2a 1=a 1+1,∴a 1=1,当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1(n ≥2), 整理得:a na n -1=2(n ≥2),∴数列{a n }是以1为首项,2为公比的等比数列. a n =a 1·2n -1=1×2n -1=2n -1.(2)a 2n =2-bn =22n -2,∴b n =2-2n ,C n =b n a n =2-2n 2n -1=4-4n 2n ,T n =02+-422+-823+…+8-4n 2n -1+4-4n 2n ①12T n =022+-423+…+8-4n 2n +4-4n 2n +1② ①-②得12T n =-4(122+123+…+12n )-4-4n 2n +1=-4·122-12n -11-12-4-4n2n +1 =-2(1-12n -1)-4-4n 2n +1=n +12n -1-2,∴T n =n +12n -2-4. 12.(20分)已知数列{a n },{b n },其中a 1=12,数列{a n }的前n 项和S n =n 2a n (n ≥1),数列{b n }满足b 1=2,b n +1=2b n .(1)求数列{a n },{b n }的通项公式;(2)是否存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立?若存在,求出m 的最小值. 解:(1)因为S n =n 2a n (n ≥1), 当n ≥2时,S n -1=(n -1)2a n -1. 所以a n =S n -S n -1=n 2a n -(n -1)2a n -1. 所以(n +1)a n =(n -1)a n -1, 即a n a n -1=n -1n +1.又a 1=12,所以a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=n -1n +1·n -2n ·n -3n -1…24·13·12 =1nn +1. 当n =1时,上式成立. 因为b 1=2,b n +1=2b n ,所以{b n }是首项为2,公比为2的等比数列,故b n =2n . (2)由(1)知,b n =2n .则1+1b 1+1b 2+…+1b n -1=1+12+122+…+12n -1=2-12n -1.假设存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立,即2-12n -1<m -84恒成立. 由m -84≥2,解得m ≥16.所以存在自然数,使得对于任意n ∈N *,n ≥2,有1+1b 1+1b 2+…+1b n -1<m -84恒成立,此时m 最小值为16.。

2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。

2020高考数学一轮复习第五章数列课时作业31数列求和文(2021-2022学年)

2020高考数学一轮复习第五章数列课时作业31数列求和文(2021-2022学年)

课时作业31 数列求和则T n=错误!+错误!+错误!未定义书签。

+…+错误! ①,错误!未定义书签。

T n =121+错误!未定义书签。

+错误!未定义书签。

+…+错误!未定义书签。

②,①-②得错误!未定义书签。

T n =错误!+错误!未定义书签。

+错误!未定义书签。

+…+错误!-错误!未定义书签。

=错误!-错误!未定义书签。

=2-错误!,∴Tn =4-错误!。

易知数列{2n }的前n项和为n (n +1), ∴S n =n (n +1)-4+错误!未定义书签。

.4.[2019·广州市综合测试]已知数列{a n }的前n 项和为S n ,数列错误!是首项为1,公差为2的等差数列.(1)求数列{a n}的通项公式;(2)设数列{bn }满足错误!+错误!未定义书签。

+…+错误!未定义书签。

=5-(4n +5)·错误!n,求数列{bn }的前n 项和T n .解析:(1)因为数列错误!是首项为1,公差为2的等差数列,所以错误!=1+2(n -1)=2n-1,所以S n =2n 2-n。

当n=1时,a 1=S 1=1;当n ≥2时,an=Sn -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=4n -3。

当n =1时,a 1=1也符合上式,所以数列{a n }的通项公式为a n =4n -3。

(2)当n =1时,错误!未定义书签。

=错误!未定义书签。

,所以b 1=2a1=2.当n≥2时,由a 1b 1+\f (a2,b2)+…+\f(an ,bn )=5-(4n +5)·错误!n,① 得错误!+错误!未定义书签。

+…+错误!未定义书签。

=5-(4n +1)错误!n -1。

②①-②,得错误!=(4n -3)错误!未定义书签。

n。

因为a n =4n -3,所以b n =错误!未定义书签。

=2n(当n =1时也符合),所以错误!未定义书签。

=错误!=2,所以数列{bn }是首项为2,公比为2的等比数列,所以T n =\f(21-2n ),1-2)=2n +1-2.5.[2019·郑州一中高三入学测试]在等差数列{a n }中,已知a 3=5,且a 1,a 2,a 5为递增的等比数列.(1)求数列{a n }的通项公式;(2)若数列{bn }的通项公式 (k∈N *),求数列{bn }的前n项和S n .则Sn=S n+1-b n+1=错误!+2-1-2-1=错误!+2.综上, (k∈N*).6.[2019·安徽省高中联合质量检测]已知{a}是公差不为0的等差数列,解得a1=1,d=2,所以an=2n-1.所以b1·b2·b3·…·bn-1·bn=2n+1,①当n=1时,b1=3,当n≥2时,b1·b2·b3·…·bn-1=2n-1。

2022届高考数学(理)一轮总复习检测:第五章 第四节 数列求和 Word版含解析

2022届高考数学(理)一轮总复习检测:第五章 第四节 数列求和 Word版含解析

第四节 数列求和【最新考纲】 1.把握等差、等比数列的前n 项和公式.2.把握特殊的非等差、等比数列的几种常见的求和方法.1.公式法直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法假如一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.3.错位相减法假如一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形: ①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n.5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则可用分组求和法求和.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n)类型,可接受两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.1.(质疑夯基)推断下列结论的正误.(正确的打“√”,错误的打“×”)(1)假如数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可依据错位相减法求得.( )(4)假如数列{a n }是周期为k(k 为大于1的正整数)的周期数列,那么S km =mS k .( )答案:(1)√ (2)√ (3)× (4)√2.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 6等于( )A.142B.45C.56D.67 解析:由于a n =1n (n +1)=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2 D .2n +n 2-2解析:S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1))=2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案:C4.(2022·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n=1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ) A .1-14n B .1-12nC.23⎝ ⎛⎭⎪⎫1-14nD.23⎝ ⎛⎭⎪⎫1-12n 解析:a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n 答案:C5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 解析:设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .答案:4-n+4 2n●两种思路解决非等差、等比数列的求和,主要有两种思路1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.2.不能转化为等差或等比数列的数列,往往通过裂项相消法、倒序相加法等来求和.●两点留意利用裂项相消法求和的留意事项1.抵消后并不肯定只剩下第一项和最终一项,也有可能前面剩两项,后面也剩两项;2.将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n}是等差数列,则1a n a n+1=1d⎝⎛⎭⎪⎫1a n-1a n+1,1a n a n+2=12d⎝⎛⎭⎪⎫1a n-1a n+2.]一、选择题1.数列{1+2n-1}的前n项和为()A.1+2n B.2+2nC.n+2n-1 D.n+2+2n解析:由题意得a n=1+2n-1,所以S n=n+1-2n1-2=n+2n-1.答案:C2.已知{a n}是等比数列,a2=2,a5=14,则a1a2+a2a3+…+a n a n+1=() A.16(1-4-n) B.16(1-2-n)C.323(1-4-n) D.323(1-2-n)解析:由于q3=a5a2=18,所以q=12,a1=4,从而数列{a n a n+1}是以8为首项,14为公比的等比数列,其前n项和T n=8⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫14n1-14=323(1-4-n).答案:C3.(2022·太原一模)已知数列{a n}的通项公式为a n=(-1)n·(2n-1)·cosnπ2+1(n∈N*),其前n项和为S n,则S60=()A.-30 B.-60C .90D .120解析:由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k(k ∈N *)时,a n =a 4k =8k.∴a 4k -3+a 4k -2+a 4k -1+a 4k =8,∴S 60=8×15=120.答案:D4.已知函数f(x)=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+1解析:由f(4)=2得4a =2,解得a =12,则f(x)=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3) +…+( 2 014- 2 013)= 2 014-1. 答案:C5.已知等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lga n ,…的前n 项和S n 等于( )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n +1D .2n +1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n ,即a n =10n ,∴2n -1lg a n =2n -1lg 10n =n·2n -1, ∴S n =1+2×2+3×22+…+n·2n -1,① 2S n =1×2+2×22+3×23+…+n·2n ,②∴①-②得-S n =1+2+22+…+2n -1-n·2n =2n -1 -n·2n =(1-n)·2n -1,∴S n =(n -1)·2n +1. 答案:C二、填空题6.数列{a n }的通项公式a n =⎩⎨⎧5n +1 n 是奇数,2n 2 n 是偶数,则这个数列的前2m 项的和是________.解析:数列{a n }的奇数项组成首项为6,公差为10的等差数列,偶数项组成首项为2,公比为2的等比数列,则S 2m =6m +m (m -1)2×10+2(1-2m )1-2=5m 2+m +2m +1-2.答案:5m 2+m +2m +1-27.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析:由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.答案:68.对于每一个正整数n ,设曲线y =x n +1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:曲线y =x n +1在点(1,1)处的切线方程为y =(n +1)(x -1)+1,即y =(n +1)x -n ,它与x 轴交于点(x n ,0),则有(n +1)x n -n =0⇒x n =nn +1,∴a n =lg x n =lg nn +1=lg n -lg(n +1),∴a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2,答案:-2 三、解答题9.(2021·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎨⎧a 1=1,a 4=8或⎩⎨⎧a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q=2n -1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.10.(2021·山东卷)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)由于2S n =3n +3,所以2a 1=3+3,故a 1=3. 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1.所以a n =⎩⎨⎧3, n =1,3n -1, n ≥2.(2)由于a n b n =log 3a n ,所以b 1=13.当n ≥2时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n -1)×31-n ],所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n ], 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n, 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n.数列中的高考热点题型数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要连接点,本专题解答题的热点题型有:一是等差、等比数列的综合问题;二是数列与函数的综合问题;三是数列与不等式的综合问题.难度中等.热点1 等差、等比数列的综合问题解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.并留意方程思想的应用,等差(比)数列总共涉及五个量a ,a n ,S n ,d(q),n ,“知三求二”.(2021·湖北卷)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解:(1)由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+…+2n -32n -1+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.1.若{a n }是等差数列,则{ba n }(b >0且b ≠1)是等比数列;若{a n }是正项等比数列,则{log b a n }(b >0且b ≠1)是等差数列.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.【变式训练】 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式.(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解:(1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0.若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1),若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知,b n =lg1002n=2-nlg 2. 所以数列{b n }是单调递减的等差数列{公差为-lg 2}. b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg10027=lg 100128<lg 1=0. 故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.热点2 数列与函数的综合问题(满分现场)数列与函数的综合一般体现在两个方面:一是以数列的特征量n ,a n ,S n 等为坐标的点在函数图象上,可以得到数列的递推关系;二是数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(经典例题)(本小题满分12分)(2022·四川卷)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .规范解答:(1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.4分(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.6分所以,d =a 2-a 1=1. 从而a n =n ,b n =2n ,8分所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -110分因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n .12分【满分规章】(1)本题的易失分点是:①不能由题意正确列出a 7、a 8的关系式;②不能正确利用导数的几何意义求解; ③不会利用错位相减法求T n . (2)满分规章:①明确点在函数图象上,点的坐标适合函数解析式. ②明确导数的几何意义是曲线在切点处的切线斜率.③若{a n }是等差数列,{b n }是等比数列,可用错位相减法求数列{a n b n }前n 项的和.【构建模板】错位相减法求和的一般步骤第一步:确定通项,依据已知条件求a n ,b n .其次步:巧分拆,即新的数列分解为等差数列和等比数列的乘积,并确定等比数列的公比.第三步:构差式,即写出S n 的表达式,然后乘以公比,两式作差.第四步:依据差式的特征精确求和.第五步:反思回顾.查看关键点,易错点及解题规范.解决此类问题要抓住一个中心——函数,两个亲密联系:一是数列和函数之间的亲密联系,数列的通项公式是数列问题的核心,函数的解析式是争辩函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行机敏的处理.【变式训练】已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)均在函数y=f(x)的图象上.(1)求数列{a n}的通项公式;(2)设b n=3a n a n+1,试求数列{b n}的前n 项和T n.解:(1)设二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b.由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.又由于点(n,S n)(n∈N*)均在函数y=f(x)的图象上,所以S n=3n2-2n.当n≥2时,a n=S n-S n-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2×1=6×1-5,所以a n=6n-5(n∈N*).(2)由(1)得b n=3a n a n+1=3(6n-5)[6(n+1)-5]=12·⎝⎛⎭⎪⎪⎫16n-5-16n+1,故T n=12⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫1-17+⎝⎛⎭⎪⎫17-113+…+⎝⎛⎭⎪⎪⎫16n-5-16n+1=12(1-16n+1)=3n6n+1.热点3数列与不等式的综合问题数列与不等式相结合问题的考查方式主要有三种:一是推断数列中的一些不等关系;二是以数列为载体,考查不等式恒成立问题;三是考查与数列有关的不等式的证明.(2021·安徽卷)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥14n.解:(1)y′=(x2n+2+1)′=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y =0,得与x 轴交点的横坐标x n =1-1n +1=nn +1.所以数列{x n }的通项公式x n =nn +1.(2)证明:由题设和(1)中的计算结果知,T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝ ⎛⎭⎪⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,由于x 22n -1=⎝ ⎛⎭⎪⎪⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n, 所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得,对任意的n ∈N *,均有T n ≥14n.解决数列与不等式的综合问题时,假如是证明题要机敏选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;假如是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.总之解决这类问题把数列和不等式的学问奇妙结合起来综合处理就行了.【变式训练】 已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m)a n +1<0恒成立,试求m 的取值范围.解:(1)设等比数列{a n }的首项为a 1,公比为q. 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20,∴⎩⎨⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎨⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎨⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①—②,得S n =2+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2.由S n +(n +m)a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1,∴m≤-1,即m的取值范围是(-∞,-1].1.(2021·浙江卷)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+12b2+13b3+…+1n b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解:(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时,1n b n=b n+1-b n.整理得b n+1n+1=b nn,所以b n=n(n∈N*),(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).2.(2021·四川卷)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n的前n项和为T n,求使得|T n-1|<11 000成立的n的最小值.解:(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),则a n=2a n-1(n≥2),所以q=2.从而a2=2a1,a3=2a2=4a1.又由于a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2.所以数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(2)由(1)得1a n=12n,所以T n=12+122+…+12n=12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫12n1-12=1-12n.由|T n-1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n-1<11 000,即2n>1 000.由于29=512<1 000<1 024=210,所以n≥10.于是使|T n-1|<11 000成立的n的最小值为10.3.已知数列{a n}的前n项和为S n,满足S n+2n=2a n.(1)证明:数列{a n+2}是等比数列,并求数列{a n}的通项公式a n;(2)若数列{b n}满足b n=log2(a n+2),设T n是数列⎩⎨⎧⎭⎬⎫b na n+2的前n项和,求证:T n <32.证明:(1)由S n +2n =2a n ,得S n =2a n -2n ,① 当n =1时,S 1=2a 1-2,则a 1=2,当n ≥2,n ∈N *时,S n -1=2a n -1-2(n -1),② ①-②,得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2), 又a 1+2=4≠0,则a n +2≠0.∴{a n +2}是以a 1+2=4为首项,以2为公比的等比数列. ∴a n +2=4·2n -1,∴a n =2n +1-2. (2)由b n =log 2(a n +2)=log 22n +1=n +1, 得b n a n +2=n +12n +1, 则T n =222+323+…+n +12n +1,③12T n =223+…+n2n +1+n +12n +2.④ ③-④,得12T n =222+123+124+…+12n +1-n +12n +2=14+14⎝ ⎛⎭⎪⎫1-12n 1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2, 所以T n =32-n +32n +1<32.4.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解:(1)由于{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.由于q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).5.(2022·山东青岛一模)已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n .令c n =(-1)n S n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)d n -2+2n -1,a ∈R.(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围.解:(1)由于等差数列{a n }的公差为d ,设c n =(-1)n S n , 所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,即10(3+d)+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n.(2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n =2(a -2)3n -1+2n -[2(a -2)3n -2+2n -1] =4(a -2)3n -2+2n -1 =4·3n -2⎣⎢⎢⎡⎦⎥⎥⎤(a -2)+12⎝ ⎛⎭⎪⎫23n -2. 由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,由于2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2取得最小值54,所以a ≤54. 6.已知数列{a n }的首项a 1=4,前n 项和为S n ,且S n +1-3S n -2n -4=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设函数f(x)=a n x +a n -1x 2+a n -2x 3+…+a 1x n ,f ′(x)是函数f(x)的导函数,令b n =f′(1),求数列{b n }的通项公式,并争辩其单调性.解:(1)由S n +1-3S n -2n -4=0(n ∈N *), 得S n -3S n -1-2n +2-4=0(n ≥2),两式相减得a n +1-3a n -2=0, 可得a n +1+1=3(a n +1)(n ≥2),又由S 2-3S 1-2-4=0及a 1=4,得a 2=14, 所以a 2+1=3(a 1+1),即{a n +1}是一个首项为5,公比为3的等比数列, 所以a n =5×3n -1-1(n ∈N *).(2)由于f′(x)=a n +2a n -1x +…+na 1x n -1,所以f′(1)=a n +2a n -1+…+na 1=(5×3n -1-1)+2(5×3n -2-1)+…+n(5×30-1)=5(3n -1+2×3n -2+3×3n -3+…+n ×30)-n (n +1)2. 令S =3n -1+2×3n -2+3×3n -3+…+n ×30, 则3S =3n +2×3n -1+3×3n -2+…+n ×31,两式作差得S =-n2-3-3n +14,所以f′(1)=5×3n +1-154-n (n +6)2,即b n =5×3n +1-154-n (n +6)2.又b n +1=5×3n +2-154-(n +1)(n +7)2,所以b n +1-b n =15×3n 2-n -72>0,所以数列{b n }是单调递增数列.。

人教版2020届高考一轮数学(理)复习:课时作业32 等比数列及其前n项和(含答案)

人教版2020届高考一轮数学(理)复习:课时作业32 等比数列及其前n项和(含答案)

课时作业32 等比数列及其前n 项和1.已知正项等比数列{a n }满足a 3=1,a 5与32a 4的等差中项为12,则a 1的值为( A )A .4B .2 C.12D.14解析:由题意知2×12=a 5+32a 4,即3a 4+2a 5=2. 设{a n }的公比为q (q >0),则由a 3=1, 得3q +2q 2=2,解得q =12或q =-2(舍去),所以a 1=a 3q 2=4.2.(2019·益阳调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( D )A .3B .5C .9D .25解析:设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D.3.(2019·武昌调研)等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为( C )A .-3B .1C .-3或1D .1或3解析:设等比数列{a n }的公比为q , 当q =1时,S n +2=(n +2)a 1,S n =na 1, 由S n +2=4S n +3得,(n +2)a 1=4na 1+3,即3a 1n =2a 1-3,若对任意的正整数n,3a 1n =2a 1-3恒成立, 则a 1=0且2a 1-3=0,矛盾,所以q ≠1, 所以S n =a 1(1-q n )1-q ,S n +2=a 1(1-q n +2)1-q,代入S n +2=4S n +3并化简得a 1(4-q 2)q n =3+3a 1-3q ,若对任意的正整数n 该等式恒成立,则有⎩⎪⎨⎪⎧ 4-q 2=0,3+3a 1-3q =0,解得⎩⎪⎨⎪⎧ a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-3,q =-2,故a 1=1或-3,故选C.4.(2019·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( A )A .- 3B .-1C .-33D. 3解析:依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝ ⎛⎭⎪⎫-7π3=-tan π3=- 3. 5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( D )A.32f B.322f C.1225fD.1227f解析:由题意知,十三个单音的频率构成首项为f ,公比为122的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=1227f ,故选D.6.在正项数列{a n }中,a 1=2,点(a n ,a n -1)(n ≥2)在直线x -2y =0上,则数列{a n }的前n 项和S n 等于( A )A .2n +1-2B .2n +1C .2n2- 2D .2n +22- 2解析:因为点(a n ,a n -1)(n ≥2)在直线x -2y =0上, 所以a n -2·a n -1=0.又因为a n >0,所以a na n -1=2(n ≥2).又a 1=2,所以数列{a n }是首项为2,公比为2的等比数列. 所以所求的S n =2(1-2n )1-2=2n +1-2.7.(2019·天津实验中学月考)设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( B )A .210B .220C .216D .215解析:因为a 1a 2a 3=a 32,a 4a 5a 6=a 35,a 7a 8a 9=a 38,…,a 28a 29a 30=a 329,所以a 1a 2a 3a 4a 5a 6a 7a 8a 9…a 28a 29a 30=(a 2a 5a 8…a 29)3=230.所以a 2a 5a 8…a 29=210.则a 3a 6a 9…a 30=(a 2q )(a 5q )(a 8q )…(a 29q )=(a 2a 5a 8…a 29)q 10=210×210=220,故选B.8.(2019·山西太原模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n+3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( D )A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:由题意可得S n +3=3×2n ,S n =3×2n -3,由等比数列前n 项和的特点可得数列{a n }是首项为3,公比为2的等比数列,数列的通项公式a n =3×2n -1,设b n =b 1q n -1,则b 1q n -1+b 1q n =3×2n -1, 当n =1时,b 1+b 1q =3, 当n =2时,b 1q +b 1q 2=6, 解得b 1=1,q =2,数列{b n }的通项公式b n =2n -1,由等比数列求和公式有:T n =2n -1,观察所给的选项: S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.9.在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a2 019的最小值为 4 .解析:设公比为q (q >0),因为a 2 018=22, 所以a 2 017=a 2 018q =22q ,a 2 019=a 2 018q =22q , 则有1a 2 017+2a 2 019=2q +222q =2q +22q ≥2 2q ×2q =4,当且仅当q 2=2,即q =2时取等号,故所求最小值为4.10.(2019·湖北荆州一模)已知等比数列{a n }的公比不为-1,设S n 为等比数列{a n }的前n 项和,S 12=7S 4,则S 8S 4= 3 .解析:由题意可知S 4,S 8-S 4,S 12-S 8成等比数列, 则(S 8-S 4)2=S 4·(S 12-S 8),又S 12=7S 4,∴(S 8-S 4)2=S 4·(7S 4-S 8),可得S 28-6S 24-S 8S 4=0,两边都除以S 24,得⎝ ⎛⎭⎪⎫S 8S 42-S 8S 4-6=0,解得S 8S 4=3或-2, 又S 8S 4=1+q 4(q 为{a n }的公比),∴S 8S 4>1,∴S 8S 4=3.11.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4×⎝ ⎛⎭⎪⎫1+32+54+a 4+5×⎝ ⎛⎭⎪⎫1+32=8×⎝ ⎛⎭⎪⎫1+32+54+1, 解得a 4=78.(2)证明:因为4S n +2+5S n =8S n +1+S n -1(n ≥2), 所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 又因为4a 3+a 1=4×54+1=6=4a 2, 所以4a n +2+a n =4a n +1, 所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.12.(2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.解:(1)由已知,S n +1=qS n +1,S n +2=qS n +1+1, 两式相减得到a n +2=qa n +1,n ≥1. 又由S 2=qS 1+1得到a 2=qa 1, 故a n +1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列, 可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2. 所以a n =2n -1(n ∈N *). (2)证明:由(1)可知,a n =q n -1.所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=53,解得q =43.因为1+q 2(k -1)>q 2(k -1), 所以1+q 2(k -1)>q k -1(k ∈N *). 于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1, 故e 1+e 2+…+e n >4n -3n3n -1.13.(2019·山东实验中学诊断测试)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507 B .a ,b ,c 依次成公比为2的等比数列,且c =507 C .a ,b ,c 依次成公比为12的等比数列,且a =507 D .a ,b ,c 依次成公比为12的等比数列,且c =507 解析:由题意可知b =12a ,c =12b , ∴b a =12,c b =12.∴a 、b 、c 成等比数列且公比为12.∵1斗=10升,∴5斗=50升,∴a +b +c =50, 又易知a =4c ,b =2c ,∴4c +2c +c =50, ∴7c =50,∴c =507,故选D.14.(2019·郑州第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( D )A.⎝⎛⎭⎪⎫13,+∞ B.⎣⎢⎡⎭⎪⎫13,+∞ C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n=122n -1,数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞.15.(2019·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为 a n =n (n +1)2 .解析:由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1, ∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1, ∵b n >0,∴2b n =b n -1+b n +1, ∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92, ∴b 1=2,b 2=322, ∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2.16.已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n≤136(n ∈N *).解:(1)设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列, 所以S 3+2S 2=4S 4-S 3, 即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)证明:由(1)知,S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n=1-⎝ ⎛⎭⎪⎫-12n +11-⎝⎛⎭⎪⎫-12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n≤136.。

2021高考数学一轮复习专练31数列求和含解析文新人教版

2021高考数学一轮复习专练31数列求和含解析文新人教版

专练31 数列求和命题范围:数列求和常用的方法[基础强化]一、选择题1.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n -22.[2020·山东临沂高三测试]等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n n +12 D.n n -123.[2020·河南平顶山高三测试]数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n 项和为( )A.n n +1B.2n n +1C.4n n +1D.n 2n +14.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1n +1+n 的前2 018项的和为( ) A. 2 018+1 B. 2 018-1C. 2 019+1D. 2 019-15.已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( ) A .250 B .200 C .150 D .1006.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2018=( )A .3B .2C .1D .07.若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和T n 为( )A.n +12n +2B.34-2n +32n +1n +2C.n -1n +2D.34-2n +3n +1n +28.[2020·资阳一中高三测试]已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 1249.设函数f (x )=12+log 2x 1-x ,定义S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n ,其中,n ∈N *,n ≥2,则S n 等于( )A.n n -12 B.n -12-log 2(n -1)C.n -12D.n -12+log 2(n -1)二、填空题10.设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=________.11.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和为________.12.[2020·全国卷Ⅰ]数列{a n }满足a n +2+(-1)na n =3n -1,前16项和为540,则a 1=________.[能力提升]13.数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( )A .2n -1B .n ·2n-nC .2n +1-nD .2n +1-n -214.已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎨⎧⎭⎬⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15C.111D.21115.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.16.[2020·湖南郴州高三测试]已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.专练31 数列求和1.C S n =(2+22+ (2))+(1+3+5+…+2n -1)=21-2n1-2+1+2n -1n 2=2n+1-2+n 22.A ∵a 2,a 4,a 8成等比,∴a 24=a 2a 8,∴(a 1+3d )2=(a 1+d )(a 1+7d ),得a 1=d =2,∴S n =na 1+n n -12d =n (n +1).3.B ∵11+2+3+…+n =21+n n =2⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +14.D ∵1n +1+n=n +1-n ,∴S 2 018=2-1+3-2+…+ 2 019- 2 018= 2 019-15.D 当n =2k -1时,a 2k +a 2k -1=2,∴{a n }的前100项和S 100=(a 1+a 2)+(a 3+a 4)+…+(a 99+a 100)=50×2=100,故选D.6.A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2018=336×0+a 2017+a 2018=a 1+a 2=3.故选A.7.B 因为a 1+a 2+…+a n =n 3+2n +12=n (n +2),所以b n =1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32n +1n +2,故选B. 8.C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×1-2101-2+10×1+10×92×2=1 123.选C.9.C ∵f (x )+f (1-x )=1+log 2x 1-x +log 21-xx=1,又S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n ,∴S n =f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n ,∴2S n =n -1,∴S n =n -12.10.18解析:设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=a 1+a 9×92=2a 5×92=18.11.2011解析:∵a n +1-a n =n +1,∴当n ≥2时,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,∴a n -a 1=2+n n -12,∴a n =1+n +2n -12=n 2+n2(n ≥2)又当n =1时a 1=1符合上式,∴a n =n 2+n 2∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝ ⎛⎭⎪⎫1-111=2011. 12.7解析:令n =2k (k ∈N *),则有a 2k +2+a 2k =6k -1(k ∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41, ∴前16项的所有偶数项和S 偶=5+17+29+41=92, ∴前16项的所有奇数项和S 奇=540-92=448,令n =2k -1(k ∈N *),则有a 2k +1-a 2k -1=6k -4(k ∈N *),∴a 2k +1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k +1-a 2k -1)=2+8+14+…+6k -4=k 2+6k -42=k (3k -1)(k ∈N *),∴a 2k +1=k (3k -1)+a 1(k ∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448. ∴a 1=7.13.D 由题意,得a n =1+2+22+…+2n -1=1-2n1-2=2n-1,∴S n =(21-1)+(22-1)+(23-1)+…+(2n -1)=(2+22+…+2n )-n =2-2n +11-2-n =2n+1-n -2.14.C ∵2a 1+22a 2+…+2n a n =n (n ∈N *),∴2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2),∴2na n =1(n ≥2),当n =1时也满足,故a n =12n ,故1log 2a n log 2a n +1=1log 22-n log 22-n +1=1n n +1=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,∴S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,选C.15.-1n解析:∵a n +1=S n S n +1=S n +1-S n ,∴1S n +1-1S n=-1,∴数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,∴1S n =1S 1+(n -1)×(-1)=-n .∴S n =-1n.16.(n -1)2n+1解析:∵S n =2a n -1(n ∈N *),∴n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),∴a n=2a n -1,∴数列{a n }是首项为1,公比为2的等比数列,∴a n =2n -1.∴na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1.∴2T n =2+2×22+…+(n -1)×2n -1+n ·2n,∴-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n-1,∴T n =(n -1)2n+1.。

2019届高三数学(文)二轮复习:第31讲 数列求和 含解析

2019届高三数学(文)二轮复习:第31讲 数列求和 含解析

课时作业(三十一) 第31讲 数列求和时间 / 45分钟 分值 / 100分基础热身1.设等差数列{a n }的前n 项和为S n ,若a 4,a 6是方程2-18+p=0的两根,则S 9=( )A .9B .81C .5D .452.设S n 为等比数列{a n }的前n 项和,若a 2-8a 5=0,则S8S 4= ( )A .12B .1716C .2D .173.已知数列{a n }的通项公式是a n =(-1)n ·(3n-1),则a 1+a 2+…+a 10= ( ) A .15 B .12 C .-12 D .-154.[2018·江西莲塘一中、临川二中联考] 已知f ()=-+1,数列{a n }满足a n =f (0)+f (1n )+f (2n )+…+f (n -1n )+f (1),则a 2017=( )A .2018B .2019C .2020D .20215.[2018·宁夏银川一中模拟] 已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= . 能力提升6.我国古代数学著作《九章算术》中有如下问题;“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是;现有一根金杖,长五尺,一头粗,一头细,在粗的一端截下一尺,重4斤,在细的一端截下一尺,重2斤,问依次每一尺各重多少斤?设该问题中的金杖由粗到细是均匀变化的,则金杖的重量为 ( ) A .6斤B .10斤C.12斤D.15斤7.[2019·湖南师大附中月考]设正项等比数列{a n}的前n项和为S n,且a n+1a n<1,若a3+a5=10,a1·a7=16,则S4=()A.60或152B.60C.152D.1208.[2018·陕西延安黄陵中学模拟]已知等差数列{a n}的前n项和为S n,则“a1009,a1010是方程4-3·2+2=0的两根”是“S2018=1009”的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.[2018·昆明二模]若数列{a n}满足a n+1+a n=(-1)n·n,则数列{a n}的前20项的和为()A.-100B.100C.-110D.11010.[2018·贵州遵义航天中学月考]在递减的等差数列{a n}中,a1a3=a22-4,若a1=13,则数列{1a n a n+1}的前n项和S n的最大值为()A.24143 B.1143C.2413D.61311.[2018·河南六市二联]已知数列{b n}满足b1=1,b2=4,b n+2=1+sin2nπ2b n+cos2nπ2,则该数列的前11项和S11= .12.[2018·辽宁朝阳三模]已知S n为数列{a n}的前n项和,a1=0,若a n+1=[1+(-1)n]a n+(-2)n,则S100= .13.[2018·安徽八校4月联考]已知数列{a n}的前n项和为S n=2n+1,b n=log2(a n2·2a n),数列{b n}的前n项和为T n,则满足T n>1024的n的最小值为.14.(10分)设公差不为零的等差数列{a n}的前5项和为55,且a2,√a6+a7,a4-9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=1(a n-6)(a n-4),数列{b n}的前n项和为S n,求证;S n<12.15.(10分)[2018·马鞍山三模]已知数列{a n}是递减的等比数列,a2=4,且a2,2a3,a4+3成等差数列.(1)求数列{a n}的通项公式;(2)若b n=1a n log216a n,求数列{a n}的前n项和S n.16.(15分)已知数列{a n}的前n项和S n满足S n=n2+n2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=a n·3a n(n∈N*),求数列{b n}的前n项和T n.课时作业(三十一)1.B [解析] ∵a 4+a 6=18,∴S 9=92(a 1+a 9)=92(a 4+a 6)=81,故选B .2.B [解析] 设等比数列{a n }的公比为q ,∵a 2-8a 5=0,∴a 1q-8a 1q 4=0,解得q=12,则S 8S 4=a 1(1−128)1−12a 1(1−124)1−12=1+124=1716,故选B .3.A [解析] 因为a n =(-1)n ·(3n-1),所以a 1+a 2+…+a 10=-2+5-8+11-…-26+29=(-2+5)+(-8+11)+…+(-26+29)=3×5=15.4.A [解析] 由题意知f ()+f (1-)=-+1+-+1=2,因为a n =f (0)+f (1n )+f (2n)+…+f (n -1n )+f (1),a n =f (1)+f (n -1n )+…+f (1n )+f (0),两式相加得2a n =2(n+1),所以a n =1+n ,所以a 2017=2018,故选A .5.64 [解析] 因为a 1,a 2,a 5成等比数列,所以a 22=a 1·a 5,即(1+d )2=1×(1+4d ),解得d=2,所以a n =1+(n-1)×2=2n-1,所以a 8=2×8-1=15,则S 8=(a 1+a 8)×82=4×(1+15)=64.6.D [解析] 设由细到粗每一尺的重量为a i (i=1,2,3,4,5)斤,由题意可知a 1,a 2,a 3,a 4,a 5成等差数列,设{a n }的前n 项和为S n ,则{a 1=2,a 5=4,所以S 5=2+42×5=15,故选D .7.B [解析] 由等比数列{a n }是递减数列,且{a 3+a 5=10,a 3·a 5=16,得{a 3=8,a 5=2,所以q=12,所以a 1=32,则S 4=a 1(1-q 4)1−q=60 ,故选B .8.A [解析] ∵a 1009,a 1010是方程4-3·2+2=0的两根,∴2a 1009×2a 1010=2,∴a 1009+a 1010=1,∴S 2018=(a 1+a 2018)×20182=1009(a 1009+a 1010)=1009,充分性成立;反之,不一定成立.故“a 1009,a 1010是方程4-3·2+2=0的两根”是“S 2018=1009”的充分不必要条件,故选A .9.A [解析] 由a n+1+a n =(-1)n ·n ,得a 2+a 1=-1,a 3+a 4=-3,a 5+a 6=-5,…,a 19+a 20=-19,∴数列{a n }的前20项的和为a 1+a 2+…+a 19+a 20=-1-3-…-19=-1+192×10=-100,故选A .10.D [解析] 设数列{a n }的公差为d ,则d<0,所以由a 1a 3=a 22-4,a 1=13,得13(13+2d )=(13+d )2-4,解得d=-2(正值舍去),则a n =13-2(n-1)=15-2n.因为1a n a n+1=1(15-2n)(13-2n)=1212n -15-12n -13,所以数列{1an a n+1}的前n 项和S n =12-113-12n -13≤12-113-12×6−13=613,故选D .11.93 [解析] 根据题中所给的递推公式,可以求得b 3=2b 1=2,b 4=b 2+1=5,…,从而可以得到该数列的奇数项成等比数列,偶数项成等差数列,其前11项中有6项奇数项,5项偶数项,所以S 11=1−261−2+5×4+5×42×1=63+20+10=93.12.2−21013[解析] 由a n+1=[1+(-1)n ]a n +(-2)n (n ∈N *)得,当n 为奇数时,有a n+1=(-2)n ,当n 为偶数时,有a n+1=2a n +2n ,所以数列{a n }的所有偶数项构成以-2为首项,以4为公比的等比数列,所以S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=2(a 2+a 4+a 6+…+a 98)+(22+24+26+…+298)+(a 2+a 4+a 6+…+a 100)=3(a 2+a 4+a 6+…+a 100)-2a 100+(22+24+26+…+298)=3×-2×(1-450)1−4-2×(-2)99+4×(1−449)1−4=2−21013.13.9 [解析] 由数列{a n }的前n 项和为S n =2n+1,可知当n ≥2时,a n =S n -S n-1=2n+1-2n =2n ,当n=1时,a 1=22=4,不满足上式,所以b 1=log 2(a 12·2a 1)=8,b n =log 2(a n 2·2a n )=log 2a n 2+log 22a n =2n+2n (n ≥2), 所以数列{b n }的前n 项和为T n =8+(4+2n)(n -1)2+4(1−2n -1)1−2=(n+2)(n-1)+2n+1+4, 当n=9时,T 9=11×8+210+4=1116>1024, 当n=8时,T 8=10×7+29+4=586<1024, 所以满足T n >1024的n 的最小值为9. 14.解;(1)设等差数列{a n }的公差为d (d ≠0),则{5a 1+5×42d =55,(√a 1+5d +a 1+6d)2=(a 1+d)(a 1+3d -9),解得{a 1=7,d =2或{a 1=11,d =0(舍去), 故数列{a n }的通项公式为a n =7+(n-1)×2=2n+5. (2)证明;由a n =2n+5, 得b n =1(a n -6)(a n-4)=1(2n -1)(2n+1)=1212n -1-12n+1,所以S n =121-13+13-15+…+12n -1-12n+1=121-12n+1<12.15.解;(1)设数列{a n }的公比为q (0<q<1),由a 2,2a 3,a 4+3成等差数列,得4a 3=a 2+a 4+3,又a 2=4,所以16q=4+4q 2+3,即4q 2-16q+7=0,解得q=12或q=72(舍去),故a n =a 2·q n-2=4·(12)n -2=(12)n -4,即数列{a n }的通项公式为a n =(12)n -4.(2)b n =1a nlog 216a n=n ·2n-4,则S n =1×18+2×14+3×12+…+n ·2n-4,2S n =1×14+2×12+3×1+…+(n-1)·2n-4+n ·2n-3,两式相减,得-S n =18+14+12+…+2n-4-n ·2n-3,所以S n =-18+14+12+…+2n-4+n ·2n-3=-18+2n -31−2+n ·2n-3=(n-1)·2n-3+18.16.解;(1)当n ≥2时,a n =S n -S n-1=n ;当n=1时,a 1=S 1=1,满足上式. 综上可知,a n =n.(2)由(1)知b n =n ·3n ,则T n =1×31+2×32+3×33+…+n ·3n , 3T n =1×32+2×33+3×34+…+n ·3n+1, 两式相减,得-2T n =3+32+33+…+3n -n ·3n+1=3(1−3n )1−3-n ·3n+1,∴T n =34+n 2-14·3n+1.。

高考数学理一轮总复习 必修部分开卷速查31 数列求和(含解析)新人教A版-新人教A版高三必修数学试题

高考数学理一轮总复习 必修部分开卷速查31 数列求和(含解析)新人教A版-新人教A版高三必修数学试题

开卷速查(三十一) 数列求和A 级 基础巩固练1.数列{a n }的前n 项和为S n ,若a n =1n n +1,则S 6等于( )A.142B.45C.56D.67解析:因为a n =1nn +1=1n -1n +1,所以S 6=1-12+12-13+…+16-17=1-17=67. 答案:D2.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 014 B.-2 014 C .3 021 D.-3 021 解析:∵a 1=tan225°=1, ∴a 5=13a 1=13, 则公差d =a 5-a 15-1=13-14=3,∴a n =3n -2.方法一:∵(-1)na n =(-1)n(3n -2),∴S 2 014=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2 012-a 2 011)+(a 2 014-a 2 013)=1 007d =3 021.方法二:(错位相减)由于(-1)n a n =(-1)n(3n -2),则S 2 014=1×(-1)1+4×(-1)2+7×(-1)3+…+6 037×(-1)2 013+6 040×(-1)2 014,①①式两边分别乘以-1,得(-1)×S 2 014=1×(-1)2+4×(-1)3+7×(-1)4+…+6 037×(-1)2 014+6 040×(-1)2 015,②①-②得2S 2 014=-1+3×1--12 0131--1-6 040(-1)2 015=6 042,∴S 2 014=3 021.答案:C3.在数列{a n }中,已知a 1=1,a n +1-a n =sin n +1π2,记S n 为数列{a n }的前n 项和,则S 2 016=( )A .1 006 B.1 007 C .1 008 D.1 009解析:由题意,得a n +1=a n +sinn +1π2,所以a 2=a 1+sinπ=1,a 3=a 2+sin 3π2=0,a 4=a 3+sin2π=0,a 5=a 4+sin 5π2=1,…,因此,数列{a n }是一个以4为周期的周期数列,而2 016=4×504,所以S 2 016=504×(a 1+a 2+a 3+a 4)=1 008,故选C.答案:C4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101 C.99100D.101100解析:设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×5-12d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n n +1=1n -1n +1,∴数列{1a n a n +1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 答案:A5.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( )A .n ·2nB.(n -1)·2n -1-1C .(n -1)·2n+1 D.2n+1解析:∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n,即a n=10n,∴2n -1lg a n =2n -1lg10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n -1)·2n+1. 答案:C6.数列{a n }满足a 1=2,a 2=1,并且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),则数列{a n }的第100项为( )A.12100 B.1250 C.1100 D.150解析:∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1(n ≥2),∴数列{a n -1a na n -1-a n}是常数数列,设a n -1a na n -1-a n=k ,∴1a n -1a n -1=1k .∴1k =1-12=12. ∴1a n =1a n -1a n -1+1a n -1-1a n -2+…+1a 2-1a 1+1a 1=12(n -1)+12,∴1a 100=992+12=50. ∴a 100=150.故选D.答案:D7.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=19,a 5+b 3=9,则数列{a n b n }的前n 项和S n =__________.解析:由条件易求出a n =n ,b n =2n -1(n ∈N *).∴S n =1×1+2×21+3×22+…+n ×2n -1,①2S n =1×2+2×22+…+(n -1)×2n -1+n ×2n.②由①-②,得-S n =1+21+22+…+2n -1-n ×2n,∴S n =(n -1)·2n+1. 答案:(n -1)·2n +1 8.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n a n +1,则数列{b n }的前n 项和为__________.解析:∵a n =n n +12n +1=n2, ∴b n =8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1. ∴b 1+b 2+…+b n =8⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=8n n +1.答案:8n n +19.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________.解析:令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1). 与已知式相减,得a n =(n 2+3n )-(n -1)2-3(n -1)=2n +2.∴a n =4(n +1)2.∴n =1时,a 1适合a n . ∴a n =4(n +1)2.∴a nn +1=4n +4,∴a 12+a 23+…+a n n +1=n 8+4n +42=2n 2+6n .答案:2n 2+6n10.[2014·大纲全国]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解析:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =113-3n10-3n =13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…⎦⎥⎤+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n1010-3n.B 级 能力提升练11.已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1、S 2、…、S 2 014中,有理数项的项数为( )A .42B .43C .44D .45 解析:1a n=(n +1)n +n n +1=n +1n (n +1+n )=n +1n⎝ ⎛⎭⎪⎫1n +1-n , a n =n +1-n n +1n =1n -1n +1,S n =a 1+a 2+a 3+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1问题等价于在2,3,4,…,2 015中有多少个数可以开方设2≤x 2≤2 015且x ∈N ,因为442=1 936,452=2 025,所以2≤x ≤44且x ∈N ,共有43个.选B.答案:B12.在数列{a n }中,已知a 1=1,a n +1=-1a n +1,记S n 为数列{a n }的前n 项和,则S 2 014=__________.解析:a 2=-1a 1+1=-11+1=-12,a 3=-1a 2+1=-1-12+1=-2,a 4=-1a 3+1=-1-2+1=1,因此a 4=a 1,依次下去,得到a n +3=a n ,因此数列{a n }是以3为周期的周期数列, ∵2 014=3×671+1,∴S 2 014=671×(a 1+a 2+a 3)+a 1=671×⎝ ⎛⎭⎪⎫1-12-2+1=-2 0112. 答案:-2 011213.[2015·某某某某三中、某某一中统考]已知数列{a n }的前n 项和S n 和通项a n 满足2S n+a n =1,数列{b n }中,b 1=1,b 2=12,2b n +1=1b n +1b n +2(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)数列{}满足=a n b n ,求证:c 1+c 2+c 3+…+<34.解析:(1)由2S n +a n =1,得S n =12(1-a n ).当n ≥2时,a n =S n -S n -1=12(1-a n )-12(1-a n -1)=-12a n +12a n -1,即2a n =-a n +a n -1,∴a n a n -1=13(由题意可知a n -1≠0). {a n }是公比为13的等比数列,而S 1=a 1=12(1-a 1),∴a 1=13,∴a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n,由2b n +1=1b n +1b n +2,1b 1=1,1b 2=2,得d =1b 2-1b 1=1(d 为等差数列⎩⎨⎧⎭⎬⎫1b n 的公差), ∴1b n =n ,∴b n =1n.(2)=a n b n =n ⎝ ⎛⎭⎪⎫13n,设T n =c 1+c 2+…+,则T n =1×⎝ ⎛⎭⎪⎫131+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1,由错位相减,化简得:T n =34-34×⎝ ⎛⎭⎪⎫13n -12n ⎝ ⎛⎭⎪⎫13n =34-2n +34×13n <34.14.[2014·某某]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解析:(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14n 2n -12n +1=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1.当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+-1n -12n +1)。

高考数学一轮复习 专题31 数列求和教学案 理-人教版高三全册数学教学案

高考数学一轮复习 专题31 数列求和教学案 理-人教版高三全册数学教学案

专题31 数列求和1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法。

1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .高频考点一 分组转化法求和例1、(2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 【方法规律】(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. (2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【变式探究】 (1)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A.n 2+1-12nB.2n 2-n +1-12nC.n 2+1-12n -1D.n 2-n +1-12n(2)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 016等于( ) A.1 008B.2 016C.504D.0【答案】 (1)A (2)A 高频考点二 错位相减法求和例2、(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .【解析】 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =3n ·2n +2.【方法规律】(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【变式探究】 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.高频考点三 裂项相消法求和例3、S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.【方法规律】(1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式探究】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .【解析】 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.【举一反三】在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝ ⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{b n }的前n 项和T n . 1.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n b 的前n 项和. 【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.(II) 由(I)得22121log 2n n n n a nb a --==,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯, 两式相减得2311111111*********2222212n n n n n n n n n n S --=+++++-=-=---, 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈. 【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式; (2)记数列1{}n a 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值. 【答案】(1)2nn a =;(2)10.(2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n>. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{na }是首项为3,公差为2的等差数列,所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 1.(2014·江西卷)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a nb n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .2.(2014·全国卷)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .3.(2014·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .【解析】 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +14.(2013·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n∈N *,都有T n <564. 5.(2013·湖南卷)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.6.(2013·山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n∈N *),求数列{c n }的前n 项和R n .【解析】:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得a 1=1,d =2,因此a n =2n -1,n∈N *.(2)由题意知T n =λ-n 2n -1,所以n≥2时,b n =T n -T n -1=-n 2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝ ⎛⎭⎪⎫14n -1,n∈N *.所以R n =0×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+3×⎝ ⎛⎭⎪⎫143+…+(n -1)×⎝ ⎛⎭⎪⎫14n -1,则14R n =0×⎝ ⎛⎭⎪⎫141+1×⎝ ⎛⎭⎪⎫142+2×⎝ ⎛⎭⎪⎫143+…+(n -2)×⎝ ⎛⎭⎪⎫14n -1+(n -1)×⎝ ⎛⎭⎪⎫14n ,两式相减得34R n =⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -1-(n -1)×⎝ ⎛⎭⎪⎫14n =14-⎝ ⎛⎭⎪⎫14n1-14-(n -1)×⎝ ⎛⎭⎪⎫14n=13-1+3n 3⎝ ⎛⎭⎪⎫14n , 整理得R n =194-3n +14n -1.所以数列{c n }的前n 项和R n =194-3n +14n -1.1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A.120 B.70 C.75 D.100【答案】 C【解析】析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A.9B.8C.17D.16【答案】 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5 B.6 C.7 D.16【答案】 C【解析】析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 016=( )A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2 【答案】 B【解析】 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016=(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016)=1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B. 6.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.【答案】 60【解析】析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2013,前813项的和是2000,则其前2015项的和为________.【答案】 -138.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n ,令b n =1a n a n +1+a n +1a n ,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.【答案】 99.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .【解析】 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2, ∴a n -1=2·2n -1=2n ,∴a n =2n +1.(2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n , 则2T =22+2×23+3×24+…+n ·2n +1. 两式相减,得-T =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n n +12, ∴T n =(n -1)·2n +1+n 2+n +42.10.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. 11.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N +). (1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N +),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 【解析】 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23, 当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ), 所以a n =13a n -1(n ≥2). 故数列{a n }是以23为首项,13为公比的等比数列. 故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N +).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业 31 数列求和 1.(2017·北京卷)已知等差数列{a n } 和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解析:(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q ,因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以b 2n -1=b 1q 2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12. 2.(2018·四川成都市高中毕业第一次诊断)已知数列{a n }满足a 1=-2,a n +1=2a n +4.(1)证明:数列{a n +4}是等比数列;(2)求数列{|a n |}的前n 项和S n .解析:(1)证明:∵a 1=-2,∴a 1+4=2.∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4),∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列.(2)由(1),可知a n +4=2n ,∴a n =2n -4.当n =1时,a 1=-2<0,∴S 1=|a 1|=2;当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(-4)+…+(2n -4)=2++…+2n -4(n -1)=21-2n 1-2-4(n -1)=2n +1-4n +2. 又当n =1时,上式也满足.∴当n ∈N *时,S n =2n +1-4n +2.3.(2018·西安质检)等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n ;数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n. 解析:(1)设等差数列{a n }的公差为d ,d >0,{b n }的公比为q ,则a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧ q 2+d =6q +3+3d =8, 解得⎩⎪⎨⎪⎧ d =1q =2,或⎩⎪⎨⎪⎧ d =-43q =9(舍去). 故a n =n ,b n =2n -1.(2)由(1)知S n =1+2+…+n =12n (n +1), 1S n =2n n +1=2(1n -1n +1),∵1S 1+1S 2+…+1S n =2[(1-12)+(12-13)+…+(1n -1n +1)]=2(1-1n +1)=2n n +1. 4.(2018·陕西省宝鸡市高三质检)已知数列{a n }的前n 项和为S n ,且S n =2a n -2.(1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫n +1a n 的前n 项和为T n ,求证:1≤T n <3. 解析:(1)当n =1时,a 1=2.当n ≥2时,S n -1=2a n -1-2, 所以a n =S n -S n -1=2a n -2-(2a n -1-2),即a n a n -1=2(n ≥2,n ∈N *), 所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n (n ∈N *). (2)证明:令b n =n +1a n =n +12n , 则T n =321+3+423+…+n +12n ,① ①×12,得12T n =2+323+424+…+n 2n +n +12n +1,② ①-②,得12T n =32-n +32n +1,整理得T n =3-n +32n , 由于n ∈N *,显然T n <3.又令=n +32n ,则+1=n +42n +6<1,所以>+1, 所以n +32n ≤c 1=2,所以T n ≥1. 故1≤T n <3.5.(2018·武汉市武昌区调研考试)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. 解析:(1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数. 又S n ≤S 5,∴a 5≥0,a 6≤0,于是9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95. ∵d 为整数,∴d =-2.故{a n }的通项公式为a n =11-2n .(2)证明:由(1),得1a n a n +1=111-2n 9-2n =12⎝ ⎛⎭⎪⎫19-2n -111-2n , ∴T n =12⎣⎢⎡ ⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎦⎥⎤⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝ ⎛⎭⎪⎫19-2n -19. 令b n =19-2n ,由函数f (x )=19-2x的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝ ⎛⎭⎪⎫1-19=49. 6.(2018·淄博模拟)已知数列{a n }是等差数列,S n 为{a n }的前n 项和,且a 10=19,S 10=100;数列{b n }对任意n ∈N *,总有b 1·b 2·b 3·…·b n -1·b n =a n +2成立.(1)求数列{a n }和{b n }的通项公式;(2)记=(-1)n 4n ·b n2n +12,求数列{}的前n 项和T n . 解析:(1)设{a n }的公差为d ,则a 10=a 1+9d =19,S 10=10a 1+10×92×d =100. 解得a 1=1,d =2,所以a n =2n -1.所以b 1·b 2·b 3·…·b n -1·b n =2n +1,①当n =1时,b 1=3,当n ≥2时,b 1·b 2·b 3·…·b n -1=2n -1.②①②两式相除得b n =2n +12n -1(n ≥2). 因为当n =1时,b 1=3适合上式,所以b n =2n +12n -1(n ∈N *). (2)由已知=(-1)n 4n ·b n 2n +12, 得=(-1)n 4n 2n -12n +1=(-1)n ⎝ ⎛⎭⎪⎫12n -1+12n +1, 则T n =c 1+c 2+c 3+…+=-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+(-1)n ⎝ ⎛⎭⎪⎫12n -1+12n +1, 当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+(-1)n ·⎝ ⎛⎭⎪⎫12n -1+12n +1 =⎝ ⎛⎭⎪⎫-1-13+⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫-15-17+…+⎝ ⎛⎭⎪⎫12n -1+12n +1 =-1+12n +1=-2n 2n +1; 当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+(-1)n ·⎝ ⎛⎭⎪⎫12n -1+12n +1 =⎝ ⎛⎭⎪⎫-1-13+⎝ ⎛⎭⎪⎫13+15+⎝ ⎛⎭⎪⎫-15-17+…+⎝ ⎛⎭⎪⎫-12n -1-12n +1 =-1-12n +1=-2n +22n +1. 综上,T n =⎩⎪⎨⎪⎧ -2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.[能力挑战]7.(2017·卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解析:(1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧ x 1+x 1q =3,x 1q 2-x 1q =2,所以3q 2-5q -2=0. 由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n .由题意得b n =n +n +12×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n =3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×+…+(2n -1)×2n -2+(2n +1)×2n -1.② ①-②得-T n =3×2-1+(2++…+2n -1)-(2n +1)×2n -1=32+21-2n -11-2-(2n +1)×2n -1,所以T n =2n -1×2n +12.。

相关文档
最新文档