泛函分析第3章连续线性算子与连续线性泛函

合集下载

任勇课件第03章-泛函分析初步

任勇课件第03章-泛函分析初步

x t |
b
a
x t dt 不是 Banach 空间,因为存在[a ,b]
p

上的函数 x(t),其 p 次方[R]不可积。 例 3: Lp a, b 是 Banach 空间,即对于 x t C a, b ,均满足其 p 次方 [L]可积。 换言之, Lp a, b 是在 a, b 上 p 次方[L]可积(即 L p 存在)的连续函 数全体,是完备的赋范线性空间,Banach 空间。
W , 是度量空间,可以取 ,
即 , , ,亦即:
0, , 1,
则有 , 1, ;但 , 1。

W , W, ,不满足范数第(ii)条公理。
X xn n 1

p i
x
i 1
,1 p 。
p
n 1
证明: X l p ,因为 xn 所以, N ,使得当 n>N 时,恒有: xn 1
n N
因而, xn xn
nN
q

p
, q p , X l q
1 1 Holder 不等式:若 f x Lp [a, b],g x Lq [a, b], 1 ,则 p q
f x g x dx f x
b a a
b
p
dx

q
1 p
b
a
g x dx
q

1 q
(3-13)
f x
§3.4 巴拿赫(Banach)空间 1. 赋范线性空间: 定义(赋范线性空间) :设 W 是线性空间,若对 , W , 满 足三条公理: ⅰ) 0 ,且 0 = 0 (正定性) ⅱ) , C ⅲ) + (正齐性) (三角不等式)

泛函分析第3章连续线性算子与连续线性泛函

泛函分析第3章连续线性算子与连续线性泛函

第3章连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景, 尤其在各种物理系统研究中应用十分广泛。

3.1连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个”维向量空间E"映射到另一个加维向量空间E"的运算,就是借助于川行”列的矩阵对F中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3・1]由赋范线性空间X中的某子集D到赋范线性空间丫中的映射T 称为算子,D称为算子了的定义域,记为D(r),为称像集{y|y = 7k,xeD(7')}为算子的值域,记作T(D)或77)。

若算子T满足:(1)T(x+y) = Tx+Ty e£)(T))(2)T(ax) = (/rx(V<zeF,xe£)(r))称了为线性算子。

对线性算子,我们自然要求T(D)是X的子空间。

特别地,如果了是由X到实数(复数)域F的映射时,那么称算子T为泛函。

例3.1设X是赋范线性空间,a是一给定的数,映射T.x^ax是X上的线性算子,称为相似算子;当a = l时,称了为单位算子或者恒等算子,记作/。

例3・2 XfxeC[a,b],定义Tx(t) =由积分的线性知,T是C[a,b]到C[a,列空间中的线性算子。

若令f (x) = [ x(T)dt(Vx e C[a,b])则/是C[a,b]上的线性泛函。

第三章 线性算子与线性泛函

第三章 线性算子与线性泛函

证 明 : 用 X 表 示 R上 以 2 为 周 期 的 连 续 函 数 全 体 , 赋 予
范 数 || x || m ax{| x(t) |; t }, 那 么 X 是 一 Banach空 间 。
对 每 个 x X , 其 F - 级 数 的 前 n + 1 项 的 部 分 和 记 为( S n x )(t )。
n
精品课件
共鸣定理的应用
• 1.机械求积公式的收敛性 • 2. Lagrange插值公式的发散性定理:差值
多项式作为连续函数的近似表达时,插值 点的无限增多不能更好的逼近插值函数。 • 3. Fourier级数的发散性问题:存在连续 的周期函数,其Fourier级数在给定点发散。
精品课件
1.机 械 求 积 公 式 的 收 敛 性
如果 fn 在X的每点x处有界, 那么 fn一品课件
定理2.设X,Y都是Banach空间,则B(X,Y)在强收敛意义下是
完备的。
定理3:设X是赋范线性空间,Y是Banach空间, {Tn}B(X,Y) 满足条件:(1){||Tn ||}是有界数列; (2)在X中的某一稠密子集G中的每个元素x,{Tn(x)}都收敛. 则{Tn}强收敛于某一个算子TB(X,Y),且||T||lim||T||.
第三章 线性算子与线性泛函
• 一致有界原理(共鸣定理)及其应用 • Hahn-Banach定理,非零有界线性算子存在
性定理 • 共轭空间与共轭算子 • 开映射、逆算子及闭图形定理 • 算子谱理论简介
精品课件
第一节 共鸣定理及其应用
• 定义:设A是距离空间X的子集,若A在X中的任意 一个非空开集中均不稠密(A没有内点),则称A 是稀疏(疏朗)集;称X是第一纲的,若X可表示成 至多可数的稀疏集的并;不是第一纲的X称为是第 二纲的。

泛函分析知识点

泛函分析知识点

泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间 1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, s.t. ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

《应用泛函分析》前四章重点复习大纲

《应用泛函分析》前四章重点复习大纲

《应用泛函分析》前四章重点复习大纲1第1章预备知识1.1集合的一般知识1.1.1概念、集合的运算上限集、上极限下限集、下极限1.1.2映射与逆映射1.1.3可列集可列集集合的对等关系~(定义1.1)1.2实数集的基本结构1.2.1建立实数的原则及实数的序关系阿基米德有序域(定义1.4)1.2.2确界与确界原理上确界sup E(定义1.5)下确界inf E确界原理(定理1.7)1.2.3实数集的度量结构数列极限与函数极限单调有界原理区间套定理Bolzano-Weierstrass定理Heine-Bore定理Cauchy收敛准则1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛逐点收敛(定义1.11)一致收敛(定义1.12)Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质极限与积分可交换次序1.4 Lebesgue积分1.4.1一维点集的测度开集、闭集有界开集、闭集的测度m G m F外测度内测度可测集(定义1.16)1.4.2可测函数简单函数(定义1.18)零测度集按测度收敛1.4.3 Lebesgue积分有界可测集上的Lebesgue积分Levi引理Lebesgue控制收敛定理(性质1.9)R可积、L可积1.4.4 Rn空间上的Lebesgue定理1.5 空间Lp空间(定义1.28)Holder不等式Minkowski不等式(性质1.16)2第2章度量空间与赋范线性空间2.1度量空间的基本概念2.1.1距离空间度量函数度量空间(X,ρ)2.1.2距离空间中点列的收敛性点列一致收敛按度量收敛2.2度量空间中的开、闭集与连续映射2.2.1度量空间中的开集、闭集开球、闭球内点、外点、边界点、聚点开集、闭集2.2.2度量空间上的连续映射度量空间中的连续映射(定义2.7)同胚映射2.3度量空间中的可分性、完备性与列紧性2.3.1度量空间的可分性稠密子集(定义2.9)可分性2.3.2度量空间的完备性度量空间中Cauchy列(定义2.11)完备性完备子空间距离空间中的闭球套定理(定理2.9)闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性列紧集、紧集(定义2.13)全有界集2.4 Banach压缩映射原理压缩映像不动点Banach压缩映射原理(定理2.16)2.4.1应用隐函数存在性定理(例2.31)2.5 线性空间2.5.1线性空间的定义线性空间(定义2.17)维数与基、直和2.5.2线性算子与线性泛函线性算子线性泛函(定义2.18)零空间ker(T)与值域空间R(T) 2.6 赋范线性空间2.6.1赋范线性空间的定义及例子赋范线性空间Banach空间(定义2.20)2.6.2赋范线性空间的性质收敛性——一致收敛绝对收敛连续性与有界性2.6.3有限维赋范线性空间N维实赋范线性空间3Riesz定理(引理2.2)第3章连续线性算子与连续线性泛函3.1连续线性算子与有界线性算子算子、线性算子、泛函、线性泛函线性算子连续←→有界有解线性算子的范数(定义3.3)有界线性算子空间L(X, Y)L(X, Y)的完备性3.2共鸣定理及其应用有界线性算子列的一致收敛、强收敛稀疏集、第一纲Baire纲定理算子列的一致有界原理(定理3.8)算子范数的有界→强收敛3.3 Hahn-Banach定理次可加正齐次泛函Hahn-Banach定理(定理3.12)Banach保范延拓定理(定理3.14)3.4共轭空间与共轭算子3.4.1共轭空间共轭空间(注定理3.6 p.93)嵌入子空间、等距同构(定义3.7)自反空间(定义3.8)嵌入算子(定理3.15)弱收敛点列(定义3.9)共轭空间上泛函的收敛(定义3.10)线性算子列弱收敛3.4.2共轭算子共轭算子(定义3.12)共轭算子的性质3.5开映射、逆算子及闭图像定理逆算子的有界性开映射Banach开映射定理Banach逆算子定理乘积赋范线性空间闭图像闭算子闭图像定理→算子连续3.6算子谱理论简介复Banach 空间线性算子的正则点谱点:特征值、连续谱、剩余谱正则集——开集谱——有界闭集谱半径(定义3.17)全连续算子(定义3.18)Riesz-Schauder定理4第4章内积空间4.1基本概念内积空间Schwaraz不等式内积空间 Hilbert空间4.2内积空间中元素的直交与直交分解4.2.1直交及其性质直交、直交补(定义4.2)直交投影最佳逼近元极小化向量定理(定理4.2)4.2.2投影定理投影定理(定理4.3)直交分解4.3直交系标准直交系元素x 关于的Fourier级数(定义4.6)Bessel不等式(定理4.5)标准直交系是完全的(定义4.7)Parseval等式(定理4.7)Gram-Schmidt标准正交化法4.4 Hilbert空间上的有界线性泛函4.4.1 Riesz定理Riesz定理4.4.2Hilbert空间上的共轭算子共轭算子(定义4.8)共轭算子的性质4.5自共轭算子自共轭算子(定理4.13)4.6投影算子、正算子和酉算子投影算子(定义4.10)投影算子<->自共轭算子<->幂等算子(定理4.19)正算子(定义4.11)平方根算子(定理4.21)酉算子(定理4.22)。

泛函中三大定理的认识

泛函中三大定理的认识

泛函中三大定理的认识泛函中三大定理及其应用泛函分析科学体系的建立得益于20世纪初关于巴拿赫空间的三大基本定理,即Hahn-Banach 定理,共鸣定理和开映射、逆算子及闭图像定理。

其中:一致有界定理,该定理描述一族有界算子的性质;谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学数学描述中起核心作用;罕-巴拿赫定理(Hahn-Banach Theorem )研究了如何保范地将某算子从某子空间延拓到整个空间。

另一个相关结果则是描述对偶空间非平凡性的;开映射定理和闭图像定理。

1、Hahn-Banach 延拓定理定理:设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足:(1) 当x G ∈时,()()F x f x =; (2) XGF f=;其中XF表示F 作为X 上的线性泛函时的范数;Gf 表示G 上的线性泛函的范数.延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中.2、逆算子定理在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间.定义1逆算子(广义上):设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的逆算子(invertiable operator).定义2正则算子:设X 和Y 是同一数域K 上的线性赋范空间,若算子T :()G X Y ?→满足(1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子,则称T 为正则算子(normal operator).注:①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗?性质1 若T :()G X Y ?→是线性算子,则1T -是线性算子.证明:12,y y Y ∈,,αβ∈K ,由T 线性性知:1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+--1212()y y y y αβαβ=+--0=由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□定理2逆算子定理:设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子.例1 设线性赋范空间X 上有两个范数1?和2?,如果1(,)X ?和2(,)X ?均是Banach 空间,而且2?比1?强,那么范数1?和2?等价.(等价范数定理)证明:设I 是从由2(,)X ?到1(,)X ?上的恒等映射,由于范数2?比1?强,所以存在0M >,使得x X ?∈有112Ix x M x=≤于是I 是线性有界算子,加之I 既是单射又满射,因此根据逆算子定理知1I -是线性有界算子,即存在0M'>,使得x X ?∈有1212I xx M'x -=≤.故范数1?和2?等价。

泛函

泛函

泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。
泛函分析的起源
泛函分析的源头之一是变分法。18世纪形成的变分法的核心课题是研究形如
连续线性泛函
泛函分析的一个基本概念。围绕对它的研究形成的对偶理论至今仍是泛函分析中心课题之一。对它的研究最早可追溯到C.博莱特(1897)提出要用连续性条件来刻画一定函数类上的连续线性映射T:E→F。1903年阿达马在E是C[α,b]([α,b]上连续函数的全体),F是实数域,当{?n}一致收敛于? 时,T?n→T?的情况下,将T 表示成一列积分的极限的形式。但这种表示不惟一,并且有极大任意性。后来在实l2空间上,弗雷歇和里斯独立地在T 是所谓强连续假设下给出简单而惟一的表示,即希尔伯特空间l2上的连续线性泛函表示定理。里斯在1909~1910年又相继给出C[α,b]、Lp[α,b]、lp(p>1)上的表示定理。在这些表示定理的证明中实质上已蕴含线性子空间(又称向量子空间)上连续线性泛函必可延拓到全空间的事实。E.黑利从1912年开始(中间经过第一次世界大战的中断),直到1921年用“赋范数列空间”(他并未用这个名称)代替具体的C[α,b]、Lp[α,b]、lp等而考虑较抽象形态的延拓问题。他使用了凸性以及在有限维空间情况下早为H.闵科夫斯基用过的术语,如支撑超平面等。
巴拿赫空间
在许多具体的无限维空间以及它们上面相应的收敛性出现之后,抽象形态的线性空间(向量空间)以及按范数收敛的出现就成为自然的了。1922~1923年,E.哈恩和巴拿赫(同时还有N.维纳)独立地引入赋范线性空间。当时的讨论事实上都限于完备的赋范线性空间。1922年哈恩从当时分析数学许多分支已达到的成果和方法中提炼出了共鸣定理。1927年H.施坦豪斯和巴拿赫用完备度量空间的第二纲性代替原来所谓“滑动峰”证明方法,给出现今常见的证明。1922~1923年巴拿赫又得到了压缩映射的不动点定理、开映射定理。1927年哈恩完全解决了完备赋范线性空间上泛函延拓定理的证明,并第一次引入赋范线性空间E的对偶空间(共轭空间)K(当时称为极空间)。两年后,巴拿赫用同样方法也得到同样结果(后来,他承认哈恩的优先权),并看到这个定理可以推广。这个推广形式在后来的局部凸拓扑线性空间理论中起了重要作用。1931年巴拿赫将他1923~1929年的工作以及当时主要成果写成《线性算子理论》一书,书中大部分讨论他1929年开始研究的弱收敛,这又成为局部凸拓扑线性空间理论出现的先导。在同一书中还发表了完备赋范线性空间上连续线性算子值域不是第一纲集便是全空间以及闭图像定理等重要结果。这时,作为完备赋范线性空间理论的独立体系已基本形成,它的许多结果已成为泛函分析应用中的强有力工具。人们为纪念他的功绩,把完备赋范线性空间称为巴拿赫空间。近年来,人们特别感兴趣的一个领域是研究巴拿赫空间的几何学。

(完整)泛函分析知识总结,推荐文档

(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

线性算子与线性泛函

线性算子与线性泛函

第二章 线性算子与线性泛函第一节 有界线性算子一、线性算子本段中只需假设,,X Y Z 等是K 上的向量空间。

定义: 假设一个映射:T X Y →满足()(,,,)T x y Tx Tyx y X αβαβαβ+=+∈∈K ,则称T 为从X 到Y 的线性算子。

容易看出,上述等式可推广到更一般的情形:()i iiiiiT x Tx αα=∑∑。

命题2 设:T X Y →是一线性算子,则以下结论成立:〔1〕任给子空间A X ⊂与子空间B Y ⊂,TA 与1T B -分别为Y 与X 的子空间。

特别,(0)0T =与()R T TX =〔值域〕是Y 的子空间;1()(0)N T T -是X 的子空间〔称为T 的核或零空间〕。

〔2〕假设向量组{}i x X ⊂线性相关,则{}i Tx 亦线性相关;假设A 是X 的子空间且dim A <∞,则dim dim TA A <。

〔3〕T 是单射(){0}N T ⇔=。

说明:假设0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;假设(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子〔或相似变换,假设0α≠〕,记作I α,当0α=与1时,I α分别是零算子和单位算子。

对线性算子可定义两种自然的运算:线性运算与乘法。

假设,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为()().(2.1.2)T S x Tx Sx x X αβαβ+=+∈假设:R Y Z →是另一个算子,则由()()().(2.1.3)RT x R Tx x X =∈定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。

实际上,线性算子的乘积就是它们的复合。

容易原子能正验证,如上定义的运算有以下性质:11(),()();R T S RT RS R R T RT RT +=+⎧⎨+=+⎩分配律()();()Q RT QR T =结合律()()(),()RT R T R T αααα==∈K只要以上等式的一端有意义。

泛函分析知识点

泛函分析知识点

泛函分析知识点泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得?x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0?x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间即连续函数空间例6 l 2第二节度量空间中的极限,稠密集,可分空间1. 开球定义设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义若{x n }?X, ?x ∈X, s 、t 、()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义若()(),sup ,x y Ad A d x y ?∈=<∞,则称A 有界4. 稠密集定义设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义如果X 有一个可数的稠密子集,则称X 就是可分空间。

第三节连续映射1、定义设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ?? 中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节柯西(cauchy)点列与完备度量空间1、定义设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析第3章--连续线性算子与连续线性泛函

泛函分析第3章--连续线性算子与连续线性泛函

泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。

3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 对n E 中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。

若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。

对线性算子,我们自然要求()T D 是X 的子空间。

特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。

例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。

第三章 线性算子与线性泛函

第三章 线性算子与线性泛函

精选2021版课件
18
定理3的证明:由于f 是M的有界线性泛函,那么 | f (x) ||| f ||M || x ||,这里|| f ||M sup{| f (m) |;mM}.
||m||1
令p(x) || f ||M || x ||,则p是X上的次可加正齐次泛函, 由定理1,存在X上的连续线性泛函F满足:
精选2021版课件
14
2 在 扩 大 的 定 义 域 上 作 f的 线 性 延 拓 令 f1λx1yfyλc,λx1yX1.
易 证 f1是 X1上 的 线 性 泛 函 ,且 f1|Mf.
3 恰当选择被控制的延拓
f在X1上的线性延拓具有形式:
令f1λx1y f yλc,λx1yX1.
选择恰当的c使得
这表明sup p yM
y -
x1
f
y
inf
yM
p
y
x1
f
y.
取满足下面的不等式的c即可
sup p
yM
y -
x1
f
y
c
inf p y
yM
x1
f
y.
精选2021版课件
16
2 做出f满足以下条件的全部延拓;
f |M f
f
x
px,xX
记这些延拓的全体为Γ.那么我们有
Γg|g是Dg上的线h-Steinhaus定理):设X 是Banach空间,
Y是赋范线性空间,算子族{T; } B(X ,Y ) 满足:
sup || T x || ,x X .那么sup || T || .
推论1:设 fn是Banach空间X 上的一列有界线性泛函,
如果 fn在X的每点x处有界, 那么 fn一致有界.

泛函分析部分知识点汇总

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°的充要条件为x=y 2°对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。

x 中的元素称为点。

2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。

(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义(4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列是(X ,d ) 中的收敛点列,x 是点列 的极限。

收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。

(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。

(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列, 即:按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。

有界线性算子和连续线性泛函.ppt

有界线性算子和连续线性泛函.ppt

Tx c x
(3)
则称 T是 A(T )到 Y 中的有界线性算子,当 A(T) X时,称 T 为X 到 Y中的有界线性
算子,简称为有界算子,对于不 满足条件(3)的算子,称为无界算子。本书主要 讨论有界算子。
定理1 设 T是赋范空间 X 到赋范空间 Y中的线性算子, 则 T 为有界算子的充要条件为 T 是 X 上连续算子。
t nd ,t [a, a 1 ]
a
n
a
1 n
n
d
,
t
(a
1
,b]
a
n
因此
n(t a),t [a,
1,t (a 1
a ,b]
1 n
]
n
bt
Tfn 1 a a fn ( )d dt
a1 t
bt
a n a fn ( )d dt a1 a fn ( )d dt
(1)
T (x) T (x)
(2)
则称T为 A 到Y中的线性算子,其中 A 称为T 的定义域,记为A(T ),TA 称为 T 的值域,记为
R(T ),当 T 取值于实(或复)域时,就称 T 为实(或复)的线性泛函。如果 T为线性算子,
在(2)中取 0,立即可得 T 0 0,即0 (T ),其中 (T )表示算子 T 的零空间
证明 若 T 有界,由(3)式,当 xn x(n ) 时,因为 Txn Tx c xn x
所以 Txn Tx 0 ,即 Txn Tx(n ) ,因此 T 连续。 反之若 T在 X 上连续,但 T 无界,这时在 X 中必有一列向量 x1, x2, x3,,使 xn 0

Txn n xn
定 理 5 设T是DT 上的有界线性算子,那么成立着

泛函分析

泛函分析

泛函分析1.范数&线性泛函的定义定义 设X 是线性空间,若对∀x ∈X ,有唯一实数∥x ∥与之应对,且使得(1) ∥x ∥≥0,且x =0⟺∥x ∥=0(2) ∥x +y ∥≤∥x ∥+∥y ∥, x,y ∈X(3) ∥αx ∥=|α|⋅∥x ∥,α∈R or C,x ∈X则称∥x ∥为X 的范数,此时的线性空间X 称为赋范线性空间.2.设x,y 为线性赋范空间,T:x →y 为线性算子.若T 在x 0处连续,则T 在x 上一致连续,且T 连续当且仅当存在M >0,使得∥Tx ∥≤M ∙∥x ∥,x ∈X证明 (1) 因为T 在x 0处连续,则有∀ε>0,∃δ>0,使得当∥x −x 0∥<δ时,有∥Tx −Tx 0∥<ε对∀y,z ∈X ,∥z −y ∥<δ.令x =z −y +x 0,则x −x 0=z −y.∥Tz −Ty ∥=∥T (z −y )∥=∥T (x −x 0)∥=∥Tx −Tx 0∥<ε若T 在x 0处连续,则T 在x 上一致连续(2) 必要性 设T 在x 上一致连续,则在0处也连续。

令ε=1,∃δ>0,当∥u ∥<δ时,∥Tu ∥<1对∀x ∈X,x =∥x∥δ(δ∥x∥⋅x).令c =∥x∥δ,u =δ∥x∥⋅x ,则∥u ∥=δ,x =cu ∥Tx ∥=∥T (cu )∥=c ∥Tu ∥≤c =∥x ∥δ 令δ−1=M ,则∥Tx ∥≤M ∙∥x ∥充分性 若∥Tx ∥≤M ∙∥x ∥,x ∈X ,当x 0=0时,对于∀ε>0,∃δ=εM ,当∥x −0∥<δ时,有 ∥Tx ∥≤M ∙∥x ∥<M ∙δ=M ∙εM=ε 则对x =0,T 是连续的.3.算子范数∥T ∥=sup ∥x∥<1∥Tx ∥,设T:x →y 为连续线性算子,定义∥T ∥为T 的范数,证明: ∥T ∥=sup ∥x∥<1∥Tx ∥=sup ∥x∥=1∥Tx ∥=sup ∥x∥≠0∥Tx ∥∥x ∥证明 sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≠0∥1∥x∥Tx ∥=sup ∥x∥≠0∥T(1∥x∥x)∥≤sup ∥x∥=1∥Tx ∥≤sup ∥x∥≤1∥Tx ∥=∥T ∥ sup∥x∥≠0∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥=∥T ∥ 则∥T ∥=sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≤1∥Tx ∥ 4.完备性的证明 什么是柯西列,收敛列,收敛列为什么是柯西列答 度量空间X 中的任意柯西列收敛与X 中的一点,则称X 是完备的柯西列:设空间X 为线性空间,{x n }⊂X ,若∀ε>0,∃N ,当n,m >N 时,有∥x n −x m ∥<ε,则{x n }称为柯西列收敛列:设空间X 有{x n },lim x n =x ,由极限的性质,对∀ε>0,∃N ,当n >N 时,有∥x n −x ∥<ε, 当m >N 时,有∥x −x m ∥<ε. 则当n,m >N 时,有∥x n −x m ∥=∥x n −x +x −x m ∥=∥(x n −x )−(x m −x )∥≤∥x n −x ∥+∥x −x m ∥<2ε 则称{x n }为一个收敛列由定义可知,收敛列必定是柯西列,但柯西列不一定是收敛列.比如:有理数集Q ,级数展开式中e =∑1n!∞n=0=1+1+12+⋯ S n =1n!这个数列是柯西列,但是在Q 上不收敛5.内积空间与赋范线性空间的关系内积空间→赋范线性空间(定义∥x ∥=√(x,x))赋范线性空间→内积空间(满足平行四边形法则)6. 证明:内积空间和线性赋范空间,当∥x ∥=√(x,x)证:(1) ∥x +y ∥2=(x +y,x +y )=(x,x +y )+(y,x +y )=(x,x )+(x,y )+(y,x )+(y,y) 由Cauchy-Schwarz 不等式,可知(x,y )≤√(x,x)√(y,y),则上式有∥x +y ∥2≤(x,x )+√(x,x )√(y,y )+√(y,y )√(x,x )+(y,y )=∥x ∥2+∥y ∥2+2∥x ∥∥y ∥=(∥x ∥+∥y ∥)2即∥x +y ∥≤∥x ∥+∥y ∥(2) ∥αx ∥2=(αx,αx )=αα̅(x,x),因为αα̅=|α|2,则等式=|α|2(x,x)则∥αx ∥=|α|√(x,x )=|α|∥x ∥(3) ∥x ∥=√(x,x ),因为(x,x )≥0,所以∥x ∥≥0(4) 当∥x ∥=√(x,x )=0时,(x,x )=0,即x =07.正交系(集)性质,勾股,三角不等式,线性相关的证明答: 向量集S 称为正交的,是指对于每一对x,y 都有x ⊥y ,其中x ∈S,y ∈S 且x ≠y.若对于每一个x ∈S 还有∥x ∥=1,则称这个集为标准正交集平行四边形法则:∥x +y ∥2+∥x −y ∥2=2∥x ∥2+2∥y ∥2证明: ∥x +y ∥2+∥x −y ∥2=(x +y,x +y )+(x −y,x −y )=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−((y,x )−(y,y ))=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−(y,x )+(y,y )=2(x,x )+2(y,y )=2∥x ∥2+2∥y ∥2ε1,ε2,…,εn 为正交向量组,且k 1ε1+k 2ε2+⋯k n εn =0,则0=(0,εi )=(k 1ε1+k 2ε2+⋯k n εn )=k i (εi ,εi )=k i ,即k i =0(i =1,2,…,n),所以ε1,ε2,…,εn 线性无关.8. X 是一个线性空间,S ⊂X,S ⊥={x ′:x ′∈X f |(x,x ′)=0,x ∈S}⊂X f ,证明S ⊥是X f 一个子空间证明 X 是线性空间,则X f 也是线性空间.因为S ⊥⊂X f ,则对任意x ′,y ′∈S ⊥,有x ′,y ′∈X f 而(x ′+y ′)(x )=x ′(x )+y ′(x )=0,故x ′+y ′∈S ⊥.∀α∈R,x ′(αx )=αx ′(x )=0.故αx ′∈S ⊥,则S ⊥是X f 一个子空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。

他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。

3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。

同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。

把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。

撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。

本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。

[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。

若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。

对线性算子,我们自然要求()T D 是X 的子空间。

特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。

例3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。

例3.2 [],x C a b ∀∈,定义()()t aTx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。

若令()()[](),ba f x x d x C ab ττ=∀∈⎰则f 是[],C a b 上的线性泛函。

[定义3.2] 设,X Y 是两个赋范线性空间,:T X X →是线性算子,称T 在x 点连续的,是指若{},n n x X x x ∈→,则()n Tx Tx n →→∞;若T 在X 上每一点都连续,则称T 在X 上连续;称T 是有界的,是指T 将X 中的有界集映成Y 中有界集。

[定理3.1] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性算子,若T 在某一点()0x D T ∈ 连续,则T 在()D T 上连续。

证明:对()x D T ∀∈,设{}()n x D T ⊂,且()n x x n →→∞,于是()00n x x x x n -+→→∞,由假设T 在0x 点连续,所以当n →∞时,有()000n n T x x x Tx Tx Tx Tx -+=-+→因此,n Tx Tx →,即T 在x 点连续。

由x 的任意性可知,T 在()D T 上连续。

定理3.1说明线性算子若在一点连续,可推出其在定义的空间上连续。

特别地,线性算子的连续性可由零元的连续性来刻画,即线性算子T 连续等价于若n x θ→(X 中零元),则n Tx θ→(Y 中零元)。

例3.3 若T 是n 维赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 在X 上连续。

证明:在X 中取一组基{}12,,,n e e e ,设()()11,2,3,nm m j j j x x e Xm ==∈=∑且()m x m θ→→∞,即()0m x m →→∞,则()()()12210nm j j x m =⎡⎤→→∞⎢⎥⎣⎦∑从而()()()01,2,3,m j x j n m →=→∞。

于是()()()111max 0nnm m m jj jjj nj j Tx xTe x Tem ≤≤===≤→→∞∑∑因此,()m Tx m θ→→∞,即T 在x θ=处连续,进而T 在X 上每点连续。

[定理3.2] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性映射,则T 有界的充分必要条件是:存在常数0M >,使不等式成立,即()()Tx M xx D T ≤∈证明:必要性。

因T 有界,所以T 将D 中的闭单位球(){}11B x x θ=≤映成Y 中的有界集,即像集()1TB θ是Y 中的有界集。

记(){}1sup :M Tx x B θ=∈,此时,对每个()()1,,xx D T x B xθθ∈≠∈,由M 的定义有x T M x ⎛⎫≤ ⎪ ⎪⎝⎭……………………(3.1) 即Tx M x ≤,而当x θ=时,不等式(3.1)变成等式。

故()x D T ∀∈有Tx M x ≤充分性。

设A 是()D T 的任一有界集,则存在常数1M 使()1x M x A ≤∀∈。

由()()Tx M x x D T ≤∈知()1Ty M y MM y A ≤≤∈ 故TA 有界。

证毕。

[定理3.3] 设,X Y 是两个赋范线性空间,T 是从X 的子空间D 到Y 中的线性映射,则T 是连续的充要条件是T 是有界的。

证明:充分性。

设T 有界,则存在常数0M >,使对一切(),x D T Tx M x ∈≤,从而对(){}(),n n x x n x D T ∂→→∞⊂有()()0n n n Tx Tx T x x M x x n -=-≤-→→∞即()n Tx Tx n →→∞。

所以,T 是连续的。

必要性。

若T 连续但T 是无界的,那么对每个n N ∈,必存在()n x D T ∈,使n n Tx n x >,令n n n x y n x =,那么()10n y n n=→→∞,即n y θ→,由T 的连续性,()n Ty n θ→→∞,但是另一方面,1n nn nnn x Tx Ty n x n x =>=,引出矛盾,故T 有界。

定理3.3说明,对于线性算子,连续性与有界性是两个等价概念,今后用(),L X Y 表示X 到Y 的有界线性算子组成的集合。

例3.1 ,例3.2的线性算子均易证明是有界线性算子,但无界线性算子是存在的。

例3.4 考察定义在区间[]0,1上的连续可微函数全体,记作[]10,1C ,其中范数定义为()01max t x x t ≤≤=,不难证明,微分算子ddt是把[]10,1C 映入[]0,1C 中的线性算子。

取函数列{}sin n t π,显然,sin 1n t π=,但()sin cos dn t n n t n n dtππππ==→∞→∞ 因此,微分算子是无界的。

[定义3.3] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,对一切x X ∈,满足Tx M x ≤的正数M 的下确界,称为算子T 的范数,记作T 。

由定义可知,对一切x X ∈,都有Tx T x ≤。

[定理3.4] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,则有11sup sup sup x Xx Xx Xx x x TxT Tx Tx x θ∈∈∈=≤≠===证明:由Tx T x ≤,易得1sup x Xx T Tx ∈==……………………………………(3.2)根据T 的定义,对于任给的0ε>,存在非零0x X ∈,使()00Tx T x ε≥-令0x x x '=,则有()0Tx T ε'≥-,因此 ()11sup sup x Xx Xx x T Tx Tx ε∈∈=≤-≤≤令0ε→得 11sup sup x Xx Xx x T Tx Tx ∈∈=≤≤≤……………………(3.3)由式(3.2)和式(3.3),便得11sup sup x Xx Xx x T Tx Tx ∈∈=≤==而supx Xx Tx T xθ∈≠=,由定义易知。

例3.5 在[]1,L a b 上定义算子T 如下()()()[]()1,,xaTf x f t dt f L a b =∀∈⎰(1)把T 视为[]1,L a b 到[],C a b 的算子,求T ; (2)把T 视为[]1,L a b 到[]1,L a b 的算子,求T 。

解:算子T 的线性是显然的,下面分别求T 。

(1)设T :[][]1,,L a b C a b →,任取[]1,f L a b ∈,由于[],Tf C a b ∈,从而()()()max maxxaa x ba xb Tf Tf x f t dt ≤≤≤≤==⎰()()max xbaaa x bf t dt f t dt f ≤≤≤≤=⎰⎰故T 是有界的,并且1T ≤。

另一方面,取()[]01,,f t t a b b a=∈-,并且 ()0011b baaf f t dt dt b a===-⎰⎰于是0111sup max 1xb aa a x bf T Tf Tf dt dt b a b a≤≤==≥===--⎰⎰故1T =。

(2)设T :[][]11,,L a b L a b →,任取[]1,f L a b ∈,由于[]1,Tf L a b ∈,从而()()()bxbxaaaaTf f t dt dx f t dt dx =≤⎰⎰⎰⎰()()()bbaaf t dt dx b a f ≤=-⎰⎰因此,T 是有界的,并且T b a ≤-;另一方面,对任何使得1a b n+<的自然数n ,作函数()1,,10,,n n x a a n f x x a b n ⎧⎡⎤∈+⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪∈+ ⎥⎪⎝⎦⎩显然[],n f L a b ∈,且()1b n n af f t dt ==⎰,而()bxn n aaTf f t dt dx =⎰⎰()11110a b a x nnaa aa nnn x a dx ndt dt dx ++++=-++⎰⎰⎰⎰11122b a b a n n n=+--=-- 所以,又有sup n T Tf b a ≥=-因此,T b a =-。

此例告诉我们,虽然形式上是一样的算子,但由于视作不同空间的映射,他们的算子范数未必相同。

一般说来,求一个具体算子的范数并不容易,因此,在很多场合,只能对算子的范数作出估计。

例3.6 设(),K s t 在[][],,a b a b ⨯上连续,定义算子T :[][],,C a b C a b →为()()(),ba Tx s K s t x t dt =⎰则[][](),,,T L C a b C a b ∈,且(){}max,:baT K s t dt a s b ≤≤≤⎰证明:由于()()()max,ba a sb Tx s K s t x t dt ≤≤=⎰()()max ,max b aa s ba s bK s t dt x t ≤≤≤≤≤⎰(){}max,:baK s t dt a s bx =≤≤⎰故结论成立。

相关文档
最新文档