8机械设计第八章

合集下载

《机械设计基础》第八章 间歇运动机构

《机械设计基础》第八章 间歇运动机构
因运动系数不可能大于1,即
1 1 n( ) 1 2 z
2z 由此得槽数z与圆销数n的关系: n≤ z2
槽 数z 圆销数 n
3 1~6
4 1~4
5、 6 1~3
7、 8 1~2
三、槽轮机构的特点和应用
优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求 恒定旋转角的分度机构中。
第八章
间歇运动机构
(intermittent mechanism)
§8-1 棘轮机构
(ratchet mechanism)
一、棘轮机构的工作原理
组成构件: 摇杆1、棘爪4、棘轮3、止动爪5、机架2
为保持棘爪、止动爪与棘轮始终接触,可
在其旁边增设弹簧。 棘轮固联在轴O上,其轮齿分布在轮的外
A 4 1 n
四、棘轮机构的特点及应用
有齿的棘轮机构运动可靠,从动棘轮容易实现有级调节,但是有噪声、 冲击,轮齿易摩损,高速时尤其严重,常用于低速、轻载的间歇传动。 起重机、绞盘常用棘轮机构使提升的重物能停在任何位置,以防止由 于停电等原因造成事故。
§8-2 槽轮机构
(geneva mechanism)
一、槽轮机构的工作原理
槽轮的形式
二、槽轮机构的主要参数
槽轮机构的主要参数是:槽数z和拨盘圆销数n 为了使槽轮2在开始和终止转动时的瞬时 角速度为零,以避免圆销与槽发生撞击,圆 销进入或脱出径向槽的瞬时,槽的中心线O2A 应与O1A垂直。 设z为均匀分布的径向槽数目,则槽轮2转 过2φ2=2π/z弧度时,拨盘1的转角2φ1将为
21 22
2 z
在一个运动循环内,槽轮2的运动时间td 对拨盘1的运动时间t之比值τ称为运动特性系 数。

机械设计8—滑动轴承

机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)

最新机械设计课后参考答案第八章

最新机械设计课后参考答案第八章

6.带传动的主要失效有:带的疲劳破坏和打滑。

带传动的设计准则是:保证带传动工作时不打滑,同时又有足够的疲劳强度和寿命。

7.带传动经过一定时间运转后,由于塑性变形而松弛,使张紧力降低,为保证其传动能力,应有张紧装置。

常用的张紧装置有:定期张紧装置、自动张紧装置、张紧轮张紧装置。

当中心距不能调节时,可采用张紧轮张紧装置。

张紧轮一般应放在松边的内侧,使带只受单向弯曲,同时张紧轮还应尽量靠近大带轮,以免过分影响带在小带轮上的包角。

8.F1+F2= 2F0 ; Fe = F1-F2三、综合题:1. T1= 9550×P2/n1η Nm ;方向为:顺时针T2= 9550×P2/n2 Nm ;方向为:逆时针Fe = F1-F2; Fec = F1(1-1/e fα)2.Fec = 2F0×(еfνα-1)/(еfνα+1) = 478.4 NTmax = Fec×d d1/2 = 23.92 NmP出= Fec×ν×η/1000=3.45 KW ;3.Fe = P×1000/ν= 750 N , Fe = F1-F2 F1=2F2 F0 =(F1+F2)/2 = 1.5 F2 F1 = 1500 N F2= 750 N F0 = 1125 N4.i = n1/n2 = 3.625 d d2 = i×d d1 = 507.5mm 选:K A = 1.3 Kα= 0.96 Kι= 1.08 α1 = 1800-(d d2-d d1)/a×57.50= 166.790L’d = 2 a +π/2×(d d2+d d1) + (d d2-d d1)2/4 a = 4238 mm选:P0 = 4.91 △P0 = 0.59∴P ca = Z×(P0+△P0)×Kι×Kα= 11.4 KW,P= P ca/K A = 8.8 KW ;必修一期末测试1一.选择题(共25小题)1.现有三组溶液:①汽油和氯化钠水溶液;②39%乙醇溶液;③氯化钠和单质碘的水溶液,分离以上各混合物的正确方法依次是()A.分液、萃取、蒸馏 B.萃取、蒸馏、分液C.分液、蒸馏、萃取D.蒸馏、萃取、分液.可以收集到氯气数目为:。

机械设计基础第八章

机械设计基础第八章

27
蜗杆蜗轮啮合
n1 z 2 i12 n2 z1
方向如图中箭头所示
28
定轴轮系
n1 i14 ? n4
29
n1 z2 i12 n2 z1
i23 z3 n2 n3 z2
n3 z4 i34 n4 z3
30
n2 n2
n1 n2 n3 i12 i23 i34 n2 n3 n4 z3 z2 z4 ( ) ( ) z1 z 2 z3
时针(h)
分针(m)
12

滚齿机:实现轮坯与滚刀范成运动。轴I的运动和 动力经过锥齿轮1、2传给滚刀,经过齿轮3、4、5、 6、7和蜗杆传动8、9传给轮坯。
13
6. 运动的合成和分解
运动的合成 将两个独立的转动合成为一个转动。 运动的分解 将一个转动分解成两个独立的转动。
14
二、轮系的分类
根据轮系在传动中各齿轮轴线的 位置是否固定,将轮系分类。
A 13
z2 z3 101 99 (1) z1 z2 100 100 n1 101 99 1 1 nA 100 100 10000
2
iA1 nA n1 10000
系杆转10000圈,齿轮1同向转1圈 四个齿轮的齿数相差不多,但可得到大的传动比
52
如果齿轮3的齿数由99改为100
注意的问题
(1)n1、nk、nH必须 是轴线平行的相应构 件的转速; (2)各转速代入公式 时,应带有本身的正
n1 nH i nk nH
H 1k
号或负号。
49
例题6 如图所示行星轮系,各轮 齿数为z1=40, z2=20,z3=80。 试计算中心轮1和系杆H的传动 比i1H。

机械设计第8章带传动

机械设计第8章带传动

设带的总长不变,则紧边拉力的增量应等于松边拉力的减量:
F1 + F2 = 2 F0
①取绕在主动轮一侧的带为分离体:
F2 Ff
O1
T=0
D1 D1 D1 Ff F2 F1 0 2 2 2
n1
Ff F1 F2
上式表明:摩擦力Ff 提供了松边、紧边的拉力差。
主动轮
F1
②取主动轮及绕于其上的带为分离体:
2)V带
应用最广的带传动,在同样的张紧力下, V带传动较平带传动能产生更大的摩擦力。
普通V带
窄V带
宽V带
FQ
FN FQ
/2
平带传动----平面摩擦
FN= FQ
摩擦力: F f = FN f = f FQ
V带传动----槽面摩擦
FN sin /2 FQ= 2 2
/2
FN=
FQ
sin /2
三、带传动的特点(主要针对摩擦型)
优点:
☻ 缓冲,吸振,平稳无噪音。
用于高速轴:★电机→带传动→齿轮传动→工作机 ☻ 适宜远距离传动。
☻ 过载时打滑可防止其它零件损坏。
☻结构简单、成本低廉。
缺点:
☻有弹性滑动,传动比不稳定。 ☻带的寿命较短,传动效率较低。 ☻需要张紧装臵。
☻ 不宜用于高温、易燃、易爆场合。
中性层
bp 节宽bp:节面的宽度。
节面
dd
带轮槽宽尺寸等于带的节宽bp处的直径---基准直径dd
V带在规定的张紧力下,位于带轮基准直径上的周线长度---带的基准长度Ld
表8-2 V带的基准长度系列及长度系数KL 基准长度 KL 基准长度 KL Ld / mm Y Z A B C Ld / mm Z A B C 200 0.81 2000 1.08 1.03 0.98 0.88 224 0.82 2240 1.10 1.06 1.0 0.91 250 0.84 2500 1.30 1.09 1.03 0.93 280 0.87 2800 1.11 1.05 0.95 315 0.89 3150 1.13 1.07 0.07 355 0.92 3550 1.17 1.07 0.97 400 0.96 0.79 4000 1.10 1.13 1.02 450 1.00 0.80 4500 1.15 1.04 500 1.02 0.81 5000 1.18 1.07 560 0.82 5600 1.09 630 0.84 0.81 6300 1.12 710 0.86 0.83 7100 1.15 800 0.90 0.85 8000 1.18 900 0.92 0.87 0.82 9000 1.21 1000 0.94 0.89 0.84 10000 1.23 1120 0.95 0.91 0.86 11200 1250 0.98 0.93 0.88 12500 1400 1.01 0.96 0.90 14000 1600 1.04 0.99 0.92 0.83 16000 1800 1.06 1.01 0.95 0.86

机械设计第八章习题答案

机械设计第八章习题答案

机械设计第八章习题答案8-1 V带传动的n1= 1450 r/min ,带与带轮的当量摩擦系数f v= 0.51 ,包角α1= 180°,初拉力F0= 360 N 。

试问:( 1 )该传动所能传递的最大有效拉力为多少?( 2 )若d d1= 100 mm ,其传递的最大转矩为多少?( 3 )若传动效率为0.95 ,弹性滑动忽略不计,从动轮输出功率为多少?解:(1 )由p148式8-7得F ec= 2 F01− 1e f v α1 1+ 1e f v α1= 2 ×360 ×1− 1e0.51 π1+ 1e0.51 π= 478.4 N(2 )T = F ec d d12= 478.4 ×100 × 10− 32= 23.92 N·m(3 )由从动轮输出功率P = P主·η,其中P主=F ec V1000,故P = F ec V1000·η= F ec n1π d d11000 ×60 ×1000·η= 478.4 ×1450 ×3.14 ×1001000 ×60 ×1000×0.95 = 3.45 kW8-2 V带传动传递功率P = 7.5 kW ,带速v = 10 m/s ,紧边拉力是松边拉力的两倍,即F1= 2 F2,试求紧边拉力F1、有效拉力F e和初拉力F0。

解:∵P = F e v1000∴F e= 1000 Pv = 1000 ×7.510= 750 N∵F e= F1-F2且F1= 2 F2∴F1= 2 F e= 2 ×750 = 1500 N∵F1= F0+ F e2∴F0= F1-F e2= 1500 -7502= 1125 N8-4 有一带式输送装置,其异步电动机与齿轮减速器之间用普通V带传动,电动机功率P = 7 kW ,转速n1= 960r/min ,减速器输入轴的转速n2= 330 r/min ,允许误差为±5% ,运输装置工作时有轻度冲击,两班制工作,试设计此带传动。

齿轮传动机械设计

齿轮传动机械设计
选择齿数z1,z2=uz1;
选择齿宽系数d
确定主要参数: 中心距a——圆整 模数m——取标准值 反求齿数z1、z2
根据材料硬度确定设计准则 (按?设计;按?校核)
计算小、大齿轮的各许用应力 [σH1]、 [σH2]、 [σF1] 、[σF2]
计算主要尺寸:d1=mz1 (满足设计条件)d2=mz2 …
机械设计 (8)
第八章 齿轮传动
概述 齿轮传动的失效形式和设计准则 标准直齿圆柱齿轮的强度计算 齿轮的材料和许用应力 斜齿圆柱齿轮传动 圆锥齿轮传动
齿轮的结构设计
§8.1 概 述
一、齿轮传动的主要特点:
传动效率高 可达99%。在常用的机械传动中,齿轮传动的效率最高;
结构紧凑 与带传动、链传动相比,在同样的使用条件下,齿轮传动所需
Fn
αF
F2 hF
弯曲力矩: M K Fn cosF hF
30˚ 30˚
危险截面的弯曲截面系数:W
bS
2 F
6
SF rb
弯曲应力:
F
M W
6KFnhF cos F
bS
2 F
O
∵ Fn
Ft
cos
F
6KFt hF cos F
bS
2 F
cos
§8.3 标准直齿圆柱齿轮强度计算
弯曲应力: F
6KFt hF cos F
径向力:Fr
Ft
tan
2T1 d1
tan
d1——小齿轮节圆直径
径向力方向:指向各自轮心
法向力:Fn
Ft
cos
2T1
d1 cos
§8.3 标准直齿圆柱齿轮强度计算
二、轮齿的计算载荷

机械设计第8章

机械设计第8章

平带 Ff=N ·f=FN ·f V带 Ff=2Nf
=
FN f
sin( /
2) =
FN ·f′
当量摩擦系数 f′>f,
V带传动能力更大。 注意:V带楔角为40° 带轮槽角小于40°。
二、带传动的结构(阅读)
带传动概述
机构传动中应用最广的是普通V带传动。(窄V带、宽V带、大 楔角V带、汽车V带) 普通V带是标准件,制成无接头的环形,按剖面尺寸大小分为 Y、Z、A、B、C、D、E七种型号,剖面尺寸由小到大。注意: 节宽bp、节径dp和基准直径dd,基准长度Ld。
4)带传动在工__,其中在所有 横剖面上都相等的应力是_____ ,带中的最大应力将产生在_____。
5) _____滑动是带传动的固有特性,它是_____的,也是_____避免的,而 打滑是由于有效拉力F达到或超过_____时,带与带轮在整个接触弧上发生相 对滑动所产生的,这是_____避免的。
三、带传动的特点
带传动概述
优点: (1)传动平稳、噪声小。 (2)过载保护。 (3)适于中心距大场合。 (4)结构简单,成本低。 缺点:
(1)传动比不恒定。 (2)效率低、寿命短。 (3)外廓尺寸大。 (4)支承带轮的轴和轴承受力较大。 (5)不宜用于高温、易燃场合。 带传动常用于第一级传动,功率p≤80kw,带速 V=5~25m/s,传动比=2-4,效率η=0.91~0.96。
引入滑动率ε来表达滑动的大小: = (v1 - v2 )/v1 注意:弹性滑动不可避免,打滑可以避免。
带传动的几何计算及基本理论
五、带传动的主要失效形式及设计准则
1、主要失效形式
(1)打滑。当传递的圆周力F超过了带与带轮之间摩擦力 总和的极限时,发生过载打滑,使传动失效。

机械设计第八章-带传动-思考题-答案

机械设计第八章-带传动-思考题-答案

《带传动》课堂练习题一、填空题1普通V带传动中,已知预紧力F o=25OO N,传递圆周力为800 N,若不计带的离心力,则工作时的紧边拉力F i为2900 ,松边拉力F2为2100 。

2、当带有打滑趋势时,带传动的有效拉力达到最大,而带传动的最大有效拉力决定于__ 0 _________ 、__________ 、 f 三个因素。

3、带传动的设计准则是保证带疲劳强度,并具有一定的寿命。

4、在同样条件下,V带传动产生的摩擦力比平带传动大得多,原因是V带在接触面上所受的正压力大于平带。

5、V带传动的主要失效形式是疲劳断裂和打滑。

6、皮带传动中,带横截面内的最大拉应力发生在紧边开始绕上小带轮处:皮带传动的打滑总是发生在皮带与小带轮之间。

7、皮带传动中,预紧力F0过小,则带与带轮间的摩擦力减小,皮带传动易出现_________打滑现象而导致传动失效。

&在V带传动中,选取小带轮直径D1 > D llim。

的主要目的是防止带的弯曲应力过大。

9、在设计V带传动时,V带的型号可根据计算功率Pea和小带轮转速n1查选型图确定。

10、带传动中,打滑是指带与带轮之间发生显著的相对滑动_______ ,多发生在小带轮上。

刚开始打滑时紧边拉力F1与松边拉力F2的关系为—F1=F2e f。

11、带传动中的弹性滑动是由松紧边的变形不同________ 产生的,可引起速度损失________,传动效率下降、带磨损等后果,可以通过减小松紧边的拉力差即有效拉力来降低。

12、带传动设计中,应使小带轮直径d> d rnin,这是因为______;应使传动比i <7,这是因为中心距一定时传动比越大,小带轮的包角越小,将降低带的传动性能。

13、带传动中,带上受的三种应力是拉应力,弯曲应力和离心应力。

最大应力等于1+ b1+c ,它发生在紧边开始绕上小带轮处处,若带的许用应力小于它,将导致带的疲劳失效。

14、皮带传动应设置在机械传动系统的高速级,否则容易产生打滑。

机械设计_第8章-带传动_(1)

机械设计_第8章-带传动_(1)
14
第八章 带传动
8-3、V带传动的设计计算
(一)设计准则和单根V带的基本额定功率 • 带传动的主要失效形式:打滑、传动带的疲劳破坏。 • 设计准则: 在不打滑的条件下,具有一定的疲劳强度和寿命。
Fec = F1 (1 −
1 e
) fV α
σ max = σ 1 + σ b1 + σ c ≤ [σ ]
弯曲应力与带轮直径成反比,为了避免弯曲应力过大,带轮 直径不得小于最小值(表8-6)。
11
第八章 带传动
带的应力分布及最大应力值 2 离心拉应力 σ c = Fc / A = qv / A (MPa)
拉应力 弯曲应力 σc σ1 σ2 σb1 σb2
σ 1 = F1 / A (MPa) σ 2 = F2 / A (MPa)
F2 = F0 − Fe / 2
过大初始拉力的危害
P一定时,Fe一定。故增加F0导致F1及F2增加 ——带张得过紧,将因过度磨损而很快松弛
第八章 带传动
(二)带传动的初拉力和临界摩擦力 在一定的初拉力作用下,带与带轮之间最多能传递多大摩擦力 呢? 当带与带轮之间出现打滑趋势时,摩擦力达到最大(临界状 态Ffc),从而有效拉力也达到最大(临界状态Fec )。 • 临界状态下,紧松边拉力的关系(欧拉公式):
F1 = e fV α F2
α 包角 α1 = 180o − fV 当量摩擦系数
d d 2 − d d1 × 57.3o a
α2 α1
8
第八章 带传动
联解: 得:
F1 = F2 e
fV α
Fec = F1 − F2
e fV α F1 = Fec fV α e −1 1 F2 = Fec f α e −1

《机械设计基础》第8章 齿轮系

《机械设计基础》第8章 齿轮系
z 2 z3 1H 1 H H i13 H 3 3 H z1 z2
48 24 4 48 18 3
250 H 4 100 H 3
H 2
2
1
2‘ H
3
3H
3
1

H 1
H 50
周转轮系传动比计算方法小结:
定轴齿轮系
平面定轴齿轮系 空间定轴齿轮系
二.行星齿轮系
1. 定义
在齿轮系运转时,若至少有一个齿轮的几何轴线 绕另一齿轮固定几何轴线转动,则该齿轮系称为行星 齿轮系(如图8-3)。它主要由行星齿轮、行星架(系 杆)、和中心轮所组成。
2. 基本构件
行星齿轮系中由于一般都以中心轮和行星架作 为运动的输入或输出构件,故称它们为行星齿轮系 的基本构件
上角标 H
周转轮系
-w
H
正负号问题
转化机构:假想的定轴轮系
i1H n 1 n H i1n
计算转化机构的传动比 计算周转轮系传动比
1H z 2 z n i H z1 z n1 n
H 1n
i1 n 1
n
例题8-2 :
一差动齿轮系如图 所示,已知个轮齿数为: z1 16, z 2 24, z3 64, 当轮1和轮3的转速为:
式中:G为主动轮,K为从动轮,中间各轮的主 从地位也应按此假定判定。m为齿轮G至K间外啮合 的次数。
求行星齿轮系传动比时,必须注意以下几点:
(1) nG , K ,nH 必须是轴线平行或重合的相应齿轮的 n 转速。 (2)将nG,nK,nH 的已知值代入公式时必须带正 号或负号。
H (3) i GK i GK。 i GK为转化机构中轮G与K的转速之 比,其大小与正负号应按定轴齿轮系传动比的计算 方法确定。

机械创新设计第八章 反求工程与创新设计

机械创新设计第八章 反求工程与创新设计

图8-3
功能树的示意图
图8-4
点阵打印机工作原理图
针式打印机功能介绍 子功能1:由走纸机构实现,由步进电机驱动的齿轮系统组成,其功能目标 为实现走纸运动。
子功能2:由色带机构实现,由直流电机和齿轮摆杆系统组成,其功能目标
为实现色带的往复移动,使色带均匀消耗。 子功能3:由字车机构实现,带有编码器的直流伺服电机和钢丝绳轮在导轨
二、引进技术的模式
引进技术的模式一般有两种:即产品引进和技术资料的引进。 引进整机 产品引进(硬件引进) 引进部件
引进零件 生产图样
技术引进(软件引进) 专利文献 产品说明书
图8-1 引进技术的模式
三、技术引进与反求设计
1 、引进设备直接为生产服务 2 、引进产品与仿造
3 、引进产品与改进
4 、引进产品与创新设计
2、获得一定程度的授权 如购买产品后仿造、销售会造成侵权
3、保护自己通过反求设计后所获得的成果
第二节 技术引进与反求设计
一、技术引进的基本原则 1、待引进的技术项目首先要是国内或本单位的 急需关键技术 2、待引进的技术必须是科技含量高的先进技术
3、有技术和经济实力,能把引进的技术产品化
4、引进技术转换的产品要能产生良好的社会经济效益
二、机械设备反求设计的一般过程
引进技术 功能分析与测试 原理方案分析 设备分解 尺寸公差材料反求 机械性能反求 设计思想反求 反 求 设 计 制 造 样 机
样 机 实 验
评 价
零件测绘 绘制草图
图8-2
装配工艺反求
制造工艺反求
机械设备反求设计过程的流程图
三、功能分析、测试与反求
1、功能分解及功能树 功能树参见下图
第二类有柴油机、汽油机、蒸汽机、燃汽轮机原子能发动机等,它们

机械设计第八章 轴 课后习题答案

机械设计第八章 轴 课后习题答案

第八章 轴及轴毂联接8-1 答:Ⅰ轴为传动轴,Ⅱ轴、Ⅲ轴、Ⅳ轴为转轴,Ⅴ轴为心轴。

8-2 答:见表8-2。

8-3 答: 由左到右:1)键槽位置错误,2)动静件之间应有间隙,3)轴承盖处应设密封装置,4)应有调整垫片,5)轴承内圈定位过高,6)与轮毂相配的轴段长度应短于轮毂长度,7)轴段过长,不利于轴承安装,应设计为阶梯轴,8)轴承内圈无定位。

改进后输出轴的结构如题8-3解图:题8-3解图8-4 解:1.作计算简图并求轴的支反力(图b )水平面的支反力垂直面的支反力2.计算弯矩并作弯矩图(图c )水平面弯矩图M H =R AH ×178=2124×178N·mm =378N·m垂直面弯矩图M V1=R A V ×178=-190×178N·mm=-33800N·mmM V2=R BV ×72=2910×72N·mm=210000N·mm合成弯矩图(图d ) 3.计算转矩并作转矩图(图e)T =F t d/2=7375×400/2=1475000N·mm计算截面C 的当量弯矩mmN 963133mm N )1475000(0.6380000)(22221d1⋅=⋅⨯+=+=T αM M N 901N 250272720/2004217125072/2r a AV=⨯-⨯=⋅-⋅=F d F R mmN 380000mm N 37800033800222H 2v11⋅=⋅+=+=M M M mm N 320004mm N 378000210000222H 2v22⋅=⋅+=+=M M M N 1242N 25027375725072t AH =⨯=⨯=F R N 5251N 2501783757250178t BH =⨯=⨯=F R N 2910N 2501782720/20042171250178/2r a BV =⨯+⨯=⋅+⋅=F d F RM d2=M 2=432000N·mm按弯扭合成应力校核轴的强度根据轴的材料为45钢,调质处理,由表8-2查得[σ-1]=60MPa 。

《机械设计基础》第八章 键联接和销联接

《机械设计基础》第八章 键联接和销联接

花键联接的许用挤压应力、许用压强(MPa)见下表
机械设计基础
许用挤压应力、许用压强 联接工作方式
使用和制造情况 不良
齿面未经热处理 30~50 60~100 80~120 15~20 20~30 25~40 ——
齿面经热处理 40~70 100~140 120~200 20~35 30~60 40~70 3~10 5~15 10~20
键用螺钉固定在轴槽中,键与毂槽为间隙配合,故轮毂件可 在键上作轴向滑动,此时键起导向作用。为了拆卸方便,键上制 有起键螺孔,拧入螺钉即可将键顶出。
导向平键用于轴上零件移动量不大的场合,如变速箱中的滑 移齿轮与轴的联接。
机械设计基础
(3)滑键联接 当零件滑移的距离较大时,因所需导向平键的长度过大,制 造困难,故宜采用滑键。
《机械设计基础》
机械设计基础
第八章 键联接和销联接
8.1 概 述 • 联接的组成 机械联接一般由被联接件和联接件组成,有些时候被联接件 之间进行直接联接,并无独立的联接件。 联接的类型 动联接 各种运动副 静联接 • 联接的目的 动联接: 实现机械运动 便于机械的制造、装配、运输、安装和维护,降低 静联接: 成本。 机械设计方头
单圆头
A型键轴向定位好,应用广泛,但轴上键槽端部的应力集 中较大。C型键只能用于轴端。A、C型键的轴上键槽用立铣 刀切制。B型键的轴上键槽用盘铣刀铣出。B型键避免了圆 头平键的缺点,单键在键槽中的固定不好,常用紧定螺钉进 行固定。 机械设计基础
(2)导向平键联接 导向平键与普通平键结构 相似,但比较长,其长度等于 轮毂宽度与轮毂轴向移动距离 之和。
滑键比较短,固定在轮毂上,而轴上的键槽比较长,键与轴 槽为间隙配合,轴上零件可带键在轴槽中滑动。 滑键主要用于轴上零件移动量较大的场合,如车床光杠与溜 板箱之间的联接。 机械设计基础

《机械设计基础》第八章-轮系解析

《机械设计基础》第八章-轮系解析
➢上述这种运用相对运动原理,将周转轮系转化成 假想的定轴轮系,然后计算其传动比的方法,称为 相对速度法或反转法。
8.3周转轮系及其传动比
例:图示行星轮系中,各轮的齿数为:z1=27,z2=17,z3=61。 已知n1=6000r/min,求传动比i1H和转臂H的转速nH。
n1 nH z3
n3 nH
z5=78
- 差动轮系中 n1 nH Z2Z3 52 78
n3 nH
Z1Z 2
24 21
定轴轮系中
i35
n3 n5
z5 z3
78 18
13 n3 3 nH
代入上式,得
n1 nH 169
13 3
nH
nH
21
i1H 43.9
8.5轮系的应用
一、相距较远的两轴之间的传动
较远距离传动
8.5轮系的应用
二、实现变速传动
多级传动比传动
当主动轴转速不变时,利用轮系可使从动轴获得多 种工作转速。
8.5轮系的应用
三、获得大的传动比
行星轮系
8.5轮系的应用
四、合成运动和分解运动
8.5轮系的应用
差动轮系可分解运动
1.图示轮系中,已知Z1=Z2'=51,Z2=Z3=49, 试求传动比iH1。
1 800 80
10r / min
8.3周转轮系及其传动比
差动轮系
一、周转轮系的组成 两个原动件
行星轮系 一个原动件
2-行星轮
每个单一的周转轮系具有一个系 杆,中心轮的数目不超过二个。
H-转臂(系杆)
1,3-中心轮(太阳轮)
系杆和两个中心轮的几何轴线必 需重合,否则不能转动。
8.3周转轮系及其传动比

机械设计基础-第8章-轮系

机械设计基础-第8章-轮系

构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3

i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5

机械设计基础第八章 机械挠性传动

机械设计基础第八章 机械挠性传动
图8-3 平带传动
二、带传动的类型
图8-4 各种类型的V带 a)窄V带 b)大楔角V带 c)齿形V带 d)联组V带
e、f)接头V带 g)双面V带
二、带传动的类型
如图8-5所示,普通V带的截面呈梯形,由包布层、顶胶层、底胶层和抗拉层(强力 层)组成。抗拉层又有帘布结构和线绳结构两种。前者由几层帘布(纬线较稀的织物), 后者由一层线绳组成。线绳结构的抗拉能力较高些,故适用于带轮直径较小、转速较高 的场合,且寿命较长。抗拉层的材料有棉质,也有尼龙、人造丝等化学纤维,后者强度 较高。
如图8-8所示,带中的最大应力发生在带的紧边绕入小带轮处,此处的最大应 力可近似地表示为
四、带的弹性滑动
因为带是弹性件,受拉后会产生弹性变形。而带工作时,带的紧边与松边拉力不 同,因而带的弹性变形也不同。如图8-9所示,当带在紧边刚绕入小轮时,带与小带 轮在A(A′)处重合,转过α″1角时,虽然传动带拉力逐渐减小,带亦逐步回缩,但 不明显,故认为带轮上的B与带上的B′仍近似重合,α″max,带重新正常工作。
如图8-7所示,带传动的有效圆周力Ft由下式求得 带传动传递的功率P(kW)为
图8-7 带传动的受力分析
可以证明,带在出现打滑趋势而尚未打滑的临界状态时,带的紧边拉力F1与松边 拉力F2之间满足柔性体的欧拉公式
式中 e——自然对数的底(e=2.71828…); f——摩擦因数,对V带,用当量摩擦因数fv代替f; α——工作时,带与带轮接触弧所对的圆心角,简称包角,单位为rad。
图8-5 V带截面结构 a)帘布结构 b)线绳结构 1—顶胶层 2—抗拉层 3—底胶层 4—包布层
第二节 带传动的工作原理和工作能力分析
一、工作原理 二、带传动的受力分析 三、带的应力 四、带的弹性滑动

《机械设计基础》第8章 回转件的平衡

《机械设计基础》第8章 回转件的平衡

D
它们的质量可以视为分 布在垂直于轴线的同一回转 面内,如其质心不在回转轴 线上,则其偏心质量产生的 惯性力不平衡。这种不平衡 现象在回转件静态时就会表 现出来,故称为静不平衡。
F=me 2 m e
B
D
F=me 2 m e
B
回转件的静平衡,就是利用在回转件上增加或除去一 平衡质量的方法,使其质心回到回转轴线上,从而使回转 件的惯性力得到平衡(即∑F = 0)的一种平衡措施。 其平衡的原理:利用理论力学平面汇交力系的平衡理论。
2)分别把每个偏心质量
mi用两个平面上的质量
mi′和mi″来代替; 分解公式为: mi′= mi li″/l
图8-4 a)
mi″= mi li′/l
其中 li′为mi到平衡基面T′的距离, li″为mi到平衡基面
T″的距离, l=li′+li″为两平衡基面平面汇交力
质量不能再近似地认为是分布在同一回转面内,而应该看 作是分布在垂直轴线的多个相互平行的回转面内。
如图所示的发动机曲轴, 其不平衡质量m1、m2、m3是 分布在3个回转面内。
这类回转件转动时所产生的离心力系不再是平面汇交 力系,而是空间力系。因此,单靠在某一回转面内加一平 衡质量并不能消除这类回转件转动时的不平衡。
图8-1
∴ ∑miω2ri+ mbω2rb=0 即∑miri+ mbrb=0——静平衡条件:质径积的向量和为0。
式中:miri称为质径积,是矢量。它相对地表达了各 质量在同一转速下的离心力的大小和方向。
mbrb的大小和方向可根据图解法来求。
求解步骤如下:
1)写出质径积的矢量平衡方程式:
m1r1+ m2r2+ …+mbrb=0 2)计算各偏心质量的质径积的大小;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K 、W 也可查手册得到
8.4 渐开线标准直齿圆柱齿轮的啮合传动
8.4.1 正确啮合条件 要使进入啮合区内的各对齿轮都能 正确地进入啮合,两齿轮的相邻两 齿同侧齿廓间的法向距离应相等: pb1= pb2 将pb=π mcosα代入得: m1cosα1=m2cosα2 因 m和 α 都取标准值,使上式成立的条 件为: m1=m2 , α 1= α 2 结论: 一对渐开线齿轮的正确啮合条件是它 们模数和压力角应分别相等。
8.1 齿轮传动特点、类型
齿轮传动是机械传动中最重要的、也是应用最为广泛 的一种传动型式。
优点是:
(1)工作可靠、寿命较长 (2)传动比稳定、传动效率高 (3)可实现平行轴、任意角相交轴、任意角交错轴之间的传动 (4)适用的功率和速度范围广
缺点是:
(1)加工和安装精度要求较高,制造成本也较高; (2)不适宜于两轴之间远距离的传动。
p
s e db
分度圆齿 厚
分度圆齿 槽宽 基圆直径
1 s= m 2 1 e= m 2
db1=d1cosα =mz1cosα db2= mz2cosα
8.3.3 公法线长度
所谓公法线长度,是指齿轮 千分尺跨过k个齿所量得的齿 廓间的法向距离。(见右图) Wk=m[2.9521(k-0.5) +0.014Z] m—模数 k—跨齿数 k=z/9+0.5(取整数) z—被测齿轮齿数
r1'
O1
1
rb1
CKN1来自trb 2r2'
2
O2 图 8-4
由上图知,两轮的传动比为
1 O2C rb 2 r2 i12 2 O1C rb1 r1
上式表明:两轮的传动比为一定值,并与两轮的基 圆半径成反比。公法线与连心线O1O2的交点C称为节 点,以O1、o2为圆心,、为半径作圆,这对圆称为齿 轮的节圆,
基本参数 ①齿数-z
出现无理数 , 不方便为了计算、 制造和检验的方便
d=zp/π
m=4 z=16 m=2 z=16
人为规定: m=p/π 只能取某些简单值, 称为模数m 。
m=1 z=16
为了便于制造、检验和互换使用,国标GB1357-87 规定了标准模数系列。 标准模数系列表(GB1357-87)
第二系列 4.5 5.5
28 (30) 36
③分度圆压力角 渐开线上各点的压力角是不相等的 .齿顶圆上压力角最 定义分度圆压力角为齿轮的压力角: 大,基圆上的最小. α=arccos(rb/r)
或rb/r=cosα, Db/d=cosα
规定标准值:α=20° ④齿顶高系数:ha*
对于分度圆大小相同的齿轮, 如果 α 不同,则基圆大小将不 同,因而其齿廓形状也不同。
B pk sk ek
rb
rf
r ra
分度圆--人为规定的计算基准圆 表示符号: d、r、s、e,p= s+e O 齿顶高ha 齿根高 hf 齿全高 h= ha+hf 齿宽- B
齿轮上的齿的数目 ②模数-m 分度圆周长:πd=zp, 于是有: d=mz, r = mz/2 模数的单位: mm , 它是决定齿轮尺 寸的一个基本参 数。齿数相同的 齿轮,模数大, 尺寸也大。
常用机械传动
传动是各种机械的重要组成部分。其作 用有:传递能量、分配能量、改变转速及改 变运动形式等。种类有:机械传动(啮合传 动和摩擦传动)和电传动。
研究对象:齿轮传动和齿轮系、带传动
研究内容:常用机械传动的组成、工作 原理、运动特性、受力分析、运动分析、失 效分析及设计方法。
第 8章
齿轮传动
齿轮传动:用于传递任意两轴 间的运动和动力。其圆周速度 可达到300m/s,传递功率可达 105KW,齿轮直径可从不到 1mm到150m以上,是现代机械 中应用最广的一种机械传动。
圆盘铣刀加工齿数的范围
刀号
加工齿 数范围
1
2
3
4
5
6
7
8
12-13 14-16 17-20 21-25 26-34 35-54 55-134 135以上
加工不连续,生产效率低,不宜用于批量生产。
可在普通铣床上加工,不需专用机床。 这种方法适用于单件生产而且精度要求不高的齿轮加工。
渐开线齿轮的切齿原理(续)
3.根切现象
如图所示为齿条 插刀加工标准外齿轮 的情况,齿条插刀的 分度线与齿轮的分度 圆相切。要使被切齿 轮不产生根切,刀具 的齿顶线不得超过极 限啮合点N。
铣直齿
铣斜齿
动画演示
仿形法特点:
加工方便易行,但精度难以保证。由于渐开线齿廓形
状取决于基圆的大小,而基圆半径rb=(mzcosα )/2,故齿廓形状 与m、z、α 有关。欲加工精确齿廓,对模数和压力角相同的、齿 数不同的齿轮,应采用不同的刀具,而这在实际中是不可能的。 生产中通常用同一号铣刀切制同模数、不同齿数的齿轮,故齿形 通常是近似的。表中列出了1-8号圆盘铣刀加工齿轮的齿数范围。
为保证连续传动,要求: 实际啮合线段B1B2≥pb基圆齿距 即: B1B2/pb≥1
定义: ε = B1B2/pb 为一对齿轮的重合度 一对齿轮的连续传动条件是:ε ≥1
从理论上讲,重合度为1就能保证连续传动,但齿轮制造和安装有误差
为保证可靠工作,工程上要求: ε ≥[ε ]
[ε ]的推荐值: 使用场合 [ε ] 一般机械制造业 1.4 汽车拖拉机 1.1~1.2 金属切削机 1.3
2.范成法
范成法是利用一对齿轮无侧隙啮合时两轮的 齿廓互为包络线的原理加工齿轮的。加工时刀具 与齿坯的运动就像一对互相啮合的齿轮,最后刀 具将齿坯切出渐开线齿廓。范成法切制齿轮常用 的刀具有三种: (1)齿轮插刀 是一个齿廓为刀刃的外齿轮; (2)齿条插刀 是一个齿廓为刀刃的齿条;
(3)齿轮滚刀 像梯形螺纹的螺杆,轴向剖面齿 廓为精确的直线齿廓,滚刀转动时相当于齿条在 移动。可以实现连续加工,生产率高。
渐开线齿轮的切齿原理(续)
3.根切现象
用范成法加工齿 轮时,若刀具的齿顶 线(或齿顶圆)超过 理论啮合线极限点N时, 被加工齿轮齿根附近 的渐开线齿廓将被切 去一部分,这种现象 称为根切(如图所 示)。 根切使齿轮的抗弯强度削弱、承载能力降低、啮合 过程缩短、传动平稳性变差,因此应避免根切。
渐开线齿轮的切齿原理(续)
蜗杆蜗轮
内啮合
外啮合
齿轮与齿条啮合
斜齿
人字齿
直齿
曲齿
交错轴斜齿轮
蜗杆蜗轮
8.2 渐开线及渐开线齿廓
发生线
K
L
8.2.1渐开线的形成及性质 B 一 直 线 L 与 半 径 为 rb 的圆相切,当直线沿该圆 作纯滚动时,直线上任一 点的轨迹即为该圆的渐开 线。这个圆称为渐开线的 基圆,而作纯滚动的直线 L称为渐开线的发生线。
渐开线齿轮的切齿原理(续)
2.范成法
加工方法有:插齿和滚齿
插斜齿
插直齿
渐开线齿轮的切齿原理(续)
2.范成法
滚直齿
滚斜齿
动画演示
渐开线齿轮的切齿原理(续)
2.范成法
用范成法加工齿轮时,只要刀具与被切齿轮的 模数和压力角相同,不论被加工齿轮的齿数是多少, 都可以用同一把刀具来加工,这给生产带来了很大 的方便,因此范成法得到了广泛的应用。
2 . 渐开线齿轮的可分性 当一对渐开线齿轮制成之后,其基圆半径是不能 改变的,因此可见i 不变 即使两轮的中心距稍有改变(节圆变化),其角速比 仍保持原值不变,这种性质称为渐开线齿轮传动的可 分性。这是渐开线齿轮传动的另一重要优点,给齿轮 的制造、安装带来了很大方便。
1 O2C rb 2 r2 i12 2 O1C rb1 r1
思考题 现有4个标准齿轮:1)m1=4mm, z1=25; 2)m2=4mm, z2=50; 3)m3=3mm, z3=60; 4)m4=2.5mm, z4=40。 试问: 1)哪两个齿轮的渐开线形状相同? 2)哪两个齿轮能正确 啮合? 3)哪两个齿轮能用同一把滚刀制造? 这两个齿轮能 否改成用同一把铣刀加工?
0.1 0.12 0.15 0.2 0.25 0.5 0.4 0.5 0.6 0.8 第一系列 1 10 1.25 12 1.5 16 (6.5) 2 20 7 45 2.5 25 9 3 32 (11) 4 40 14 5 50 18 22 6 8
0.35 0.7 0.9 1.75 2.25 2.75 (3.25) 3.5 (3.75)
K
A
rb
I
(3)发生线与基圆的切点 N即为渐 II 开线上 K点的曲率中心,线段为 K点的 曲率半径。随着K点离基圆愈远,相应 的曲率半径愈大;而K点离基圆愈近, 相应的曲率半径愈小。
(4)渐开线的形状取决于基圆的大小。基圆半径 愈小,渐开线愈弯曲;基圆半径愈大,渐开线愈趋平 直。 (5)渐开线是从基圆开始向外逐渐展开的,故基圆以内
齿轮传动可分类如下:
直齿
外啮合 内啮合 齿轮与齿条啮合 外啮合
两轴平行的 齿轮传动 齿 轮 传 动
圆柱齿轮传动
斜齿
内啮合
齿轮与齿条啮合
(圆柱齿轮传动)传递平行轴 间的运动
人字齿
直齿
两轴不平行 的齿轮传动
两轴相交的齿轮传动 (圆锥齿轮传动)
曲齿
传递相交轴或交错轴 两轴交错的齿轮传动 间的运动
交错轴斜齿轮
无渐开线。
k
k A1
k
B3在
O1
A2
A3在
O2
图 8-3 基圆大小与渐开线形状的关系
8.2.3渐开线齿廓的啮合特点 1 传动比条件
如图所示,两渐开线齿轮的 基圆分别为rb1、rb2 , 过两轮齿廓啮合点K作两齿 廓的公法线N1N2。 根据渐开线的性质,该公法 线必与两基圆相切,即为两基圆 t 的内公切线。又因两轮的基圆为 定圆,在其同一方向的内公切线 N2 只有一条。 所以无论两齿廓在任何位置接触, 过接触点所作两齿廓的公法线为 一固定直线,它与连心线O1O2的 交点C必是一定点。C点称节点, 对应的圆为节圆。齿轮传动可理 解为两节圆作滚动。
相关文档
最新文档