《大学物理AⅠ》真空中的静电场习题、答案及解法
《大学物理》课后解答题 第五章静电场
第五章 真空中的静电场一、思考讨论题1、电场强度与电势有什么关系?试回答下列问题,并举例说明: (1)场强为零的地方,电势是否一定为零? (2)电势高的地方,场强是否一定大? (3)电势相等处,场强是否一定相等?(4)已知某一点的电势,可否求出该点的场强?反之如何? 解:(1)不一定。
比如两同种点电荷连线中点,场强为零,电势不为零。
(2)不一定。
匀强电场,场强处处相等,而电势不等。
(3)不一定。
点电荷产生的电场线中,电势相等的地方场强方向不一样。
(4)都不可以求。
2、已知某一高斯面所包围的空间内0=∑q ,能否说明穿过高斯面上每一部分的电通量都是0?能否说明高斯面上的场强处处为0?解:由高斯定理∑⎰=⋅=q S d E S1εψ ,0=∑q 仅指通过高斯面的电通量为零,并非场强一定在高斯面处处为零(高斯面外的电荷也在高斯面上各点产生场强)。
3、已知某高斯面上处处E =0,可否肯定高斯面内0=∑q ,可否肯定高斯面处处无电荷?解:可以肯定。
高斯面上处处E =0,0=⋅⎰S d E S,由高斯定理必有0=∑q 。
4、如图1.1所示,真空中有A 、B 两均匀带电平板相互平行并靠近放置,间距为d (d 很小),面积均为S ,带电分别为+Q 和-Q 。
关于两板间的相互作用力,有人说,根据库仑定律应有:2024dQ f πε=; 又有人说,根据f QE =,应有:SQ f 02ε=。
他们说得对吗?你认为f 应等于多少?解:(1)2024dQ f πε=是错误的,因为库仑定律只适用于点电荷,两个带电平板不能直接用库仑定律计算。
(2)SQ f 02ε=也错误。
因为用sqE 0ε=计算的场强是两带电平板产生的合场强,而Eq F =中的场强是一个带电板的电荷量乘以另一个所产生的场强,而不是合场强。
电荷与图1.1自身产生的场强作用力恒为零。
正确答案是:Sq q S qEdq F 02022εε=⋅==⎰ 5、在无限大带电平面和无限长带电直线的电场中,确定各点电荷时,可否选无穷远处为0势点?为什么?解:不能。
3-1电磁-真空中的静电场 大学物理作业习题解答
dE
zdq 40(z2 r2 )3/2
R cos.ds 40R3
sin cosd 20
d R o
x
故球心o处总场强为:
E
dE
/ 2 sin cos d
0
20
40
4
1-6 均匀带电的无限长细线,弯成如图所示的形状,若点电荷的线
密度为λ,半圆处半径为R,求o点处的电场强度.
解:o电场强是由三部分电荷产生的:
解:作一半径为r的同心球面为高斯面。
当r<R1
当 R1<r<R2
E4r2 0, E 0
R1
r 2r2 sindrdd
E 4r2 R1 0 0
R2
0
1
r
2
A r sindrdd
0 R1 0 0
E
A
r2 R12 20r2
同理,当r>R2
E4r2 1 R2 2 Arsindrdd
0
20
9
1-10 两个无限长的共轴圆柱面,半径分别为R1和R2,面上都均
匀带电,沿轴线单位长度的电量分别为 1和 2 ,求: (1)场强分布;(2)若 1 2,情况如何?画出E-r曲线。
解:由圆柱面的对称性,E的方向为垂直柱面, r
故作一共轴圆柱面为高斯面,由高斯定律得:
R1
高 斯
当
r<R1, 当R1<r<R2 ,
1-12 将q=1.7×10-8库仑的点电荷从电场中的A点移到B点,外力需 做功5.0×10-8焦耳,问A,B俩点间的电势差是多少?哪点电势高?若 设B点的电势为零,A点的电势为多大?
解:(1) AAB=q(VA-VB), WAB=- AAB=+5.0×10-8
真空中的静电场习题详解
习题一一、选择题1.如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为L ,电荷Q -均匀分布其上。
空隙长为()L L R ∆∆<<,则圆弧中心O 点的电场强度和电势分别为 [ ] (A)200,44Q L Qi R L R πεπε-∆-; (B)2200,84Q L Qi R L R πεπε-∆-; (C)200,44Q L Qi R L Rπεπε∆; (D)200,44Q L Q Li R L RLπεπε-∆-∆。
答案:A解:闭合圆环中心场强为0,则圆弧产生的场强与空隙在圆心处产生的场强之和为0。
由于空隙 ∆l 非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为/Q L L -∆,产生的场强为204Q L i R L πε∆,所以圆弧产生的场强为204OQ LE i R Lπε-∆=;又根据电势叠加原理可得04O Q U Rπε-= .2.有两个电荷都是+q 的点电荷,相距为2a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为S Φ,则[ ] (A )120, /S q εΦ>ΦΦ=; (B )120, 2/S q εΦ<ΦΦ=;(C )120, /S q εΦ=ΦΦ=; (D )120, /S q εΦ<ΦΦ=。
答案:D解:由高斯定理知0Φ=S q ε。
由于面积S 1和S 2相等且很小,场强可视为均匀。
根据场强叠加原理,120,0E E =<,所以12Φ0,Φ0=>。
3.半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为 [ ]答案:B2∝2∝rRrR解:由高斯定理知均匀带电球体的场强分布为()302041 ()4qrr R R E q r R r πεπε⎧<⎪⎪=⎨⎪>⎪⎩,所以选(B )。
大学物理第7章真空中的静电场答案
dE ydx24 0rcos , dE xdx2 sin 4 0r 2因x ytg ,dxdcos2y,cos第七章 真空中的静电场7- 1 在边长为 a 的正方形的四角,依次放置点电荷 q,2q,-4q 和 2q ,它的几何中心放置 一个单位正电荷,求这个电荷受力的大小和方向。
解: 如图可看出两 2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为4 (q 2 a)2(1 4)= 4 0 ( 2 a)27-2 如图,均匀带电细棒,长为L ,电荷线密度为 λ。
( 1) 求棒的延长线上任一点 P 的场强; (2)求通过棒的端点与棒垂直上 任一点 Q 的场强。
解: ( 1)如图 7- 2 图 a ,在细棒上任取电荷元 dq ,建立如图坐标, P 与坐标原点 0 的距离为 x ,则方向沿 轴正向。
4 0 x (x L )2)如图 7- 2 图b ,设通过棒的端点与棒垂直上任一点 dx24 0r 25q2 , 方向由 q 指向 -4q 。
2 0a2dq = d ,设棒的延长线上任一点dE4 0(x )2 4 0 (x )2则整根细棒在P 点产生的电场强度的大小为dq 0Ld4 0 0 (x )2 (x 1Lx 1x L x习题 7- 2 图 aQ 与坐标原点 0的距离为 ydE 习题 7- 2 图 b代入上式,则E xdE x sin d x x4 0 y 0 (1 cos 0) = (1 1 ),方向沿 x 轴负向。
4 0 y 4 0 y y 2 L 2EydEy4 0 y 0cos d4 0y sin 0= 4 0y y 2 L 27- 3 一细棒弯成半径为 R 的半圆形,均匀分布有电荷 q ,求半圆中心 O 处的场强。
解: 如图,在半环上任取 dl=Rd 的线元,其上所带的电荷为 dq= Rd 。
对称分析 E y =0。
7- 4 如图线电荷密度为 λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为 λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。
题解1-真空中的静电场(已修改)
3 2 3 大小: 区:E i i i 2 0 2 0 2 0 2 0 2 区:E i i i 大小: 2 0 2 0 2 0 2 0 2、 E dS Q E 0 S a 0
大小: 2 0
i (i )
杆 0
EP dE
2
i
P
以无穷远处电势为零, P点电势为:
Ld x
U P dU
杆
L
0
(q / L)dx (q / L) L d ln 4 0 ( L d x) 4 0 d 1
2、一电荷面密度为σ 的“无限大”平面,在距离平面 a米远处一点的场强大小的一半是由平面上的一个半径 为R的圆面积范围内的电荷产生的。试求该圆半径的大 小。 解:圆盘在其轴线上P点场强:
根据电势叠加原理,P点处的电势也与电荷在环L上的 分布状况无关,为: dq
UP
4 0 r Nq 4 0 r
L
dq
4 r
0
1
L
R dq
L
r
P
dE
Z
9、C 空间各点处的总场强为:(方法与选择题第5小题 的方法相同)
0 (r R1 ) 2 E Eer er Q1 /(4 0 r ) ( R1 r R2 ) e (Q Q ) /(4 r 2 ) (r R2 ) 2 0 r 1
'
R
dl
R
Rd
d
y
dE
θ位置处的一窄条在轴线上的一点产生的场强为:
' ' dE i sin j cos 2 0 R 2 0 R d d i sin j cos 2 2 2 0 R 2 0 R
7.真空中的静电场 大学物理习题答案
l
xd x
2
k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0
2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
大学物理A习题选解
大学物理A习题选解Last revision on 21 December 2020第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。
6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大(2)α粒子的加速度为多大解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即 它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为: 由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。
各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。
由库仑定律,作用于电荷3的力为题6-3 图 题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。
6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。
解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强 设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。
《真空中的静电场》选择题解答与分析
选择(A),进入下面的思考: 1.1 如果通过闭合面 S 的电通量 Φe 为零,是否能肯定面 S 上每一点的场强都等于 零? 参考解答: 不能肯定。若闭合曲面 S 上的 Φe S E d S 为零,并不能说明被积函数在 S 上处处为零。举两个小例子,如图(a)所示,点电 荷 q 在高斯面 S(S 不一定是球面,这里只是为画 图简单而画成了球面)之外,S 上的电通量为零, 但 S 上各处场强均不为零。另如图(b)所示,高斯 面 S 内有两个等量异号的点电荷, 同样是 S 上的电 通量为零,但 S 上各处场强均不为零。 “高斯面上的电通量为零,高斯面上的场强就为零”,这是在学习高斯定理时常有 的错误观念,一定要注意。 如果把本题的命题倒过来,即高斯面 S 上每一点的场强都等于零,那么肯定 有 S 上的电通量 Φe 为零。在导体问题的讨论中,我们正是“故意地”把高斯面 S 取在导体上,利用静电平衡时导体内场强处处为零的条件和高斯定理来分析某些 导体问题的。
b
对于所有选择,给出下面的相关资料: 2. 静电场的环路定理,静电力作功的特点。 参考解答: 静电场的环路定理: 静电场中场强 E 沿任意闭合路径的线积分等于零.其数学表达式为: E d l 0 .
L
它表示在静电场中把单位正电荷从某点出发经任意闭合路径回到原来位置, 静电场力作功等于零. 这表明静电场是保守力场. 静电力作功的特点: 电荷在静电场中移动过程,静电场力作的功只与电荷大小及路径的起点与终 点位置有关,与路径无关。 已知电势分布时,利用电势差的定义式,可求得电场力所作的功,将电荷 q0 从 a 点移至 b 点,电场力所作的功为: Aab Wab q 0 (U a U b ) .
124对称性静电场的电势分布图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r变化的关系该曲线所描述的是e为电场强度的大小u为电势半径为r的无限长均匀带电圆柱体电场的er关系
真空中的静电场(习题课后)22
(真空中的静电场(习题课后作业)(22)1、真空中半径为R 的球体均匀带电,总电量为q ,则球面上一点的电势U=R q 04/πε;球心处的电势U 0=R q 08/3πε 。
(将均匀带电球体微分成球面,利用电势叠加求得结果)2、无限大的均匀带电平面,电荷面密度为σ,P 点与平面的垂直距离为d ,若取平面的电势为零,则P 点的电势Up==-Ed 02/εσd -,若在P 点由静止释放一个电子(其质量为m,电量绝对值为e)则电子到达平面的速率V=0/εσm ed 。
(221mv Ue p=)3.如图,在真空中A 点与B 点间距离为2R,OCD 是以B 点为中心,以R 为半径的半圆路径。
AB两处各放有一点电荷,带电量分别为:+q (A 点)和-q (B 点),则把另一带电量为Q(Q <0)的点电荷从D 点沿路径DCO 移到O 点的过程中,电场力所做的功为=-=)(o D U U Q A R Qq 06/πε-。
4、点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示。
则引入q 前后:( B )(A)曲面S 的电通量不变,曲面上各点场强不变;(B)曲面S 的电通量不变,曲面上各点场强变化;(C)曲面S 的电通量变化,曲面上各点场强不变;(D)曲面S 的电通量变化,曲面上各点场强变化。
5、选择正确答案:( B )(A)高斯定理只在电荷对称分布时才成立。
(B)高斯定理是普遍适用的,但用来计算场强时,要求电荷分布有一定的对称性。
(C)用高斯定理计算高斯面上各点场强时,该场强是高斯面内电荷激发的。
(D)高斯面内电荷为零,则高斯面上的场强必为零。
6、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:利用圆环在其轴线上任一点场强结果2/3220)(4/x R Qx E +=πε任取一细环ρ~ρ+d ρ,ρπρσd dq 2= 2/3220)(4ρπε+=r rdqdE⎰=∞R dE E 222Rr r+=εσ217、真空中一长为L 的均匀带电细直杆,总电量为q ,(1)试求在直杆延长线上距杆的一端距离为a 的p 点的电场强度和电势。
大学物理真空中的静电场答案
大学物理真空中的静电场答案【篇一:第九章真空中的静电场(答案)2013】] 1(基础训练1)图中所示为一沿x轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+?(x<0)和-? (x>0),则oxy坐标平面上点(0,a)处的场强e为?? (a) 0. (b) i. 2??0a???????i?j?. (c) i. (d)4??0a4??0ae??e??矢量叠加后,合场强大小为:【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小e+、e-大小为:?,方向如图。
e合?2??0a[ c ] 2(基础训练3)如图所示,一个电荷为q的点电荷位于立方体的a角上,则通过侧面abcd的电场强度通量等于:qq (a) . (b) .6?012?0(c)qq. (d) . 24?048?0【提示】:添加7个与如图相同的小立方体构成一个大立方体,使a处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由gauss定理知,通过该高斯面的电通量为q?0。
再据对称性可知,通过侧面abcd的电场强度通量等于q。
24?0[ d ] 3(基础训练6)在点电荷+q的电场中,若取图中p点处为电势零点,则m点的电势为(a)qq.(b) .4??0a8??0a(c)?q?q.(d) .4??0a8??0a【提示】:vm??pm??ae?dl??q4??0r2a?2?q8??0a1[ d ] 4(基础训练6)、如图所示,cdef为一矩形,边长分别为l和2l.在dc延长线上ca=l处的a点有点电荷+q,在cf的中点b点有点电荷-q,若使单位正电荷从c点沿cdef路径运动到f点,则电场力所作的功等于:q5?1q1?5?? (a) . (b)4??0l5?l4??0lq3?1q5?1??(c) . (d) . 4??0l4??0l3???qa?q(v?v)?1?0?(?【提示】:c?f?? 0cf4??l0??[ c ] 5(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。
真空中的静电场(含答案,大学物理作业,考研真题)
E
·B ·
A
3、(2018 年南京航空航天大学)真空中一半径为 R 的均匀带电圆盘,电荷面密度为σ,设
无穷远处为电势零点,则圆盘中心 O 点的电势 U=
。(真空的电容率ε0 为已知常数。)
三、计算题
1、(2017 年西南科技大学)如图所示,一半径为 R 的实心带电球体,球体内均匀分布有电荷 q,求:
Q dl R
j
由几何关系 dl Rd ,统一变量,积分得
EO
0
4
Q 2 0 R2
sin d
j
Q 2 2 0 R 2
j
方向沿 y 轴的负方向。在其环心处所放置的电荷 q 受到的电场力的大小为
F
qQ 2 20R2
,方向沿 y 轴的负方向。
第十章 真空中的静电场(2)
一、 选择题
1、B ; 2、D 二 、填空题
班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
dl
为 dq Q dl ,它在点 O 的电场强度大小为 R
dE
1 4 0
dq R2
R
Oθ
x
dEx
dE dEy
其方向沿圆弧半径指向 O 点。分解 dE ,如图所示。因圆环上电荷对 y 轴呈对称性分布,
9
则有 l dEx 0 ,点 O 的合电场强度为
EO
l dEy
j
大学物理课后习题答案 真空中的静电场
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
《大学物理》练习题及详细解答-—真空中的静电场
《大学物理》练习题及详细解答-—真空中的静电场 1. 1. 电荷为电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以,所以200200)1(π4)1(π42-=+x qq x qq e e 故 223+=x2. 2. 电量都是电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)(1)(1)在这三角形的中心放在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡一个什么样的电荷,就可以使这四个电荷都达到平衡((即每个电荷受其他三个电荷的库仑力之和都为零为零)?(2))?(2))?(2)这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系? ?解:解:(1) (1) (1) 以以A 处点电荷为研究对象,由力平衡知,q ¢为负电荷,所以为负电荷,所以2220)33(π4130cos π412a q q a q ¢=°e e故 qq33-=¢ (2)(2)与三角形边长无关。
与三角形边长无关。
与三角形边长无关。
3. 3. 如图所示,半径为如图所示,半径为R 、电荷线密度为1l 的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2l 的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq1l =,dq 在带电圆环轴线上x 处产生的场强大小为处产生的场强大小为)(4220R x dqdE +=p e根据电荷分布的对称性知,0==z y E E23220)(41cosR x xdqdE dEx+==p e q式中:q 为dq 到场点的连线与x 轴负向的夹角。
真空中的静电场(含答案,大学物理作业,考研真题)
班级:
姓名:
学号:
第十章 真空中的静电场(3)
一 、选择题 1、静电场中某点电势的数值等于 (A)正试验电荷 q0 置于该点时具有的电势能; (B) 把正试验电荷 q0 从该点移到电势零点处电场力所作的功; (C) 把单位正电荷从该点移到电势零点处电场力所作的功
(D)把单位正电荷从该点移到电势零点处外力所作的功。
P(x,0) xx
[
]
3、(2010 年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互
作用力为 F,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相
同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变
为:
(A) F/2;
(B) F/4;
S1
S2
S3
3、(2012 年北京科技大学)两个平行的“无限大”均
+σ +2σ
匀带电平面,其电荷面密度分别为 和 2 ,如图所示,则 A、
B、C 三个区域的电场强度分别为:
EA
EB
A
B
C
EC
3
三 、计算题 1、两个无限长同轴圆柱面,半径分别为 R1 和 R2(R2>R1),带有等值异号电荷,每单位长 度的电量为λ(即电荷线密度)。试分别求(1)r < R1,(2)r > R2,(3)R1< r<R2 时,离轴线 为 r 处之电场强度。
若将 q 移至 B 点,则:
(A)、S 面上的总电通量改变,P 点的场强不变; (B)、S 面上的总电通量不变,P 点的场强改变;
P· S B·
q·
(C)、S 面上的总电通量和 P 点的场强都不变; (D)、S 面上的总电通量和 P 点的场强都改变。
大学物理 第十二章 真空中静电场习题解答
第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
大学物理-真空中的静电场习题课和答案解析
基本要求
1、掌握静电场的电场强度和电势的概念以及电场 强度和电势的叠加原理。
2、掌握静电场强度和电势的积分关系,了解场强 与电势的微分关系,能计算一些简单问题中的 场强和电势。
3、理解静电场的规律:高斯定理和环路定理。掌 握用高斯定理计算场强的条件和方法,并能熟 练应用。
1、基本概念: ① 电场强度矢量
圆环上的电荷分布对环心对称,它在环心处的场强为零。
E
E1
Q
16 0 R2
方向竖直向下。
1、在静电场中,下列说法正确的是:
A)带正电荷的导体,其电势一定是正值。 B)等势面上各点的场强一定相等。
√ C)场强为零处,电势也一定为零。 D)场强相等处,电势梯度矢量一定相等。
四、证明题(10分)
有一带电球壳,内、外半径分别为a 和b ,电荷体密度 ρ = A / r ,
解:先计算细绳上的电荷对中心产生的场强。
3R
选细绳的顶端为坐标原点O。X轴向下为正。
在x 处取一电荷元 dq dx Qdx / 3R
R
它在环心处的场强为:
R/2
dq
Qdx
dE1
4 0 (4R
x)2
12 0R(4R
x)2
整个细绳上的电荷在O点处的场强为:
3R
Qdx
Q
E1 0 12 0R(4R x)2 16 0R2
P
P0
E
d
l
P
微分关系E U
③ 电通量
de E d S
e SE d S
④ 电势能
零点
Wa q0 a E d l q0U a
⑤ 电势差 U U ab U a U b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理A Ⅰ》真空中的静电场习题、答案及解法一、选择题1、一“无限大”均匀带电平面A 的附近放一与它平行的“无限大”均匀带电平面B ,如图1所示。
已知A 上的电荷面密度为σ,B 上的电荷面密度为2σ,如果设向右为正方向,则两平面之间和平面B 外的电场强度分别为 (A )002εσεσ, (B )00εσεσ,(C )00232εσεσ,-(D )002εσεσ,-[ C ]参考答案: ()0002222εσεσεσ-=-=AB E ()00023222εσεσεσ=+=B E2、在边长为b 的正方形中心处放置一电荷为Q 的点电荷,则正方形顶角处的电场强度大小为 (A )204bQ πε (B )202bQ πε (C )203bQ πε (D )20bQπε [ C ]参考答案:()202220312241b Q b b QE πεπε=⎥⎥⎦⎤⎢⎢⎣⎡+=3、下面为真空中静电场的场强公式,正确的是[ D ] (A)点电荷q 的电场0204r r q Ε πε=(r 为点电荷到场点的距离,0r为电荷到场点的单位矢量)(B)“无限长”均匀带电直线(电荷线密度为λ)的电场302rΕπελ=(r为带电直线到场点的垂直于直线的矢量)(C)一“无限大”均匀带电平面(电荷面密度σ)的电场0εσ=Ε (D)半径为R的均匀带电球面(电荷面密度σ)外的电场0202r r R Ε εσ=(0r为球心到场点的单位矢量)解:由电场强度的定义计算知:A 错,应为0204r r q Επε=,B 不对应为002r rEπελ=,C 应为σ σ2A B图12εσ=E D 对,完整表达应为⎪⎩⎪⎨⎧〉≤=R r r r R Rr E 02020εσ 0202022002044141r rR r r R r r q E εσσππεπε===4、如图2所示,曲线表示球对称或轴对称静电场的场强大小随径向距离r 变化的关系,请指出该曲线可描述下列哪种关系(E 为电场强度的大小)(A )半径为R 的无限长均匀带电圆柱体电场的r E ~关系 (B )半径为R 的无限长均匀带电圆柱面电场的r E ~关系 (C )半径为R 的均匀带电球面电场的r E ~关系 (D )半径为R 的均匀带正电球体电场的r E ~关系 [ C ] 参考答案:柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=R r r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r r R R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=Rr r r Q Rr r R r Q E 02003041041πεπε5、如图3所示,曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面内容(E 为电场强度的大小,U 为电势)。
(A )半径为R 的无限长均匀带电圆柱体电场的E~r 关系 (B )半径为R 的无限长均匀带电圆柱面电场的E~r 关系 (C )半径为R 的均匀带正电球体电场的E~r 关系(D )半径为R 的均匀带正电球面电势的U~r 关系 [ C ]参考答案:r R O E 21r ∝E图221r ∝EORrr ∝图3柱形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=R r r rR Rr r r E 02000202ερερ柱形带电面 ⎪⎩⎪⎨⎧≥〈=R r r rR R r E 000εσ球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r rQ Rr E 020410 πε球形带电体 ⎪⎪⎩⎪⎪⎨⎧≥〈〈=R r r r Q Rr r R r Q E 02003041041πεπε球形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r Q R r E 020410 πε球形带电面 ⎪⎪⎩⎪⎪⎨⎧〉≤〈=Rr rQ Rr R QU 0041041πεπε6、一均匀电场E 的方向与x 轴同向,如图4所示,则通过图中半径为R 的半球面的电场强度的通量为(A )0 (B )22ΕR π (C )ΕR 22π (D )ΕR 2π[ A ]解:因为穿入与穿出半球面的E 通量相等,总和为零,所以答案A 正确。
7、如果一高斯面所包围的体积内电荷代数和C 10850.812∑-⨯=q ,则可肯定: (A )高斯面上各点场强可均为零(B )穿过高斯面上每一面元的电场强度通量均为C m 1N 2⋅ (C )穿过整个高斯面的电场强度通量为C m 1N 2⋅(D )以上说法都不对 [ C ]参考答案:⎰∑==∙Sn i i q S d E 11ε()121C m N 11-=⋅⋅==∙⎰∑Sni iqS d E εOxE图48、如图5所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E 的大小与距轴线的距离r 关系曲线为[ A ]参考答案:柱形带电面 ⎪⎩⎪⎨⎧≥〈=Rr r r R r E 00210λπε9、两个同心均匀带电球面,半径分别为b a R R 和(a R <b R ),所带电荷分别为b a Q Q 和。
设某点与球心相距r ,当b R <r 时,该点的电场强度的大小为 (A)⎪⎪⎭⎫ ⎝⎛+⋅22041b b a R Q r Q πε (B)2041r Q Q ba +⋅πε (C)241r Q Q b a -⋅πε (D)2041r Q a⋅πε [ B ] 参考答案:⎰∑==∙Sn i i q S d E 11εb a a R r R r rQ E 〈〈=2041πε10、根据真空中的高斯定理,判断下列说法正确的是(A )闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零 (B )闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零 (C )闭合面内的电荷代数和为零时,闭合面上各点场强一定为零 (D )闭合面上各点场强均为零时,闭合面内一定处处无电荷[ A ]参考答案:⎰∑==∙Sni iqS d E 11ε11、根据静电场中电势的定义,静电场中某点电势的数值等于 (A )单位试验电荷置于该点时具有的电势能 (B )试验电荷0q 置于该点时具有的电势能(C )把单位正电荷从该点移到电势零点时外力所做的功r 1∝EORr E(A)ORr Er 1∝E (B)ORr E (C)r 1∝E ORrE(D)r1∝E 图5(D )单位试验正电荷置于该点时具有的电势能 [ C ]参考答案:由电势的定义只有C 对12、如图6所示,在点电荷q 的电场中,在以q 为中心、R 为半径的球面上,若选取P 处作电势零点,则与点电荷q 距离为r 的P '点的电势为[ A ] (A )⎪⎭⎫⎝⎛-⋅r R q1140πε (B )⎪⎭⎫ ⎝⎛-⋅R r q 1140πε(C )()R r q -04πε (D )r q 04πε参考答案:⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛--==⎰'r R R r dr r Q U rRa p 11411141410020πεπεπε13、图7中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A )C B AC B A U U ,U >>E <E <E (B )C B AC B A U U ,U <<E <E <E (C )C B AC B A U U ,U >>E >E >E(D )C B AC B A U U ,U<<E >E >E [ D ]参考答案:电力线密集处电场强度大,电力线指向电势下降方向。
二、填空题1、根据电场强度的定义,静电场中某点的电场强度为 单位正试验电荷置于该点时所受到的 电场力。
参考答案:单位正试验电荷置于该点时所受到的。
2、电量为C 1049-⨯的试验电荷放在电场中某点时,受到N 1089-⨯的向下的力,则该点的电场强度大小为1C N 2-⋅,方向 向下 。
参考答案:0q FE= ()1990C N 2104108---⋅=⨯⨯==q F E 3、A 、B 为真空中两个平行的“无限大”的均匀带电平面,已知两平面 间的电场强度大小为0E ,两平面外侧电场强度大小都为30E ,方向如 图8所示,则A 、B 两平面上的电荷面密度分别为=A σ0032E ε-, R qP PrP '图6ABC图70E30E 30EA B图8=B σ0034E ε-。
参考答案:⎪⎪⎩⎪⎪⎨⎧+=-=-00000022322εσεσεσεσB A B A E E ⎪⎪⎩⎪⎪⎨⎧-=-=∴34320000E E B A εσεσ 4、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰⋅S d E的值取决于 闭合曲面内的电荷量 ,而与 电荷量的分布 无关。
参考答案:∑⎰==∙ni i Sq S d E 101ε5、如图9所示,点电荷q 2和q -被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰=⋅SqS d E 0ε,式中E为 高斯面任意点 处的场强。
6、如图10所示,试验电荷q 在点电荷+Q 产生的电场中,沿半径为R 的43圆弧轨道由a 点移到b 点,再从d 点移到无穷远处的过程中,电场力做的功为RqQ04πε-。
参考答案:⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-∞-===⎰∞R qQ R qQ dr r Q q qU W R14114410020πεπεπε7、如图11所示,在静电场中,一电荷C 106.119-⨯=q 沿41圆弧轨道从A点移到B 点,电场力做功J 102.315-⨯,当质子沿43圆弧轨道从B 点回到A 点时,电场力做功=W J 102.315-⨯-,设B 点电势为零,则A 点的电势=V V 1024⨯。
参考答案: ()V 102106.1102.341915⨯=⨯⨯==--q W U A8、一均匀静电场,电场强度()1m V 2050-⋅+=j i E,则点()2,4a 和点()0,2b 之间的电势差V 140-。
(点的坐标x 、y 以m 计)S+2q-q图a d∞+Qq 图10图11OBA参考答案:()⎰⎰⎰⎰⎰-=+=+=∙=24022402V 1402050dx dx dx E dx E l d E U y x b aab9、如图12所示,在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点经任意路径移动到b 点,外力克服静电场力所做的功=W ⎪⎪⎭⎫ ⎝⎛-b ar r q q 11400πε。
参考答案:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--===⎰'b a a br r p r r qq r r qq dr r qq U q W ba1141144100002000πεπεπε三、计算题1、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心的电场强度。