ansys ICEM全套基础教程-01
1-ICEM cfd 基础教程
• 在目录树每一行上单击鼠标右键显示该项的选项
ANSYS ICEMCFD V10
Inventory #002277
A1-20
目录树:对象名称集(Part)
• Parts (原来称“Families”)
– 是几何、网格和block(块)对象存放的位置,并予以 不同的名称
• 先进的网格编辑功能
• 不同求解器的设置
• 输出多达100多种求解器
• 强大的后处理能力
• 脚本语言功能(Replay) … and much more…
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
A1-5
支持广泛的CAD数据接口
• 集成于CAD环境中的直接接口 - 参数化网格
A1-11
ICEM CFD V10 界面 & 工具
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
A1-12
界面
主菜单 Utility Icons
数据输入区域 DEZ Help
撤消/重做 阴影/非阴影
功能 栏
图形界面
选择工具弹出框
显示控制树 9/9/05
消息框 ANSYS ICEMCFD V10
Inventory #002277
A1-22
文件与目录结构
• 所有文件应存放在同一个项目名称的目录下
– 打开 一个项目建立一个目录 – 还需打开*.prj的项目文件
• 主要文件类型:
– Tetin (.tin)文件: 几何包括
• 几何实体和材料点 • 对象的归类Part • 全局和实体网格参数 • 该文件由AI.E或 Direct Cad Interface中生成
AnsysICEMCFD讲义清华大学
Patch Independent : 忽略小特征 ShrinkWrap :自动化消除特征 Delanney(beta) : 从表面到内部逐渐粗化 AutoBlock : 2D正交,网格贴近几何表面
• Compute Mesh-Surface Mesh Only(可更改划 分方法),检查网格质量 ; Edit Mesh-Display Mesh Quality
Edge Params/Mesh-(Part Mesh Setup+Surface Mesh Setup),并Pre_Mesh (预网格) (model tree-Blocking-pre_mesh) 7.检查网格质量(Blocking-Pre_mesh Quality Histograms……),适当改变关联,优 化网格质量(移动点Blocking- Move Vertex …… 、劈分线Blocking- Edit Edge ……)。(Determinant>0.2;angle>18 °;Warpage<45°)
• 4.构思并建块 : 两种基本方法(自B自lo下上ck而而ing上下-C:r: 块块eat的的B堆雕loc积刻k/Split Block)
• 5.关联点和线。 (Blocking-Associate……) • 6.设置网格参量(设置网格尺寸或设置Edge的节点数Blocking- Pre_Mesh Params -
ICEM基础
目录1.软件介绍 (1)1.1前言 (1)1.2 ICEM Surf (1)1.3 icem 逆向工程模块 (3)1.4主要特征 (3)1.5主要优势 (4)1.6主要命令 (5)2.一般控制功能 (7)2.1进入和退出ICEM Surf (7)2.2控制键的功能 (8)2.3功能窗口 (9)2.4绘图区中的符号 (12)2.5视图操作 (25)3.用户界面 (27)3.1特殊功能/命令【Special Functions】 (29)3.2服务功能 (34)1. 软件介绍1.1 前言ICEM Surf所提供的尖端技术,确保用户在当今竞争激烈的全球市场上,能生产出一流的产品。
被公认为建立和修改A级曲面首选系统的ICEM Surf,能满足从美学设计人员到生产工程师等所有人的需求ICEM Surf支持直接建模技术,它对设计和工程的更新周期进行优化。
在创建原始形状后,用户可以通过直接建模、操纵曲面甚至直接处理扫描数据(点云),来集中精力完善形状。
可直接处理扫描数据和曲面,动态更新所有特征。
使用ICEM Surf,用户可以获得所见即所得的效果。
通过使用ICEM Surf全局建模特征,整个模型细节能够以全交互和动态方式进行修改,为美学工程师提供了一个推出设计解决方案的交互式工具。
通过特征建模技术,可以不费吹灰之力,就把设计从结构化曲面调整到要改进的美学表面。
而且,利用实时分析,让用户在处理曲面时,从参考平面,动态观察监视反射线、曲率或偏差。
采用这些方法,可得到前所未有的高质量曲面,这样,设计人员就能在其它系统所需的一小部份时间内,致力于可以加工的曲面。
ICEM Surf增加了一个新的渲染模块,它提供了高级渲染功能和逼真图象,为设计人员提供了一个逼真的模型视图,以便用于展示及设计评审。
在继续几何体建模的同时,使用立体方式,把CAD模型进行3D形像化。
基于这些技术的ICEM Surf,是汽车、产品设计、工具和模具工业的首选工具,用于复杂曲面建模和分析。
ICEM CFD教程
ICEM CFD教程四面体网格⏹对于复杂外形,ICEM CFD Tetra具有如下优点:✓根据用户事先规定一些关键的点和曲线基于8叉树算法的网格生成,生成速度快,大约为1500 cells/second✓无需表面的三角形划分,直接生成体网格✓四面体网格能够合并到混合网格中,并实施平滑操作✓单独区域的粗化和细化✓ICEM CFD的CAD(CATIA V4, UG, ProE, IGES, and ParaSolid, etc)接口,保留有CAD几何模型的参数化描述,网格可以在修改过的几何模型上重新生成这是生成的燃烧室四面体网格,共有660万网格,生成时间约为50分钟⏹八叉树算法Tetra网格生成是基于如下的空间划分算法:这种算法需要的区域保证必要的网格密度,但是为了快速计算尽量采用大的单元。
1.在几何模型的曲线和表面上规定网格尺寸2.构造一个初始单元来包围整个几何模型3.单元被不断细分来达到最大网格尺寸(每个维的尺寸按照1/2分割,对于三维就是1/8)4.均一化网格来消除悬挂网格现象5.构造出最初的最大尺寸单元网格来包围整个模型6.节点调整以匹配几何模型形状7.剔除材料外的单元8.进一步细分单元以满足规定的网格尺寸要求9.通过节点的合并、移动、交换和删除进行网格平滑,节点大小位于最大和最小网格尺寸之间⏹ 非结构化网格的一般步骤1. 输入几何或者网格所有几何实体,包括曲线、表面和点都放在part 中。
通过part 用户可以迅速打开/关掉所有实体,用不同颜色区分,分配网格,应用不同的边界条件。
几何被收录到通用几何文件.tin 中,.tin 文件可以被ANSYS ICEM CFD’s 所有模块1.1输入几何体Import Geometry✓ 第三方接口文件:ParaSolid 、STEP 、IGES 、DWG 、GEMS 、ACIS …✓ 直接接口:Catia 、Unigraphics 、Pro/E 、SolidWorks 、I-deas… 几何变化网格可以直接随之变化导入几何体之后,ICEM 自动生成B-spline 曲线和曲面,并在预先规定的点上设置顶点。
有限元软件ansys培训教程:第一讲常用CAE软件介绍.
Comsol Multiphysics软件
即为原来的FEMLAB软件,为多重物理场耦合分析软件系统。基 本模块中特色模块: 燃料电池 ( Fuel Cell ) 光电 (electronic optic ) 微机电 ( MEMS ) 两相流 ( Two Phase Flow ) 热传 ( Heat Transfer ) 专用模块: 化工模块 ( Chemical ) 结构分析模块 (Structural mechanics ) 电磁模块 ( Electromagnetics ) 热传 (Heat Transfer Module) 微机电 (MEMS Module) 地球科学 (Earth Science Module
工程计算软件系统第一讲
-常用CAE软件介绍 连志强
常用CAE软件系统介绍
通过这节课我们应该: 了解常用工程计算软件的分类; 记住常用工程计算软件的名字及主要功能; 了解一些行业专用的工程计算软件。
常用CAE软件系统分类
通常分类
通用类软件系统-可对多种类型的工程和产品的 物理力学性能进行分析、模拟、预测、评价和 优化,以实现产品技术创新。这类软件以覆盖 的应用范围广而著称; 专用类软件系统-针对特定类型的工程或者产品 所开发的用于产品性能分析、预测和优化的软 件。这类软件因在某个特定领域的应用而见长;
Adina软件
ADINA是由Bathe开发的著名的有限元分析程 序,可以求解固体,流体,固-液耦合,热等 问题。包括模块有: ADINA-结构分析模块 ADINA-F-流体分析模块 ADINA-AUI-前后处理模块 ADINA-FSI-流固耦合分析模块 ADINA-T-热分析模块 ADINA-TMC-热结构耦合分析模块 ADINA-TRANSOR -与CAD系统
ICEM_CFD_基础教程_C1-六面体网格
– Block 块
Vertex
Curve
Point Surfaces
Face
Material point/body Block
2013-9-14
ICEMCFD/AI*Environment 5.0
4
分块过程 – 全部过程
构建能够捕捉几何的块结构
– 自顶向下
• 分割及舍弃无用的块 – 自底向上 • 通过拉伸、创建、复制创建块 在块和几何之间建立关联 – 通常为边与曲线之间建立关联 在几何体上移动块顶点
18
索引控制
所有块和顶点通过全局索引(index)表定义 – 初始块包含 i,j,k 索引, 并与全局直角坐标系 x,y,z,对齐 通过分割创建的子块维持这个方向
– O-grids 不符合这个方向, 因此每个 O-grid 创建一个新的索引方向(O3, O4, etc…)
– 顶点索引通过 Vertices -> Indices显示
2013-9-14
ICEMCFD/AI*Environment 5.0
8
分块过程 – 在几何体和块之间建立关联
关联块和几何体 – 通常在边和曲线建立关联 – 在最后的网格中, 边将投影到这些曲线 – 在模型树中右击 Edges -> Show association 显示关联箭头
2013-9-14
14
分块过程 – 观察网格
观察网格
– 可以在过程任何时期创建网格 – 网格有不同的投影方法 – 选择 Projection faces 可以完全描绘几何体 – 通过在模型树中打开 Part观察指定曲面的网格 – 使用 Scan planes 观察内部网格
No projection
ICEM入门教程(基础部分整理)
ICEMCFD /AI*Environment 特性?
几何 创建/修复/简化 强大的网格工具 – – – 从CAD模型、带网格的CAD模型、网格模型生成四面体网格 面网格, patch 依赖, patch 不依赖, 射, 结构/非结构 六面体网格雕塑, 非结构, 结构, 四边形网格拉伸 映
•
网格编辑
– – – – –
2013-8-17
CFD FEA FSI (CFD + FEA) CFX Workbench
5
不同应用
• FEA 版本
– 前后处理包括加载, 约束和属性标签栏, 与 FEA 求解器例如ANSYS, ABAQUS, LS-DYNA 和NASTRAN协同工作.
• CFD 版本
– 前后处理但不包括加载, 约束和属性标签栏,包含棱柱网格生成工具. 为100多种 CFD求解器输出网格 .
•
• • •
ቤተ መጻሕፍቲ ባይዱ
六面体网格雕塑 非结构/结构
边界条件 输出支持100多种求解器 后处理
•
… 其它…
2013-8-17 8
广泛的 CAD 支持
• 三维实体
– – – – – IGES ACIS Parasolid DWG/DXF GEMS
SolidWorks
Pro/Engineer
• 小平面(三角面)数据
.prj
• 主要文件类型:
– Tetin 文件(.tin) – 几何及网 格参数 – Domain 文件(.uns) – 网格文件 – Attribute 文件(.fbc) – 网格参数 和边界 – Parameter 文件(.par) – 参数
2013-8-17 28
.tin
ANSYS.ICEM.CFD中文入门教材
有redhong731@提供版权所有,如有雷同….第一章 介绍ICEM CFD 工程Tutorials目录中每个工程是一个次级子目录。
每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。
他们分别代表:• import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等;• parts/: CAD模型• domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1)• mesh/: 边界条件文件 (family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1).• transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据mesh目录中Tetin文件代表将要划分网格的几何体。
包含B-spline曲面定义和曲线信息,以及分组定义Replay 文件是六面体网格划分的分块的脚本鼠标和键盘操作鼠标或键盘操作功能鼠标左键点击和拖动旋转模型鼠标中键点击和拖动平移模型鼠标右键点击和上下拖动缩放模型鼠标右键点击和左右拖动绕屏幕Z轴旋转模型F9 按住F9,然后点击任意鼠标键进行操作的时候进行模型运动F10 按F10 紧急图象Reset第二章ICEM CFD Mesh Editor界面The Mesh Editor, 创建修改网格的集成环境,包含三个窗口• The ICEM CFD 主窗口• 显示窗口• The ICEM CFD 消息窗口主窗口主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File MenuThe File menu 包含• Open, Save, Save as, Close, Quit, Project dir, Tetin file,Domain file, B.C file, Import geo, Export geo, Options, Utilities,Scripting, Annotations, Import mesh, DDN part.The Geometry MenuThe Geometry menu 模型修补和编辑,边界条件的设置,调用ICEM CFD DDN。
ICEM教程
ICEM教程第一篇:ICEM教程根据自己的体会写的操作说明。
一.非结构化网格的一般步骤:1,导入几何体(Ug中定义family,输出tin文件)2,检查体:Repair Geometry(有时需要补面),给边界面取名。
检查体时,如果出现黄线,就说明几何体有问题,红色、蓝色线为正常的。
3,生成body,(非结构化网格必须依据body生成,流通区域建立body,如果要算热态的,固体区域也要生成body;有几个封闭区域生成几个body,且其名称必须不同。
)4, 设置全局网格(global mesh setup< global mesh size>,< set up periodicity>)。
在Global Mesh Setup 设置参数。
为了加密孔上的网格,要用Curvature/Proximity Based Refinement。
Refinement为近似圆时的多边形的边数。
5,设置周期边界网格,周期面上的网格必须一致,所以必须在设置周期面之后才能计算网格(compute mesh)。
使用mesh sizes for parts命令。
周期面必须要定义base(回转轴的基点),Angle (扇形面的角度),在这里旋转轴与ug中的模型有关,如果ug中不是以三个基准轴的话,就要自己找点(用Geometry的做点法来定)。
6,计算网格Compute Mesh。
7,display mesh quality,如果网格质量不行,可以在局部区域使用creat mesh density命令加密网格。
8,smooth Elements Globaly,Smoothing iterations一般选择25次,Up to quality一般为0.4 9,choose slovr 10.边界条件可以选择在fluent中设置(设置边界条件Boundary Conditions),直接输入网格二.一些操作技巧:要查看内部网格,可以点中mesh再单击右键,选择cut planes; creat mesh density,如果设置的尺寸不对,需要修改,点中Geometry下拉菜单中的density再单击右键,选择modify density。
ansys教程完整
2. 高度非线性瞬态动力分析(ANSYS/LS-DYNA) ●全自动接触分析,四十多种接触类型 ●任意拉格郎日-欧拉(ALE)分析 ●多物质欧拉、单物质欧拉 ● 适应网格、网格重划分、重启动 ● 100多种非线性材料模式 ●多物理场耦合分析:结构、热、流体、声学 ●爆炸模拟,起爆效果及应力波的传播分析 ●侵彻穿甲仿真,鸟撞及叶片包容性分析,跌落分析 ●失效分析,裂纹扩展分析 ●刚体运动、刚体-柔体运动分析 ●实时声场分析 ● BEM边界元方法,边界元、有限元耦合分析 ●光顺质点流体动力(SPH)算法
Objective
输入 显示提示信息,输入 ANSYS命令,所有输入 的命令将在此窗口显示 。
应用菜单 包含例如文件管理、选 择、显示控制、参数设 置等功能.
主菜单 包含ANSYS的主要功能 ,分为前处理、求解、 后处理等。
工具条 将常用的命令制成工具 条,方便调用.
输出 显示软件的文本输出。 通常在其他窗口后面, 需要查看时可提到前面 。
Total Force = 2pr = 47,124 lb.
加载
4-2a. 加载.
Objective
可在实体模型或 FEA 模型 (节点和单元) 上加载.
沿线均布的压力
沿单元边界均布的压力
在关键点处 约束
在节点处约束
实体模型
FEA 模型
在关键点加集中力
在节点加集中力
加载 (续)
直接在实体模型加载的优点:
+ 几何模型加载独立于有限元网格. 重新划分网格或局部网格修改不影 响载荷.
3. 热分析 ●稳态、瞬态温度场分析 ●热传导、热对流、热辐射分析 ●相变分析 ●材料性质、边界条件随温度变化 4. 电磁分析 ●静磁场分析-计算直流电(DC)或永磁体产生的磁场 ●交变磁场分析- 计算由于交流电(AC)产生的磁场 ●瞬态磁场分析-计算随时间随机变化的电流或外界 引起的磁场 ●电场分析-用于计算电阻或电容系统的电场. 典型的 物理量有电流密度、电荷密度、电场及电阻热等。 ●高频电磁场分析-用于微波及RF无源组件,波导、 雷达系统、同轴连接器等分析。
ansys CFD全套基础教程-013D5-WS4-PipeBladeV10-中文
选择 Associate > Associate Edge to Curve – 在管的一侧选择4条边 – 在同一侧选择4条曲线
•
•
#2
在另一边采用相同的操作
边的颜色变为绿色说明已经建立了连 接 在同一侧的曲线变成了同一种颜色– 合成曲线 – 颜色变成第一个被选择曲线的颜 色
•
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
D5-7
分割块
Workshop
•
#1
将鼠标移动到三维坐标的上面,并将鼠标靠近Y-axis 直到 ‘+Y’ 方向出现高亮后 单击左键 选择 Split Block > Split Block Split Method 是 Screen Select 单击左键并且拖住其中的一条边如图所示– 它变成红色的高 亮线 – 移动鼠标直到新的分割线的位置大体上在叶片的一端时 放开鼠标
#2
• 选择要坍塌的边,如图所示并且选择 在管两端的块 (34 和 37) • 中键确认
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
D5-11
拓扑关联
Workshop
• Blocking > Associate • 选择 Associate Edge to Curve
#1
• 注意这些块的垂直边的颜色有青蓝色变成了 白色– 因为变成了块的边界
#3
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
D5-10
块的坍塌变形
Workshop
• Blocking > Merge Vertices
ansys CFD全套基础教程-016F1-EditMeshV10-中文.
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
F1-9
显示网格质量
• 另外的质量显示方式
– Color by Quality
• 在模型树中的Shells处单击右键显示选项 • 光谱范围从红 (最差) 到蓝 (最理想)
– 输出窗口
• 柱状图的表格形式 • 选择柱状图中的柱状图标在表格中会给出网格 的数量和质量范围
– Merge Nodes
合并节点
• 交互式的合并节点或是通过容差 • 合并网格 (tet/tet, tet/hex)
– Move Nodes
• 单个或是多个 • 移动或是设置位置
–
–
–
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
F1-3
Checking the Mesh: Mesh Errors
• •
Duplicate Elements:查找和其他单元分 享所有节点并且类型相同的单元 Uncovered Faces:正常情况下所有的体 积网格单元的面不是与其它体积单元的 面相贴就是与面网格单元相接 (边界处) Missing Internal Faces:在不同parts任 何一对体网格之间, 不存在面网格单元 Periodic Problems:检查周期性表面节 点数是否一致
– Violate geometry
• 节点不受几何体的约束,可以在用户定义的容差内移动– 绝对或相对最小单元的边的长度
9/9/05
ANSYS ICEMCFD V10
Inventory #002277
F1-12
网格修补
• 网格修补工具:
ANSYS_ICEM介绍
• 1D –线单元
• 格式
– Bars, beams, rods, springs – 2D 网格边界
– 非结构化 – 块结构化
– 节点
• 单元的角点
Training Manual
2/23/2007 © 2006 ANSYS, Inc. All rights reserved.
ANSYS ICEMCFD V11
– 几何/网格表面显示
• 框线 • 实体 • 透明
Inventory #002382 1-14
ANSYS v11.0
帮助
Training Manual
• 菜单驱动
– 搜索 – 包括例子 – 编程指南 (for
ICEM/Tcl scripting procedures)
• 指定主题的链接
• 图标的鼠标提示信息
• 几何实体和材料点 • 几何元素的Part归类 • 全局和实体网格参数 • 该文件由AI.E或 Direct Cad Interface中生成
– Domain file (.uns)网格文件 • 非结构化网格
– Blocking file (.blk)块文件 • 保存有块的拓扑结构数据
– Attribute file (.fbc)属性文件(详见file/attribute的说明) • 边界条件、 局部参数 & 单元类型
– 左键
选择 (单击并拖动形成方形选择框)
– 中键
确认选择
– 右键
取消选择
Training Manual
• F9 快捷键能在选择模式下进行动态浏览与选择 状态的切换
• 转轮即使在选择模式下也能缩放视图
2/23/2007 © 2006 ANSYS, Inc. All rights reserved.
CFD tutorial
ICEM CFD TutorialSimple Duct GridScott J. OrmistonGavin Joyce Department of Mechanical Engineering University of ManitobaWinnipeg, ManitobaCanadaV1.0117 January 20131.IntroductionThis tutorial will guide you through the creation of a simple duct mesh, and how to export that mesh into a CFX-readable format.1.2Geometry NomenclatureThe following image shows the basic geometry of the duct.Figure 1: Duct Geometry1.3OverviewThe following is a summary of the general steps in mesh creation:1.Creation of geometry1.1 Create points1.2 Use points to define curves1.3 Use curves to define surfaces1.4 Define the volume or 'body'2.Create parts from surfaces3.Create a block4.Associate the created geometry5.Allocate nodal distribution along the block edges6.Mesh the block7.Create the file needed for input in CFX Pre1.4SetupIt is highly recommended that you create a new directory to work in. Several files will be created and it is much easier to find them later if they are all in a new directory. You can create this new directory while in your root directory or while in any other subdirectory. To do this, you could enter the following commands (% is the command prompt):% mkdir icem-tutorial% cd icem-tutorial% pwd/home/u7/umjohndoe/icem-tutorialNote that the ANSYS set of programs (including CFX and ICEM) are unable to read directory names with space characters in them. This means that the name of the new directory and the path leading to the new directory must not have any spaces. The last line of the above set of commands gives the path and current directory names; simply ensure there are no spaces.1.5Assumptions about Running ICEM CFDIt is assumed that you are logged into a VNCviewer session (or equivalent) or using a Linux/Unix workstation. You must have a graphical interface in order to use ICEM, meaning that you cannot run ICEM through the SSH client alone. This tutorial was created for ANSYS ICEM CFD version 14.0.Note that throughout the tutorial, unless directed to use the right or middle mouse buttons explicitly, all commands are to be performed using the left mouse button.1.6Starting the ProgramStart ICEM CFD by typing the following command in your terminal:% icemcfd'Maximize' the ICEM window by clicking the button at the top right corner of the window. Your screen should look like this:Some general names for different parts of the ICEM window will be used to help identify where certain commands are found. The different parts are named the main menu, main buttons, option tabs, options buttons, sidebar, model tree, and view window. These are all labelled in the following image.2.Create the GeometryThe geometry will be created in units of millimetres and then scaled to metres at the output step. Begin this phase by selecting “Geometry” from the option tabs..2.1Create points∙Select 'Create Point' from the option buttons.The new sidebar 'Create Point' will be opened..∙Within the sidebar, select the 'Explicit Coordinates' button.∙Scroll down the 'Create Point' sidebar.∙ Leave the default setting of 'Create 1 point' and enter the following coordinates:pnt.00X 0Y 0Z 0Then click on Apply.∙Let the point be created under the part GEOM. The first point will be called 'pnt.00'.∙Now Geometry and Parts will appear in the model tree. Click on the plus sign to expand the Geometry to get:∙To see the names of the points right click on points and select “Show point names”. You should see the point with its label “Pnt.00” in the view window.∙In order to view the remainder of the points as you create them, the following is suggested.Modify the view by selecting View:Then, select “Isometric”.∙ Now enter the remaining points shown in the table below. Click Apply each time after enteringthe three coordinate values. pnt.01 pnt.02 pnt.03 pnt.04 pnt.05 pnt.06 pnt.07 X 0 0 0 2000 2000 2000 2000 Y0 200 200 0 0 200 200Z 300 300 0 0 300 300 0Also, after each point is entered, click on the 'Fit Window' from the main buttons (you may need to left click within the view window after pressing 'Fit Window' to enact the change).∙ When all of the points have been entered, click 'Dismiss' in the sidebar. Recall that we havedefined the position of these points 1000 times larger than the geometry dictates (2.0 has become 2000) for convenience of working in units that we can think of as mm. We will scale this down by 1000 when we create the CFX readable file (our very last step).∙ If you want to change the view of the geometry in the view window you can use the followingmouse controls:Mouse Control Action Performed Hold down the left mouse button within the view windowand drag in any directionRotate view Hold down the right mouse button within the view window and drag left or rightTilts view Hold down the right mouse button within the view window and drag up or downZooms in or out Hold down the middle mouse button within the view window and drag in any directionPans viewScroll the mouse wheel up or down within the viewwindowZooms in or out∙ Familiarize yourself with these controls by experimenting. When you are ready, press ‘FitWindow' from the main buttons and select 'Isometric' from 'View' in the main menu. Your screen should now look like this:∙We will now save the project. Select 'File' from the main menu, and then select 'Save Project As'.∙Move to the directory you created in the setup steps of this tutorial and then choose a meaningfulname for this project (for example, ‘duct.prj’) and press 'Save'.∙In the future, save frequently by clicking on the floppy disk icon ('Save Project') in the main buttons.2.2Creating curves/lines∙Select 'Create/Modify Curve' from the option buttons.The new sidebar 'Create/Modify Curve' will be opened.∙From within the sidebar select the 'From Points' button. Let the curves be created under part GEOM.∙Scroll down the 'Create/Modify Curve' sidebar and click on the 'Select location(s)' button.∙With the left mouse button select points pnt.00 and pnt.01 in the view window, and then click the middle mouse button. Note that it may be difficult to select the points from the current viewbecause the points are very close together, but you cannot pan or zoom with the mouse normally because you are in selection mode. In order to leave the selection mode press F9 on yourkeyboard, and then use the mouse controls normally. Once you have adjusted the current viewsimply press F9 on your keyboard again to return to selection mode.∙Repeat this process for the remaining eleven lines.∙Once all of the curves have been created click 'Dismiss' in the sidebar and select 'Fit Window' from the main buttons and 'Isometric' from 'View' in the main menu to display the currentgeometry as follows:∙You can now turn off point names in the model tree by right-clicking the word 'Points' and selecting 'Show Point Names' from the menu that appears.∙Save the project.2.3Creating surfaces∙Select 'Create/Modify Surface' from the option buttons.The new sidebar 'Create/Modify Surface' will be opened.∙From within the sidebar, select the 'Simple Surface' button.∙Scroll down the 'Create/Modify Surface' sidebar and click on the 'Select curve(s)' button. Leave the 'Method' and 'Tolerance' at their default values of 'From 2-4 Curves' and 0.01, respectively.∙With the left mouse button, select four curves that make up a face of the duct geometry. For example, the face that is an x-z plane at y=0:Each of the curves should turn white when clicked. If you find that you have clicked on the wrong curve by mistake, click the right mouse button to unselect it.Now click the middle mouse button, and then press “Apply” in the sidebar (to create surfaces you must press the middle mouse button and then the apply button, whereas for curves you only needed to press the middle mouse button). As with the creation of curves you can modify your view while in selection mode by pressing F9 on your keyboard, using the mouse-view controls normally, and then pressing F9 again.∙In order to view the surfaces, click the box beside “Surfaces” in the model tree under “Geometry”. This will show a rough wireframe on the surface that was just created. Thispresentation of a surface contains extra lines that can be confusing when trying to select other lines for the remaining surfaces. It is suggested that you change the way surfaces are displayed by selecting “Solid/Wire Full Display”:Your display of the surface that was just created should now look like:∙Repeat the process of selecting the four curves needed for the remaining five surfaces of the duct. ∙Once all of the surfaces have been created, click 'Dismiss' in the sidebar and select 'Fit Window' from the main buttons and 'Isometric' from 'View' in the main menu to display the currentgeometry as follows:∙Save the project.2.4Defining the volume or 'body'∙Select 'Create Body' from the option buttons. The new sidebar 'Create Body' will be opened.∙ From within the sidebar select the 'Material Point' button and fill in both the 'Part' and 'Name' as ‘duct’. Leave the default setting of 'Centroid of 2 points' in the 'Location' choice.∙Within the sidebar, click on the 'Select location(s)' button.∙Now, in order the see the points that are to be selected, turn off (unclick) Surfaces underGeometry in the model tree.∙With the left mouse button select two points that are on opposite corners of the domain. For example, this can be the origin (pnt.00) and the point at x=2000, y=200, and z=300 (pnt.06) in theview window, then press the middle mouse button, and then press 'Apply' in the sidebar. A label“duct” should appear in the middle of the geometry in the view window.∙Press the 'Dismiss' button in the sidebar. Note that the way we defined this body it is in the centre of the domain and that any two, opposite vertices could have been chosen with the same finalresult. Also, the 'By Topology' option in the 'Create Body' sidebar could have been chosen andeither the entire model or all of the surfaces used to define the body in the centre.∙You may now turn on the surfaces again in the model tree.∙Save the project3.Creating Parts∙Now that the full geometry has been developed, it is helpful to assign meaningful names to the different surfaces. These names will be used when applying boundary conditions to surfaces in CFX.∙Because we will be selecting only surfaces to create parts, uncheck Points, Curves, and Bodies under Geometry in the model tree.∙Assigning names to surfaces is done by creating a part for each surface. In the geometry tree right click the word 'Parts' and select 'Create Part' from the menu that appears. The new sidebar 'CreatePart' will be opened.∙Within the sidebar, enter the name 'RCT_N' in the 'Part' field and click the 'Create Part by Selection' button.∙Within the sidebar, click the 'Select entities' button.∙In the isometric view, select the top surface of the geometry (the x-z plane at y=200) in the view window:∙Press the middle mouse button, and then select 'Apply' in the sidebar. The new part 'RCT_N' will now appear in the geometry under 'Parts'. Uncheck RCT_N, so the surface is no longer displayed.Removing RCT_N from the view window will make it easier to select the other surfaces.∙For the remaining five surfaces, follow the procedure above. Remember to uncheck each part as it is created. This will also help to know which surfaces are remaining.∙ Assign the following part names to the remaining surfaces:x-y plane at z=300 RCT_Tx-y plane at z=0 RCT_Bx-z plane at y=0 RCT_Sy-z plane at x=0 RCT_Wy-z plane at x=2000 RCT_E∙Once all of the parts are created, press 'Dismiss' in the sidebar∙Check Points, Curves, Surfaces, Bodies, and all the new part names in the model tree∙Save the project.4.Creating a Block∙Select 'Blocking' from the option tabs.4.1Create the block∙Select 'Create Block' from the option buttons. The new sidebar 'Create Block' will be opened.∙From within the sidebar select the 'Initialize Blocks' button and set the 'Part' field to ‘DUCT’.Leave the 'Type' field as its default '3D Bounding Box'.∙Reduce the size of the geometry in the view window (by scrolling the mouse scroll button or using the right mouse button). The image must not be near the edges of the view window becauseyou are going to select all of it next.∙Click the “Select geometry” button.∙In the view window, select all of the geometry by clicking, holding, and dragging a box around the entire geometry. Press the middle mouse button and then press 'Apply' in the sidebar. Press'Dismiss' in the sidebar. In the model tree, you should now have a new branch named 'Blocking'.Also in the model tree, under 'Parts', you should have something named 'VORFN'.∙In the model tree, under 'Geometry', turn off 'Points', 'Curves', and 'Surfaces' so that only 'Bodies' has a check mark next to it. You should see the following after pressing 'Fit Window' andchoosing 'Isometric' from 'View' in the main menu:You are seeing the edges of the block. They are coloured white until they are associated with acurve in your geometry.∙Save the project.5.Doing the Edge Associations5.1Associate the created geometry to the block∙Select 'Associate' from the option buttons. The new sidebar 'Blocking Associations' will beopened.∙ Leave the default 'Snap Project Vertices' and then press 'Apply' and 'Dismiss' in the sidebar. Youshould see the white lines turn green:∙Note that auto-association can only be used because this is a very simple geometry. For more complicated geometries, manual association must be performed.∙Save the project.6Nodal Distributions6.1Allocate nodal distribution along the block edges∙Select 'Pre-Mesh Params' from the option buttons. The new sidebar 'Pre-Mesh Params' will be opened.∙From within the sidebar select 'Edge Params'.∙Click 'Select edge(s)∙Select the edge line the goes from (0,0,0) to (0,0,300) (i.e., from pnt.00 to pnt.01) in the view window.∙In the sidebar again, enter 16 in the 'Nodes' field and set the 'Mesh law' field to 'BiGeometric' (note that you may have to reselect the curve and enter the number of nodes a second time).∙Scroll down the sidebar and select 'Copy Parameters' and then set the 'Method' field to 'To All Parallel Edges'.∙Press 'Apply' and you should now see small red ticks along all the lines in the z-direction. There is also the number of nodes printed in red.∙You will have to zoom in to see these details clearly.∙Scroll back to the top of the sidebar and click 'Select edge(s)' again. This time select the line from (0,0,0) to (0,200,0) in the view window and then enter 11 in the 'Nodes' field of the sidebar.Ensure that the 'Mesh law' is still set to 'BiGeometric', the 'Copy Parameters' button is stillhighlighted, and the 'Method' is still set to 'To All Parallel Edges'. Again, press 'Apply' and ticks will appear on all the lines in the y direction.∙Scroll back to the top of the sidebar and click 'Select edge(s)' again. This time select the line from (0,0,0) to (2000,0,0) in the view window and then enter 41 in the 'Nodes' field of the sidebar.Ensure that the 'Mesh law' is still set to 'BiGeometric', the 'Copy Parameters' button is stillhighlighted, and the 'Method' is still set to 'To All Parallel Edges'. Again, press 'Apply' and ticks will appear on all the lines in the x direction. Press 'Dismiss' in the sidebar.∙Save the project.7Meshing the Block∙Select 'File' from the main menu, then select 'Blocking' and 'Save Unstruct Mesh' in the menus that appear.∙ Name the file something meaningful like ‘duct’ and press save.∙Select 'File' from the main menu, then select 'Mesh' and 'Load from Blocking' in the menus that appear. Wait a moment while the mesh is generated.∙You can now see your mesh in the view window. When you zoom in there will be a grid around the geometry.∙Save the project.8Creating the file for CFXWrite the mesh to an input file for CFX Pre∙The final step is to create a CFX readable file from the ICEM mesh. To do this, select 'Output' fromthe option tabs.The sidebar 'Solver Setup' will be opened.∙In the sidebar, set the 'Output Solver' field to 'ANSYS CFX', the 'Common Structural Solver' field to'ANSYS'.∙Click 'Apply' and 'Dismiss'.∙Select 'Write input' from the option buttons.∙You will be prompted to save the current project first, select 'Yes'∙ A new window with the title 'CFX5' will appear. Highlight 'Yes' in the 'Scaling' field and set the x-, y-, and z-scaling factors to 0.001. Note the scaling is necessary because we input dimensions 1000times greater than those dictated by the geometry.Click done.CONGRATULATIONS! You have just created a basic mesh using ANSYS ICEM. The .cfx5 file that youcreated can be read into CFX-Pre.。
ICEM 原版培训教程(ANSYS 公司提供)1
Display Di l Triad Message Window Histogram Window
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
1-7
July 2009 Inventory #002664
Introduction
Schedule
• Day 1
– – – – – Introduction Geometry Handling Shell Meshing Volume Meshing Output to Solver
Training Manual
• Day 2
– Prism meshing – Intro to Hexahedral meshing
– Domain file (.uns)
• Unstructured mesh
– Blocking file (.blk)
• Blocking topology
– Attribute file (.fbc, .atr)
• Boundary conditions, local parameters & element types
Introduction
Ansys ICEM CFD Product Purchasing
• ICEM CFD
– Full capabilities (all meshers, CFD and FEA) – Enables Ansys meshing in Workbench
Training Manual
• 3D - Volume
– Elements
• 0D – Node element
ICEM入门教程(基础部分整理)
•
消隐特定的实体
取消
在选择模式, 按 F9 切换到动态 模式; 再按 F9 切换回来
多边形
2013-8-17
选择全部
21
选择可见部分
热键
选择实体(点、线、面、体、网格)时, 可以使用热键:
– a – 选择全部 – v – 所有可见 – m –切换框选择和多变形选择区域模式,在如下两种模式间 切换:
• 六面体和四面体区域交 界处采用棱锥体 网格
2013-8-17
13
特性: 后处理 – Visual3
Function Icons View Triad
Variable & Color Key Model Tree ( Branch for Result)
Transient, Cut & Iso Surfaces, Streams, Animation, probing, Integration, 1D & 2D windows, Annotation, Comparison with Experimental Data, and much more…
2013-8-17
10
特性: 六面体网格划分
• • • • 强大的六面体网格生成能力 自顶向下或自底向上分块方法 复杂模型网格的快速生成 快速重复操作
– 弹性分块适合相似几何模型 – 对几何尺寸改变后的几何模型自动重划分网格
2013-8-17
11
特性: 面网格
• Patch dependent • Quad Dominant(四边形为 主):
或
Open *.tin 文件
Import CAD 文件
2013-8-17
32
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Old ICEM CFD 4.X GUI
取消 采用不同part选择
几何
多边形 全选 仅选择显示部分 选择填充角度下的相连实体 选择对象过滤 选择边界线内的单元 选择几何表面网格
网格
圆形选择 整个或部分框内选择 设置填充选择的角度
所有表面 部分框选
块
模式切换 (F9)
选择subset 角点方式选 择block
刻面几何 段
选择刻面几何段之间单元
用实例熟悉流程
• • • 选择“打开文件夹”图标 浏览目录 输入项目名称 – Clamp.prj
• Project file包含了项目设置, 工作目录 和文件之间的关联信息。
•
项目文件一旦保存了几何网格、边界、 参数等信息,那么今后只要打开项目文 件,其他信息自动装入。
Inventory #002277
• 强大的六面体网格生成技术
• 具有Top-down or bottom-up block 创建方式 • 可快速创建复杂的拓扑结构 • 快速迭代循环
– 灵活划分方式可以得到近似几何的block结构(拓扑) – 采用Replay文件 实现几何与网格的同步变化
Inventory #002277
9/9/05
• 所有文件应存放在同一个项目名称的目录下
– 打开 一个项目建立一个目录 – 还需打开*.prj的项目文件
•
主要文件类型:
– Tetin (.tin)文件: 几何包括
• 几何实体和材料点 • 对象的归类Part • 全局和实体网格参数 • 该文件由AI.E或 Direct Cad Interface中生成 .prj
ANSYS ICEMCFD V10
A1-20
目录树:对象名称集(Part)
• Parts (原来称“Families”)
– 是几何、网格和block(块)对象存放的位置,并予以 不同的名称
• • •
在 part内可以显示或隐藏所有的对象 Part名字颜色与实体显示颜色相匹配 在Parts上单击右键 可以:
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-13
主菜单
运行设置菜单 文件菜单
(文件输入/输出)
编辑菜单
视图菜单
信息菜单
(参数)
帮助菜单
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-14
主要功能栏
几何
几何生成/修改, 材料点定义
– Hex-dominant, unstructured hexa, structured hexa, extruded quads, Cartesian
• •
先进的网格编辑功能 不同求解器的设置
•
• •
9/9/05
输出多达100多种求解器
强大的后处理能力 脚本语言功能(Replay) … and much more…
Inventory #002277
A1-15
鼠标使用
• ‘动态’ 浏览模式 (单击并拖动)
– 鼠标左键: – 鼠标中键: 旋转 移动变换
– 鼠标右键:
– 转轮
缩放(上下运动) / 2-D 旋转(水平移动)
缩放
•
选择模式 (单击)
– 左键 选择 (单击并拖动形成方形选择框)
– 中键
– 右键
确认选择
取消选择
• 刻面数据
Pro/Engineer
Unigraphics I-DEAS
– STL – VRML – NASTRAN, PATRAN, ANSYS, LS-DYNA
• 格式化的点数据集
• 与Catia V5整合
Solid Edge
9/9/05
CATIA
Inventory #002277
ANSYS ICEMCFD V10
– 定义新的名字 – 定义包含对象名的子集 – 删除空的对象名
• •
在对象名称上单击鼠标右键 可以修改或删除对象 对象特征在对象名称的子目录下
– Double Left Click 或 RMB > Modify修改显示其对象 特征
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
• 2000: ANSYS收购 ICEM CFD.
– 对FEA需求的网格划分能力得到加强 – 先进的表面网格划分技术
• 2004: 推出ICEMCFD/AI*Environment
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-3
软件不同的版本
• FEA
– 前、后处理器, 包括负荷、约束和特殊功能键。并可与 ANSYS, ABAQUS, LS-DYNA, NASTRAN求解器一起工作
ANSYS ICEMCFD V10
A1-18
热键
• • 对于几何、网格编辑和块划分 请参考 Help -> Help Topics -> Selection Options -> 查询Hotkey,即可获得详细资 讯
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-19
A1-11
ICEM CFD V10
界面 & 工具
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-12
界面
撤消/重做 阴影/非阴影 主菜单 选择工具弹出框 Utility Icons 数据输入区域 功能 栏
图形界面
DEZ Help
显示坐标
显示控制树 质量柱状图显示 消息框
9/9/05
ANSYS ICEMCFD V10
A1-2
ICEM CFD 大事记(1990 -2004) • 数据控制有限公司.
– ICEM是Integrated Computational Engineering and Manufacturing的简称
• 1990: 成立 ICEM CFD Engineering公司
A1-10
后处理– Visual3
• 瞬态分析 • 剖面 • 等值面 • 流线
Variable & Color Key
• 动画 • 探针 • 数据映射 • 1D & 2D 窗口
• 注解
• 图表 • 与实验和其他计算结果 比较 • 更多…
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
– Domain file (.uns)网格文件
• 非结构化网格
.tin .blk .uns
– Blocking file (.blk)块文件
• 保存有块的拓扑结构数据
– Attribute file (.fbc)属性文件(详见file/attribute的说明)
• 边界条件、 局部参数 & 单元类型 .fbc .rpl .par .jrf
ICEMCFD V10.0
入门教程
Inventory #002277
受训者信息
– 背景 • 曾从事CFD/FEA工作? • 是否熟悉 ICEM CFD 和其他前处理软件 – 使用CAD 工具 • 划分网格所需的几何文件来自哪一个CAD系统? – 使用过什么分析软件 – 您培训的希望是什么?
Inventory #002277
典型 ICEM CFD 工作流程: 新建/打开 一个项目(注意文件存放位置) 引入/生成 几何 建立几何拓扑结构/几何清理 网格模型 (优先考虑六面体网格) 检查/编辑网格 网格输出(CFD 求解器) 后处理
流程
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-24
ANSYS ICEMCFD V10
A1-8
面网格划分特点
• 基于几何小面的处理方式
– 以四边形为主能最佳捕捉几何的细节
• 不依赖于几何小面的处理方式
– 稳定性好, 可适用于不做几何清理工作的 几何
• 基于映射的处理方法
– 基于正交的网格处理 – 空间表面block技术: 最佳网格控制,可 使用脚本语言
目录树
• • 控制图形内的显示内容 主要有几何、网格、块、 对象名称集(Part)
• • •
单元特征, 连接关系, 位移、 载荷和材料特征 复选框 用于显示或隐藏
– 隐藏表示没有激活 – 显示表示激活
– 部分显示
• •
9/9/05
单击 “+”展开目录 在目录树每一行上单击鼠标右键显示该项的选项
Inventory #002277
Inventory #002277
9/9/05
ANSYS ICEMCFD V10
A1-17
热键
• 选择模式:
退出 模式 所有网 格节点
退出 模式
线单 元
面单 元
体单 元
多边形
取消 选择
不选
所有
子集
对角 选择 取消
框内
F9 切换模式
Inventory #002277
9/9/05
• CFD
– 前、后处理器。包括了完整的网格划分功能,可以输出多达100多种CFD 和 FEA 求解器.