初三中考数学知识点:圆及有关概念公式定理
(完整版)初三《圆》知识点及定理
《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
九年级数学圆知识点梳理
九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。
圆的特点有:1. 圆心:圆中心点的位置。
2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。
3. 直径:通过圆心的两个点所构成的线段,即直径。
直径的长度是半径的两倍。
4. 弧:连接圆上两点的弧。
5. 圆周:由圆上所有点组成的曲线,也叫圆周。
二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。
π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。
三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。
2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。
3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。
4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。
5. 同心圆:有相同的圆心,但半径不同的圆。
四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。
2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。
3. 弧与切线的关系:圆上的切线与切点处的弧垂直。
4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。
5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。
6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。
7. 平行切线定理:平行于切线的直线也是切线。
8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。
五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。
2. 圆的作图:根据已知条件画出满足要求的圆。
3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。
2024中考数学知识点圆的基础性质公式定理
2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。
二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。
三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。
四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。
五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。
六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。
七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。
八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。
九年级圆知识点总结
九年级圆知识点总结圆是几何学中最基本的图形之一,由于其特殊的性质和重要的应用,是中学数学中一个重点和难点的内容。
以下是针对九年级学习的圆知识点总结,包括圆的定义、性质、常见的定理和应用。
一、圆的定义及基本概念1. 圆的定义:圆是平面上与一个固定点距离恒定的点的集合。
2. 圆的要素:圆心、半径、弦、弧、切线等。
二、圆的性质1. 圆的周长公式:C=2πr,其中C是圆的周长,r是圆的半径。
2. 圆的面积公式:S=πr²,其中S是圆的面积,r是圆的半径。
3. 内接圆和外接圆:内接圆是一个圆,恰好与一个多边形的所有顶点相切;外接圆是一个圆,恰好与一个多边形的所有边相切。
4. 相交圆的性质:两个相交圆的交点到两个圆心的距离相等。
两个相交圆的交点确定的两条弦相互垂直的充要条件是两个弦的弧度相等。
三、常见的圆的定理1. 切线定理:切线与半径垂直。
2. 弦切角定理:弦切角等于弦对应的弧的一半。
3. 弦弧角定理:弦弧角等于弦对应的弧的一半。
4. 弦角定理:弦角等于其对应的弧缺角的一半。
5. 弧长定理:弧长等于圆心角的弧度数除以2π乘以圆的周长。
四、圆的应用1. 圆的引理:如欲使直线在给定的点上下夹定一个给定的角,只需作两条通过该点的圆,并使直线分别与两圆相切即可。
2. 圆的内切与外切:两个圆相切,其中一个圆在另一个圆内部,称为内切;两个圆相切,其中一个圆在另一个圆外部,称为外切。
3. 勾股定理的圆证法:利用圆的性质,可以简化勾股定理的证明过程。
4. 圆柱、圆锥和圆球的体积计算:圆柱的体积公式为V=πr²h,其中V是体积,r是底面半径,h是高;圆锥的体积公式为V=1/3πr²h,其中V是体积,r是底面半径,h是高;圆球的体积公式为V=4/3πr³,其中V是体积,r是半径。
以上只是关于九年级圆的知识点的简要总结,实际上圆还有许多其他的性质、定理和应用,需要通过练习和实际问题的解决来进一步加深理解和掌握。
初中九年级圆的知识点详解
初中九年级圆的知识点详解在初中九年级数学课程中,圆是一个重要的几何概念。
我们将在本文中详细解释圆的知识点,包括定义、性质和常见的相关公式。
一、圆的定义圆是一个平面上所有到圆心距离都相等的点的集合。
这个距离被称为半径,用字母r表示。
圆的圆心和半径是确定一个圆的基本要素。
二、圆的性质1. 圆的直径和半径关系:圆的直径是通过圆心,并且两个端点在圆上的线段,它的长度是半径的两倍,即直径d=2r。
2. 圆的周长和面积:圆的周长是指圆上一周的长度,用字母C表示,它可以通过公式C=2πr来计算,其中π≈3.14是一个无理数,代表圆周率。
圆的面积是指圆内部的区域,用字母A表示,它可以通过公式A=πr²来计算。
3. 圆的切线和法线:圆上的切线是与圆切于一点的直线,切线与半径的夹角为90度。
圆上的法线是与圆相交于一点,并且与切线垂直的直线。
4. 圆的弧度制和度制:在解决一些圆相关问题时,我们通常使用弧度制来度量角度。
弧度制的角度是通过圆的弧长和半径之间的比值来定义的。
一个完整的圆的弧长等于2πr,所以一个完整圆的角度为360°。
三、常见的圆相关公式1. 圆的周长公式:C = 2πr2. 圆的面积公式:A = πr²3. 圆的弧长公式:L = 2πr(θ/360°),其中θ是所对应的圆心角的角度。
4. 扇形面积公式:S = 0.5r²(θ/360°),其中θ是所对应的圆心角的角度。
五、相关解题方法1. 已知圆的半径求周长和面积:根据上述公式直接计算即可。
2. 已知圆的周长求半径和面积:由C=2πr可得r=C/(2π),再带入A=πr²即可计算面积。
3. 已知圆的面积求半径和周长:由A=πr²可得r=√(A/π),再带入C=2πr即可计算周长。
4. 已知圆心角和半径求弧长和扇形面积:根据相应的公式计算即可。
六、例题解析1. 已知一个圆的半径为5cm,求其周长和面积。
九年级圆的知识点难点
九年级圆的知识点难点圆是数学中重要的几何概念之一,在九年级的学习中,我们需要掌握圆的定义、性质以及相关的定理和公式。
本文将从这些方面进行论述,以帮助同学们更好地理解和掌握圆的知识。
一、圆的定义圆是由平面上距离一个固定点(圆心)相等的所有点组成的集合。
圆心到圆上任意点的距离称为半径,用字母r表示。
二、圆的性质1. 圆心角的度数等于所对弧的度数:圆心角是以圆心为顶点的角,对应的弧是在圆上的一段弧。
圆心角的度数等于所对弧的度数,即∠AOB = 弧AB的度数。
2. 圆上任意两点到圆心的距离相等:对于圆上的任意两点A、B,它们到圆心的距离都相等,即OA = OB。
3. 弦的性质:弦是圆上连接两点的线段。
在同一个圆或等圆上,两个弦AB和CD相等的充分必要条件是它们所对的弧相等(即弧AB = 弧CD)。
4. 切线的性质:切线是与圆只有一个交点的直线,与该交点处的切点垂直。
切线与半径的夹角为90度。
三、圆的定理和公式1. 圆的周长和面积计算公式:周长C = 2πr面积A = πr²2. 切线与半径的关系:切线长的平方等于从该切点到圆心的半径与与该切点所对的弧相乘,即t² = r * 弧AB。
3. 相交弦的性质:当两条弦AB和CD在圆的内部相交时,两弦的和乘积等于内接四边形ACBD的对角线的乘积,即AB * CD = AC * BD。
四、圆的难点对于九年级学生来说,圆的难点主要有以下几个方面:1. 圆心角和弧的度数之间的关系不易理解:学生需要通过具体的示例和练习,加深对圆心角和弧的度数之间的理解,并能在具体问题中正确运用。
2. 相交弦的性质的应用:学生在解题时需要辨别图中的相交弦,正确运用相交弦的性质来解题。
3. 切线与半径的关系:学生需要理解切线长的平方等于半径与切点所对弧的乘积这一关系,并能够运用到具体问题中。
4. 圆的推理证明题:学生需要通过大量的实践,熟练掌握圆的定理和性质,并能够灵活运用到推理证明题中。
数学九年级知识点圆
数学九年级知识点圆圆是数学中常见的几何图形之一,它不仅在数学中有广泛的应用,还与我们日常生活息息相关。
本文将对九年级数学中的圆相关知识点进行探讨。
一、基本概念1. 定义:圆是由平面上与一个定点的距离等于一定数值的所有点所组成的图形。
2. 元素:圆心、半径、弧、弦和扇形。
二、圆的性质1. 圆心角:以圆心为顶点的角叫做圆心角,其度数等于对应弧所对的圆心角的度数。
2. 弧长:弧长等于弧所对圆心角的度数除以360°再乘以圆周长。
3. 弦长:弦长等于半径的两倍乘以正弦的一半。
三、圆的公式与定理1. 圆的周长:C = 2πr,其中C表示圆的周长,r表示半径。
2. 圆的面积:A = πr²,其中A表示圆的面积,r表示半径。
3. 切线与弧的关系:切线与弧的交点与圆心的连线垂直。
4. 弧与弦的关系:等弧所对的弦相等。
5. 弦切角定理:切线和弦所夹的角等于对应的弦与圆心角的一半。
四、圆的应用1. 圆的几何变换:平移、旋转和缩放。
2. 圆与三角函数:三角函数的周期、幅度与角度的关系等。
3. 圆与图形的位置关系:判断点与圆的位置关系、判断两圆的位置关系等。
4. 圆的测量:利用圆的周长和面积计算实际问题,如计算运动的轨迹、计算物体的表面积等。
五、习题1. 已知一个圆的半径为5cm,求其周长和面积。
2. 在一个半径为6cm的圆中,一条弧所对的圆心角为60°,求该弧的长。
3. 如果一个直径为12cm的圆,切割成一块长方形,长方形的长是10cm,求其宽。
4. 一个圆的直径是20cm,求它的面积与另一个半径为12cm的圆的面积之比。
5. 若一个半径为8cm的圆A与一个直径为18cm的圆B相切,求圆B的圆心到切点的距离。
六、小结通过对九年级数学中的圆的知识点进行了系统的介绍与讲解,我们对圆的定义、性质、公式与应用有了更深入的了解。
掌握圆的相关知识,对于解决几何问题和应用数学都至关重要。
希望同学们能在学习中努力提升对圆的理解与应用能力,为进一步学习数学打下坚实的基础。
初三圆的知识点总结
初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。
在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。
下面我们来总结一下初三圆的知识点。
一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。
定点叫圆心,定长叫半径。
通常记作圆O,圆心为O,半径为r。
2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。
(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。
(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。
(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。
二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。
结论:圆心角相等的弧是等弧。
2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。
3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。
1弧度(rad)=57.3°。
结论:弧长l=rθ,其中θ为弧度。
4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。
余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。
5. 切线定理定理:在圆上的切线和半径垂直。
6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。
三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。
(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。
2. 圆的实际应用(1)工程中的车轮和齿轮。
(2)地理中的经纬度。
(3)天文中的星座和行星轨道。
(4)生活中的钟面和圆形的器物。
以上就是初三圆的知识点总结,希望对你的学习有所帮助。
九年级数学圆的知识点总结大全
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
圆的所有知识点九年级公式
圆的所有知识点九年级公式圆,是几何学中的基本图形之一,拥有许多独特的性质和特点。
下面,我们来探讨一下关于圆的所有知识点。
一、圆的定义圆是一个由一组离定点等距离的点所组成的集合。
这个等距离被称为圆的半径,而定点则被称为圆心。
每个点到圆心的距离都相等。
二、圆的直径和半径在圆上,连接圆心和任意一点的线段被称为半径。
圆的直径是通过圆心的线段,并且它的长度是半径的两倍。
换句话说,直径是任意两个点的距离。
三、圆的周长圆的周长是指沿着圆形轮廓的一条完整线段的长度。
周长的计算公式是:C=2πr,其中r是圆的半径,π是一个数学常数,约等于3.14159。
四、圆的面积圆的面积是指圆内部的所有点与圆心之间的距离之和。
圆的面积的计算公式是:A=πr²,其中A表示面积,r表示半径。
五、圆和角的关系在圆上,与同一弧相关的两条切线之间的夹角称为圆心角,它的度数等于所对应的圆心弧度的度数。
另外,在同一弧上的两个点之间的夹角也等于这个弧所对应的圆心角。
六、圆上的弧和扇形圆上的弧是指圆上的一段连续的曲线。
圆上的扇形是指圆心对应的角的两边和圆上的一段弧所围成的区域。
七、相交圆和相离圆当两个圆的图形重叠时,它们相交。
相交圆的内部重叠部分称为公共区域。
当两个圆的图形不重叠时,它们相离。
八、切线和切点圆外一条直线与圆相切时,这条直线被称为圆的切线。
切点指的是切线与圆的交点。
九、圆锥和圆柱的体积圆锥和圆柱都是由圆进行旋转而得到的立体图形。
圆锥的体积公式是:V=1/3πr²h,其中V表示体积,r表示半径,h表示高度。
圆柱的体积公式是:V=πr²h,其中V表示体积,r表示半径,h表示高度。
总结:圆作为几何学的基本图形之一,在我们的日常生活中无处不在。
通过了解圆的定义、直径和半径、周长和面积、圆与角的关系、圆上的弧和扇形、相交圆和相离圆、切线和切点,以及圆锥和圆柱的体积等知识点,我们可以更好地理解和应用圆形的特性。
掌握这些知识,有助于我们解决与圆相关的问题,提高我们的几何学水平。
初三数学圆的知识点和公式总结
初三数学圆的知识点和公式总结数学圆的知识点和公式总结如下:1. 圆的定义:圆是由平面上所有到一个固定点的距离等于一个常数的点的集合。
2. 圆的要素:- 圆心:到圆上任意一点的距离相等的点,通常用大写字母O表示。
- 圆的半径:连接圆心和圆上任意一点的线段的长度,通常用小写字母r表示。
- 圆的直径:通过圆心的两个点之间的距离的两倍,即2r。
- 圆周:圆上所有的点构成的曲线。
- 圆内部:圆周所围成的区域。
3. 圆的相关公式:- 圆的周长:C=2πr,其中π≈3.14。
- 圆的面积:A=πr²。
- 圆的直径与周长的关系:C=πd,其中d为直径。
- 圆的直径与面积的关系:A=π(d/2)²。
4. 圆与圆的位置关系:- 相离:两个圆没有交点,且两个圆心之间的距离大于两个半径之和。
- 外切:两个圆内切于一个切点,且两个圆心之间的距离等于两个半径之和。
- 相交:两个圆有两个交点,且两个圆心之间的距离小于两个半径之和。
- 内切:一个圆在另一个圆的内部,且两个圆心之间的距离等于两个半径之差。
- 同心:两个圆的圆心重合,半径可以相等也可以不相等。
5. 圆的常用定理:- 弧长公式:弧长L=2πr(θ/360°),其中θ为所对的圆心角的度数。
- 弦长公式:弦长l=2r*sin(θ/2),其中θ为所对的圆心角的度数。
- 弧度制与角度制的转换:1弧度=180°/π,1°=π/180弧度。
- 正弦定理:在任意三角形ABC中,a/sinA=b/sinB=c/sinC。
- 余弦定理:在任意三角形ABC中,c²=a²+b²-2ab*cosC。
- 勾股定理:在直角三角形ABC中,a²+b²=c²。
希望以上总结对你有帮助!如有其他问题,请随时提问。
九年级数学圆的知识
九年级数学圆的知识
九年级数学中,圆的知识包括以下内容:
1. 圆的定义:圆是由平面上所有到定点距离相等的点组成的集合。
2. 圆的元素:圆心是圆的中心点,用O表示;半径是圆心到圆上任意一点的距离,用r表示;直径是通过圆心的一条线段,两端点在圆上,直径的长度是半径的两倍。
3. 圆的性质:
- 圆上任意两点与圆心的距离相等。
- 圆上的点与圆心的距离等于半径。
- 圆的直径是最长的线段,且等于半径的两倍。
- 圆的任意弦都可以作为直径,即两端点在圆上的线段。
- 圆的任意弦都可以分成两段,两段长度乘积等于这条弦所对应的弧的长度乘积。
- 圆的周长是圆周上一周的长度,等于2πr,其中π是一个无理数,约等于3.14159。
- 圆的面积是圆内部的所有点组成的区域的大小,等于πr²。
4. 圆的相关定理:
- 弧长定理:圆的弧所对应的圆心角的度数等于弧长所占圆周的度数。
- 弦切定理:在圆上,切线与弦的乘积等于切点外的弦与切点外
的弦的乘积。
- 切线定理:在圆上,切线与切点外的弦的乘积等于切点外的弦与切点外的弦的乘积。
- 弧度制:角度的度数可以转化为弧度制,1°对应π/180弧度。
以上是九年级数学中关于圆的基本知识,还有更深入的内容如圆锥、圆柱、圆台等,这些内容超出了本回答的范围。
初三数学圆的知识点总结
初三数学圆的知识点总结一、圆的相关概念1.圆的定义圆是平面上到一个点的距离等于定长的所有点的集合。
这个距离被称为圆的半径,记作r。
圆的大小用圆的半径r来表示。
2.圆的要素圆是由圆心和半径确定的,其中圆心是到圆上任意一点的距离都相等的点,半径是从圆心到圆上的任意一点的距离。
3.圆的基本性质(1)圆的任意直径都等于其半径的两倍。
(2)圆的周长C等于2πr(周长与圆的直径、半径间的关系)。
(3)圆的面积S等于πr²(圆的面积与半径的关系)。
二、圆的常见问题及解题方法1.圆的周长和面积的计算问题对于周长和面积的计算问题,一般需要根据给出的条件,按照具体的计算公式计算得出结果。
2.圆的图形问题在图形问题中,通常遇到的问题有圆与直线的相交关系、圆与圆的位置关系等问题。
解决这些问题通常需要利用圆的性质、基本定理进行分析。
三、圆的相关定理1.圆心角定理圆心角定义:圆心角是以圆心为顶点的角。
当圆心角对应的弧长是整个圆周长的m分之n时,圆心角的度数是360°的m分之n。
当弧长为s时,圆心角的度数是(s/πr)×360°。
2.圆周角定理两条相交弦所夹角的大小,与它们所对的弧有关。
圆周角是以圆周作为边的角。
圆周角等于它所对圆周的两条弧的有关角的度数之和。
3.正比例定理如果两个圆的半径成正比,则这两个圆的面积成正比;如果两个圆的面积成正比,则这两个圆的周长成正比。
四、圆的应用1.工程设计中的圆在工程设计中,圆形是最常见的图形之一,比如在设计轮胎、车轮等产品时都会使用到圆的知识。
2.日常生活中的圆在日常生活中,圆形也是常见的,比如钟表、盘子、足球等都是圆形的。
对于这些物体,我们也可以通过圆的知识对其周长、面积等进行计算和分析。
3.数学问题中的圆圆的知识在解决数学问题中也是必不可少的,比如在几何问题中,计算圆的周长、面积等都需要运用圆的相关知识。
总之,初三数学圆的知识点包括了圆的基本概念、常见问题及解题方法、相关定理和应用等内容。
初三圆的所有公式及定理
初三圆的所有公式及定理在初三的数学课上,圆这个话题简直是个“明星”,总是闪闪发光,让人又爱又恨。
圆的世界就像一块美味的蛋糕,里面藏着很多秘密和惊喜。
今天就来聊聊关于圆的那些事,别担心,我们轻松一点,像是在喝茶聊天一样。
1. 圆的基本概念首先,咱们得搞清楚什么是圆。
圆就是平面上所有与中心点等距离的点组成的图形。
你可以把中心点想象成一个小明星,周围的点就像是围绕着它跳舞的小伙伴。
这个距离,我们叫它半径,简直就是圆的生命线。
它就像一个圆的“心跳”,只要这个心跳存在,圆就活着。
1.1 半径和直径谈到圆,半径和直径可是不可不提的好朋友。
半径嘛,刚才说了,就是从圆心到圆上任意一点的距离,而直径呢,就是穿过圆心的那条线,两边都是圆周的“宽阔大道”。
直径其实是半径的两倍,这样一来,圆的半径和直径之间的关系就清晰了,真是简单明了,不是吗?1.2 圆周和面积说到圆,当然要提圆周和面积了。
圆周的长度公式是 (C = 2pi r),这其中的 (pi) 就是个神秘的数字,约等于3.14。
圆的面积公式是 (A = pi r^2)。
想象一下,咱们用半径来“画”出一圈圈的面积,哇,那感觉就像在沙滩上画圈一样,舒服极了。
2. 圆的定理现在,咱们进入更深层的内容——圆的定理。
这些定理就像一条条指引我们探索圆的“导航仪”,有了它们,数学世界不再是迷雾重重。
2.1 圆的切线第一个要聊的就是圆的切线。
切线是一条只和圆相交于一个点的线,就像是你在朋友的生日派对上,只跟蛋糕打了个照面,结果就被“吸引”住了。
切线与半径在切点处是垂直的,这就像是一个严肃的守卫,确保其他线不敢随便靠近。
2.2 圆的弦接下来是圆的弦。
弦是连接圆上两个点的线段,就好比你和朋友在圆上“牵手”一样。
弦的长度和圆心的距离之间有着千丝万缕的联系。
弦越长,距离圆心的距离就越短。
这就像是有些朋友特别亲密,总是喜欢呆在一起,让人羡慕不已。
3. 圆的应用圆的公式和定理在我们的生活中可真是无处不在。
(中考考点梳理)圆的性质及与圆有关的位置关系-中考数学一遍过
考点18 圆的性质及与圆有关的位置关系一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.学-科网(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r 由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16 cm,则球的半径为A.cm B.10 cmC.cm D.cm【答案】B【点睛】解本题的关键是作辅助线弦心距,构造直角三角形,这个直角三角形的斜边是半径,另两条边分别为弦心距和弦的一半,再根据解直角三角形解题.典例3 如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为A .2 cmB cmCD 【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD 的长,再根据垂径定理得AB 的长. 作OD ⊥AB 于D ,连接OA .根据题意得OD =12OA =1cm ,再根据勾股定理得:AD cm ,根据垂径定理得AB . 故选C .3.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为4,则弦AB 的长是A .3B .6C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB 大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,AB和CD是⊙O的两条直径,弦DE∥AB,若弧DE为40°的弧,则∠BOC=A.110° B.80°C.40° D.70°【答案】A【解析】连接OE,如图所示:∵弧DE 为40°的弧,∴∠DOE =40°.∵OD =OE ,∴∠ODE =180402︒-︒=70°. ∵弦DE ∥AB ,∴∠AOC =∠ODE =70°,∴∠BOC =180°–∠AOC =180°–70°=110°.故选A .【点睛】本题考查的是圆心角、弧、弦的关系,根据题意作出辅助线,构造出等腰三角形是解答此题的关键. 典例5 如图,在⊙O 中,圆心角∠AOB =120°,P 为弧AB 上一点,则∠APB 度数是A .100°B .110°C .120°D .130°【答案】C【解析】如图,在优弧AB 上取点C ,连接AC 、BC ,由圆周角定理得由圆内接四边形的性质得到,180120APB ACB ∠=︒-∠=︒,故选C . 【点睛】在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.5.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则 BC的长为A .103π B .109π C .59π D .518π 6.如图,AB 是⊙O 的直径, =BCCD DE =,∠COD =38°,则∠AEO 的度数是A.52° B.57° C.66° D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6 已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7 在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移__________cm时与⊙O相切.学_科网考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8 如图,已知BC是⊙O的直径,AB是⊙O的弦,切线AD交BC的延长线于D,若∠D=40°,则∠B 的度数是A.40° B.50°C.25° D.115°【答案】C【解析】连接OA,根据切线的性质得到OA⊥AD,由三角形的内角和得到∠AOC=50°,根据等腰三角形的性质得到∠B=∠OAB,根据圆周角定理可得到结论.连接OA,∵AD是⊙O的切线,∴OA⊥AD,∴∠D=40°,∴∠AOC=50°,∵BO=OA,∴∠B=∠BAO,∴∠B+∠BAO=∠AOC=50°,∴∠B=∠BAO=12∠AOC=25°.故选C.【点睛】本题考查了切线的性质,三角形内角和,圆周角定理,正确的作出辅助线是解题的关键.典例9 如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B9.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是A.大于B.等于C.小于D.不能确定10.如图,以等腰△ABC的腰AB为⊙O的直径交底边BC于D,DE AC于E.;(2)DE为⊙O的切线.求证:(1)DB DC1.下列关于圆的叙述正确的有①圆内接四边形的对角互补;②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④同圆中的平行弦所夹的弧相等.A.1个B.2个C.3个D.4个2.如图所示,△ABC的三个顶点在⊙O上,D是 AB上的点,E是 AC上的点,若∠BAC=50°,则∠D+∠E=A.220° B.230°C.240° D.250°3.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD =180°,则弦BC 的长等于A BC .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,点O 是△ABC 的内心,∠A =62°,则∠BOC =A .59°B .31°C .124°D .121°6.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且 34AB AMC ∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11.如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4∶3∶5,则∠D 的度数是__________°.12.如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;学_科网(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D 点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.1.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=A.8cm B.5cmC.3cm D.2cm2.(2018•甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=12∠BODC.∠C=∠B D.∠A=∠BOD3.(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是A.13寸B.20寸C.26寸D.28寸4.(2018•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于A BC.2 D.1 25.(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是A.58B.78C.710D.456.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为A.4 B.C D .7.(2018•邵阳)如图所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是A .80°B .120°C .100°D .90°8.(2018•宜宾)在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为A B .192C .34D .109.(2018•牡丹江)如图,△ABC 内接于⊙O ,若sin ∠BAC =13,BC ,则⊙O 的半径为A .B .C .D .10.(2018•湘西州)已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为 A .相交 B .相切 C .相离D .无法确定11.(2018•常州)如图,AB 是⊙O 的直径,MN 是⊙O 的切线,切点为N ,如果∠MNB =52°,则∠NOA 的度数为A.76° B.56°C.54° D.52°12.(2018•广元)如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与 AB的中点D的距离CD=2cm.则此圆环形士片的外圆半径为__________cm.13.(2018•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为__________.14.(2018•牡丹江)如图,在⊙O中, AB=2 AC,AD⊥OC于D.求证:AB=2AD.15.(2018•湖北)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.16.(2018•黄石)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE,∠BCD=120°,A为 BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.17.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE 的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2,∴半径缩小到原来的14后所得新圆的面积22211ππ416S r r ⎛⎫== ⎪⎝⎭,∴22211π116π16rS S r ==.故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤.故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=, ∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm,根据题意可得:DO2+BD2=BO2,则(x–2.3)2+12)2=x2,解得x=3.答:圆弧形所在圆的半径为3米;(2)如图所示:当MN=1.7米,则过点N作NF⊥CO于点F,可得:DF=1.7米,则FO=2.4米,NO=3米,故FN=1.8(米),故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米.5.【答案】B【解析】根据题意可知:∠OAC=∠OCA=50°,则∠BOC=2∠OAC=100°,则弧BC的长度为故选B.7.【答案】A【解析】如图,连接OA,则在直角△OMA中,根据勾股定理得到OA5=<.∴点A与⊙O的位置关系是:点A在⊙O内.故选A.8.【答案】2【解析】连接OA.∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2=4,OA=5,∴OH=3.∴需要平移5–3=2(cm).故答案是:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d=R.9.【答案】B【解析】如图,连接OF,OA,OE,作AH⊥BC于H.∵AD是切线,∴OF⊥AD,易证四边形AHOF是矩形,∴AH=OF=OE,∵S△AOB=12•OB•AH=12•AB•OE,∴OB=AB,同理可证:CD=CO,∴AB+CD=BC,故选B.【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.学科_网1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】如图,连接OA 、OB 、OC ,由圆心角、弧、弦的关系定理得出∠BOC =100°,得出∠AOB +∠AOC =260°,由圆周角定理得出∠D =12(∠BOC +∠AOC ),∠E =12(∠BOC +∠AOB ),即可得出∠D+∠E=12(∠BOC+∠AOC+∠BOC+∠AOB)=12(260°+100°+100°)=230°.故选B.3.【答案】C【解析】如图,延长CA,交⊙A于点F,∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC8=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】D【解析】∵∠BAC=62°,∴∠ABC+∠ACB=180°–62°=118°,∵点O是△ABC的内心,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12×118°=59°,∴∠BOC=180°–59°=121°.故选D.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB =BC 可得:弧AB 的度数和弧BC 的度数相等,则弧AMC 的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴ DE的度数为84°.故答案为:84°.11.【答案】120【解析】∵∠A ,∠B ,∠C 的度数之比为4∶3∶5, ∴设∠A =4x ,则∠B =3x ,∠C =5x .∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠B=3x=60°,∴∠D=180°–60°=120°.故答案为:120.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)如图,连接CD.∵AD平分∠BAC,∴∠DAB=∠DAC,∴ BD= CD,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.1.【答案】A【解析】∵弦CD⊥AB于点E,CD=8cm,∴CE=12CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE=3cm,∴AE=AO+OE=5+3=8cm.故选A.2.【答案】B【解析】A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴ AD= BD,∵ AD对的圆周角是∠C, BD对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选B.3.【答案】C【解析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r–1,OA=r,则有r2=52+(r–1)2,解得r=13,∴⊙O的直径为26寸,故选C.4.【答案】D【解析】∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=12.故选D.5.【答案】D【解析】如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO=810=45,故选D.6.【答案】D【解析】如图,∵OA⊥BC,∴CH=BH, AC= AB,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB BC=2BH D.7.【答案】B【解析】∵四边形ABCD为⊙O的内接四边形,∴∠A=180°–∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选B.8.【答案】D【解析】如图,设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=12DE=2,∴NP=MN–MP=EF–MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选D.9.【答案】A【解析】如图:连接OB ,O C .作OD ⊥BC 于D∵OB =OC ,OD ⊥BC ,∴CD =12BC ,∠COD =12∠BOC ,又∵∠BOC =2∠A ,BC ,∴∠COD =∠A ,CD ,∵sin ∠BAC =13,∴sin ∠COD =CD OC =13,∴OC ,故选A . 10.【答案】B【解析】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切.故选B . 11.【答案】A【解析】∵MN 是⊙O 的切线,∴ON ⊥NM ,∴∠ONM =90°,∴∠ONB =90°–∠MNB =90°–52°=38°,∵ON =OB ,∴∠B =∠ONB =38°,∴∠NOA =2∠B =76°.故选A . 12.【答案】5【解析】如图,连接OA ,∵CD =2cm ,AB =8cm , ∵CD ⊥AB ,∴OD ⊥AB ,∴AC =12AB =4cm ,∴设半径为r ,则OD =r –2, 根据题意得:r 2=(r –2)2+42,解得:r =5. ∴这个玉片的外圆半径长为5cm .故答案为:5.13.【答案】30°【解析】如图,连接OC .∵AB是直径, AC= CD= BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°–60°=30°.故答案为30°.14.【解析】如图,延长AD交⊙O于E,∵OC⊥AD,∴ AE=2 AC,AE=2AD,∵ AB=2 AC,∴ AE= AB,∴AB=AE,∴AB=2AD.15.【解析】(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;16.【解析】(1)连接DE,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°–120°=60°,∵BE为直径,∴∠BDE=90°,在Rt △BDE 中,DE =12BE =12×,BD DE ; (2)连接EA ,如图, ∵BE 为直径,∴∠BAE =90°,∵A 为 BE的中点,∴∠ABE =45°, ∵BA =AP ,而EA ⊥BA , ∴△BEP 为等腰直角三角形, ∴∠PEB =90°,∴PE ⊥BE , ∴直线PE 是⊙O 的切线.17.【解析】(1)∵OA =OB ,DB =DE ,∴∠A =∠OBA ,∠DEB =∠DBE ,∵EC ⊥OA ,∠DEB =∠AEC ,∴∠A +∠DEB =90°, ∴∠OBA +∠DBE =90°,∴∠OBD =90°, ∵OB 是圆的半径,∴BD 是⊙O 的切线;(2)如图,过点D 作DF ⊥AB 于点F ,连接OE , ∵点E 是AB 的中点,AB =12, ∴AE =EB =6,OE ⊥AB ,又∵DE =DB ,DF ⊥BE ,DB =5,DB =DE ,∴EF =BF =3,∴DF =4, ∵∠AEC =∠DEF ,∴∠A =∠EDF ,∵OE ⊥AB ,DF ⊥AB ,∴∠AEO =∠DFE =90°,∴△AEO ∽△DFE ,∴EO AE FE DF =,即634EO =,得EO =4.5, ∴△AOB 的面积是:12 4.522AB OE ⋅⨯==27.。
初中数学九年级上圆的知识点
初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。
一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。
这个定点称为圆心,距离称为半径,用字母r表示。
圆通常用圆的轮廓线表示,在数学表达中用字母O表示。
二、圆的性质1. 圆的任意两点到圆心的距离相等。
这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。
2. 圆的直径是圆上任意两点之间的最长距离。
直径的长度是半径的两倍。
3. 圆的弦是圆上任意两点之间的线段。
弦不一定通过圆心,可以在圆内或圆外。
4. 圆上的切线垂直于半径。
切线是与圆相切的线,与圆的切点处的半径垂直。
三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。
2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。
3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。
4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。
四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。
圆的面积等于圆内所包围的面积,即S=πr²。
2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。
3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。
综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。
九年级数学圆的知识点总结
圆是一种特殊的几何图形,是平面上所有到一些点的距离相等的点的集合。
在九年级数学中,我们学习了许多与圆相关的知识点,包括圆的性质、圆的方程、圆的切线和弦、圆与直线的位置关系等。
下面是对这些知识点的详细总结。
一、圆的性质1.圆的定义:平面上到一个固定点的距离相等的点的集合叫做圆。
2.圆的元素:圆心、半径、直径、弦、弧等。
3.圆的表示方法:圆心为O,半径为r的圆可以表示为O(r),或者简写为O。
二、圆的方程1.标准方程:以圆心为原点O(0,0),半径为r的圆的方程为x²+y²=r²。
2.一般方程:以圆心为(h,k),半径为r的圆的方程为(x-h)²+(y-k)²=r²。
三、圆的切线和弦1.切线:与圆只有一个交点的直线叫做圆的切线。
切线垂直于半径。
2.弦:连接圆上两个不相邻点的线段叫做圆的弦。
圆心到弦的中点的线段垂直于弦。
四、圆与直线的位置关系1.直线与圆的位置关系有三种情况:a.直线与圆相交于两点:直线穿过圆的内部,与圆有两个交点。
b.直线与圆相切:直线与圆只有一个交点,且切点在圆上。
c.直线与圆相离:直线没有与圆的交点。
五、圆的相关定理1.切线定理:切线与半径的垂直定理。
切线与半径的垂线相互垂直。
2.弦切角定理:圆弦上的两个角对相同弧的度数相等。
3.弧上的角等于圆心角的一半:弧上的角等于它所对的圆心角的一半。
4.切线垂直半径定理:过圆的切点作切线,与过切点的半径垂直。
六、圆的计算1.弧长公式:弧长L=2πr(θ/360°),其中r为半径,θ为圆心角度数。
2.弧度制与角度制转换:1°=π/180,1弧度=180/π。
以上是九年级数学中圆的主要知识点的总结,通过对这些知识点的学习和理解,能够更好地理解和解决与圆相关的问题。
九年级圆知识点总结
九年级圆知识点总结
圆的定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
这个定点称为圆心,定长称为半径。
圆心与半径:圆心决定了圆的位置,而半径决定了圆的大小。
圆的性质:
圆是轴对称图形,任何经过圆心的直线都是它的对称轴。
圆有无数条对称轴。
在同圆或等圆中,直径是半径的2倍,半径是直径的二分之一。
圆的周长与面积:
周长公式:C = 2πr 或C = πd,其中r是半径,d是直径。
面积公式:S = πr²。
与圆有关的概念:
弦:连接圆上任意两点的线段。
直径:经过圆心的弦。
弧:圆上由任意两点确定的部分。
圆心角:顶点在圆心的角。
圆周角:顶点在圆上,两边都与圆相交的角。
弦心距:从圆心到弦的距离。
垂径定理及其推论:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,弦的弦心距相等。
确定圆的条件:圆心和半径。
只要知道圆心和半径,就可以确定一个圆。
圆的对称性:圆既是轴对称图形,又是中心对称图形。
以上就是九年级关于圆的主要知识点。
在学习时,建议多做练习题,以便更好地掌握这些知识点。
数学初三圆的知识
数学初三圆的知识初三数学圆的知识主要包括以下几点:1. 圆的基本性质:圆心到圆上任一点的距离都相等,等于半径;直径是最大的弦,且等于半径的两倍;弦是连接圆上任意两点的线段,且弦通过圆心;优弧是大于半圆的弧,劣弧是小于半圆的弧。
2. 圆的周长:圆的周长等于2π乘以半径,或者π乘以直径。
这个公式用于计算圆的周长。
3. 圆的面积:圆的面积等于π乘以半径的平方。
这个公式用于计算圆的面积。
4. 圆和圆的位置关系:根据两个圆的圆心距与两个圆的半径之和或半径之差的关系,可以判断两个圆的位置关系。
具体来说,如果两个圆的圆心距大于半径之和,则两个圆相离;如果圆心距等于半径之和,则两个圆相切;如果圆心距小于半径之和,则两个圆相交。
5. 圆的切线判定定理:圆的切线是经过圆心的线段或直线,而且仅与圆有一个公共点。
可以通过一些条件判断一条直线是否为圆的切线,如:经过半径的外端点且垂直于该半径的直线是圆的切线。
6. 圆的切线的性质定理:圆的切线垂直于过切点的半径。
这个定理用于证明切线的性质。
7. 圆的弦的性质定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
这个定理用于证明弦的性质。
8. 圆的内接四边形:如果一个四边形的所有顶点都在同一个圆上,则这个四边形是圆的内接四边形。
内接四边形的对角互补,即对角和为180度。
9. 圆的垂径定理:经过圆心且垂直于弦的直径平分该弦,并且平分该弦所对的弧。
这个定理用于证明直径的性质。
10. 圆的对称性:圆既是中心对称图形,也是轴对称图形。
任何经过圆心的直线都可以将圆分为两个完全相等的部分。
以上是初三数学中关于圆的一些主要知识点。
通过掌握这些知识点,可以更好地理解圆的性质和应用,为进一步学习几何学打下基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三中考数学知识点:圆及有关概念公式定理中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了初三中考数学知识点。
我们学习的圆是轴对称图形,其对称轴是任意一条通过圆心的直线,所以是无数条对称轴。
圆及有关概念
1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。
2 连接圆心和圆上的任意一点的线段叫做半径(radius)。
3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。
4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。
5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧
6 由两条半径和一段弧围成的图形叫做扇形(sector)。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角(central angle)。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫
做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个超越数,通常用π表示,π=3.1415926535……。
在实际应用中,一般取π≈3.14。
11 圆周角等于弧所对的圆心角的一半。
字母表示
圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;
扇形弧长—L ; 周长—C ; 面积—S。
圆的表示方法要求很严格,需要用到相应的知识要求。
提供的初三中考数学知识点,是我们精心为大家准备的,希望大家能够合理的使用!。