碱性磷酸酶(ALP)

合集下载

碱性磷酸酶含量实验报告

碱性磷酸酶含量实验报告

一、实验目的1. 掌握碱性磷酸酶(ALP)的测定原理和方法;2. 学习使用分光光度计测定酶活性;3. 了解ALP在不同组织中的含量差异。

二、实验原理碱性磷酸酶(ALP)是一种广泛存在于生物体内的酶,主要催化磷酸单酯的水解反应。

ALP在人体中具有重要的生理功能,如参与骨骼生长发育、肝脏疾病诊断等。

本实验采用连续监测法测定ALP活性,通过测定酶催化底物水解生成产物浓度的变化,计算出酶活性。

三、实验材料与仪器1. 实验材料:(1)猪肝匀浆液;(2)鸡肝匀浆液;(3)兔肝匀浆液;(4)磷酸苯二钠;(5)0.1mol/L NaOH;(6)0.1mol/L Tris-HCl缓冲液(pH 7.4);(7)4-氨基安替比林;(8)铁氰化钾;(9)蒸馏水。

2. 实验仪器:(1)分光光度计;(2)恒温水浴箱;(3)移液器;(4)试管;(5)试管架。

四、实验步骤1. 配制试剂:根据实验要求,配制不同浓度的底物溶液、缓冲液、试剂等。

2. 样品处理:将猪肝、鸡肝、兔肝分别制成匀浆,测定其ALP活性。

3. 酶活性测定:(1)取试管一支,加入0.1mol/L Tris-HCl缓冲液(pH 7.4)1.5mL;(2)加入底物溶液0.5mL;(3)加入酶液0.5mL;(4)立即放入恒温水浴箱中,在特定波长下测定吸光度;(5)记录吸光度变化,计算酶活性。

4. 数据处理:以酶活性为纵坐标,底物浓度为横坐标,绘制曲线,求出酶的最大反应速度(Vmax)和米氏常数(Km)。

五、实验结果与分析1. 不同组织ALP活性比较通过实验,测得猪肝、鸡肝、兔肝匀浆液的ALP活性分别为:猪肝:100 U/mL;鸡肝:150 U/mL;兔肝:200 U/mL。

由此可见,兔肝中的ALP活性最高,猪肝中的ALP活性最低。

2. ALP活性与底物浓度关系通过实验,绘制了ALP活性与底物浓度的曲线,求出Vmax和Km值。

结果表明,ALP活性随底物浓度增加而增加,但在一定范围内,ALP活性与底物浓度呈线性关系。

碱性磷酸酶作用原理

碱性磷酸酶作用原理

碱性磷酸酶作用原理碱性磷酸酶(Alkaline Phosphatase,简称ALP)是一种重要的酶类蛋白质,在生物体内起着关键的生物学作用。

它主要存在于细胞膜和内质网上,参与多种生物化学代谢过程,对维持生命活动起着至关重要的作用。

本文将从碱性磷酸酶的作用原理入手,对其作用机制进行深入探讨。

首先,碱性磷酸酶的作用原理可以从其催化作用入手。

碱性磷酸酶是一种水解酶,它能够催化磷酸酯键的水解反应,将底物分子中的磷酸酯键水解成磷酸和相应的醇或酚。

这种催化作用是碱性磷酸酶发挥生物学功能的关键步骤,也是其作用原理的核心所在。

其次,碱性磷酸酶在生物体内的作用主要表现在对磷酸酯类底物的水解作用。

磷酸酯是生物体内广泛存在的一类化合物,包括蛋白质、核酸、糖类等多种生物大分子。

这些生物大分子在代谢过程中需要不断地进行合成和降解,而碱性磷酸酶的作用则在于促进这些生物大分子的降解过程,从而维持生物体内的代谢平衡。

此外,碱性磷酸酶还在骨骼系统中发挥着重要的作用。

在骨骼系统中,碱性磷酸酶参与了骨骼的矿化过程,对骨骼的形成和重塑起着重要的调节作用。

通过调控磷酸酯类底物的水解反应,碱性磷酸酶能够影响骨骼细胞的活性和骨骼结构的稳定性,从而对骨骼系统的健康发育和疾病治疗具有重要意义。

最后,碱性磷酸酶的作用原理还与一些疾病的诊断和治疗密切相关。

例如,在临床医学中,碱性磷酸酶的活性水平可以作为一些肝胆系统疾病和骨骼系统疾病的诊断指标,通过检测碱性磷酸酶的活性水平,可以帮助医生判断疾病的类型和严重程度,为疾病的治疗提供重要参考依据。

综上所述,碱性磷酸酶作为一种重要的酶类蛋白质,在生物体内发挥着多种生物学功能,其作用原理主要包括催化磷酸酯键的水解作用、参与生物大分子的降解代谢、调节骨骼系统的矿化过程以及在疾病诊断和治疗中的应用。

对碱性磷酸酶作用原理的深入理解,不仅有助于揭示生物体内复杂的代谢调控网络,还为相关疾病的治疗和药物研发提供了重要的理论基础。

碱性磷酸酶alp偏低的原因是什么

碱性磷酸酶alp偏低的原因是什么

如对您有帮助,可购买打赏,谢谢
生活常识分享碱性磷酸酶alp偏低的原因是什么
导语:碱性磷酸酶alp是存在于成骨细胞中的一种酶,碱性磷酸酶的表达和稀泥是成骨细胞分化的一个明显特征。

一般来说。

碱性磷酸酶alp偏高和偏低都可
碱性磷酸酶alp是存在于成骨细胞中的一种酶,碱性磷酸酶的表达和稀泥是成骨细胞分化的一个明显特征。

一般来说。

碱性磷酸酶alp偏高和偏低都可能预示着我们身体的亚健康。

某些疾病也会引起碱性磷酸酶含量的变化比如病毒性肝炎会引起其升高。

那么,碱性磷酸酶alp 偏低的原因是什么呢?
碱性磷酸酶是成骨细胞的一种外酶,它的表达活性是成骨细胞分化的一个明显特征。

碱性磷酸酶在机体中的主要生理功能是在成骨过程中水解磷酸酯,为羟基磷灰石的沉积提供必要的磷酸,同时水解焦磷酸盐,解除其对骨盐形成的抑制作用,有利于成骨作用。

某些病理原因(如各种肝、骨等疾病)和生理性原因(如儿童生长发育期、妊娠2个月后等)均可引起血清ALP水平改变,临床主要为肝胆和骨骼疾病所引起。

碱性磷酸酶偏低的原因
儿童ALP活性降低会影响骨骼发育,甚至骨骼发育停止,成为临床上的呆小症、软骨发育不全及恶质病;
妇女中以老年妇女ALP活性降低者为多见,可能与老年妇女绝经后雌激素分泌减少,影响骨质的再吸收,骨质疏松使血清ALP活性低下有关。

综上所述,血清ALP活性降低主要见于重症慢性肾炎并伴有肾衰、营养不良和甲状腺功能不全、镁缺乏、乳糜泻、严重贫血等。

还有一种遗传性低ALP症,此种婴儿血清ALP缺乏,成骨细胞中也缺乏此酶,引起骨中的矿物质严重缺乏,易发生骨折。

血清碱性磷酸酶(ALP)—生化检测项目

血清碱性磷酸酶(ALP)—生化检测项目

血清碱性磷酸酶(ALP)
一、检测原理
ALP水解磷酸对硝基苯酯(PNPP)形成硝基苯酚,硝基苯酚吸光度与ALP的活性成正比,加入2-氨基-2-甲基-1-丙醇(AMP)缓冲液维持反应的PH值10.3—10.4,AMP中镁离子及锌离子起激活、维持酶反应。

二、参考区间
血清:男性46—125U/L 女性35—135U/L
三、临床意义
1、各种肝内外胆管阻塞性疾病如胰头癌、胆道结石引起的胆管阻塞,原发性胆汁性肝硬化,肝内胆汁淤积等,碱性磷酸酶明显升高,并且与血清胆红素升高相平行。

2、用于鉴别黄疸的鉴别诊断,碱性磷酸酶转氨酶血清胆红素同时测定有助于黄疸的鉴别诊断。

3、骨骼疾病,纤维性骨炎,佝偻病,骨软化症,成骨细胞瘤及骨折愈合期,碱性磷酸酶升高,主要用于变形性骨炎,
原发性甲旁亢,骨质软化和佝偻病的诊断。

4、生长中的儿童,妊娠中晚期碱性磷酸酶生理性增高。

碱性磷酸酶偏低的原因

碱性磷酸酶偏低的原因

碱性磷酸酶偏低的原因碱性磷酸酶(Alkaline Phosphatase, ALP) 是一种常用于诊断疾病的生化指标,它可以用来诊断肝脏、骨骼、消化道等系统疾病。

碱性磷酸酶偏低的原因可能有以下几种:1.肝脏疾病:肝硬化、肝炎、肝癌等肝脏疾病会导致肝脏细胞受损,使得碱性磷酸酶的生成减少。

2.骨骼疾病:骨折、骨病、骨质疏松等疾病会导致骨骼细胞受损,使得碱性磷酸酶的生成减少。

3.消化道疾病:胰腺炎、胆囊炎、慢性肠炎等疾病会导致消化道细胞受损,使得碱性磷酸酶的生成减少。

4.药物:某些药物如抗癫痫药、抗病毒药、抗炎药等会抑制碱性磷酸酶的生成。

5.恶性肿瘤:某些恶性肿瘤如白血病、骨肉瘤等会导致碱性磷酸酶偏低。

6.其他原因:如营养不良、儿童生长期、长期使用避孕药等可能导致碱性磷酸酶偏低。

总之,碱性磷酸酶偏低有多种原因,在确定碱性磷酸酶偏低的原因时,应考虑患者的临床症状和病史,并进行其他检查和检验来确定疾病的原因。

碱性磷酸酶偏低的诊断和治疗。

对于碱性磷酸酶偏低的患者,应首先进行相关的临床检查和检验,如肝功能检查、骨骼检查、消化道检查等,以确定碱性磷酸酶偏低的原因。

如果确定为肝脏疾病引起的碱性磷酸酶偏低,应采取治疗肝疾病的措施,如抗病毒治疗、抗炎治疗、肝功能保护等。

如果确定为骨骼疾病引起的碱性磷酸酶偏低,应采取治疗骨骼疾病的措施,如骨折复位、骨病治疗等。

如果确定为消化道疾病引起的碱性磷酸酶偏低,应采取治疗消化道疾病的措施,如抗炎治疗、消化道保护等。

如果确定为药物引起的碱性磷酸酶偏低,应在医生指导下调整药物用量或更换药物。

如果确定为恶性肿瘤引起的碱性磷酸酶偏低,应采取治疗恶性肿瘤的措施,如手术、化疗、放疗等。

如果确定为其他原因引起的碱性磷酸酶偏低,应根据具体原因采取相应的治疗措施。

总之,碱性磷酸酶偏低的诊断和治疗需要结合临床症状和检查结果进行分析,采取综合治疗方式。

碱性磷酸酶(ALP)

碱性磷酸酶(ALP)

碱性磷酸酶锁定医学内容仅供参考,不能视作专业意见。

网上任何关于疾病的建议都不能替代执业医师的当面诊断。

碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多其次为肾脏,骨骼、肠、和胎盘等组织,。

这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA片段的5’-P 末端转换成5’-OH末端。

但它不是单一的酶,而是一组同功酶。

目前已发现有AKP1 、AKP2 、AKP3 、AKP4 、AKP5 与AKP6 六种同功酶。

其中第1 、2 、6 种均来自肝脏,第3 种来自骨细胞,第4 种产生于胎盘及癌细胞,而第5 种则来自小肠绒毛上皮与成纤维细胞。

血清中的ALP主要来自肝脏和骨骼。

生长期儿童血清内的大多数来自成骨细胞和生长中的骨软骨细胞,少量来自肝。

1化学特征2有何影响3偏高的危害4升高5来源▪人体内情况▪研究应用6测定方法7正常范围8临床意义9药物意义10异常原因11抑制作用12肝胆疾病化学特征碱性磷酸酶名字alkaline phosphatase (ALP 或AKP)细菌ALP二级结构现多用ALP系统名phosphate-monoester phosphohydrolase (alkaline optimum)其他名称还有alkaline phosphomonoesterase; phosphomonoesterase;glycerophosphatase; alkaline phosphohydrolase; alkaline phenyl phosphatase;orthophosphoric-monoester phosphohydrolase (alkaline optimum);basic phosphatase CAS 号: 9001-78-9碱性磷酸酶(AKP或ALP)属于同源二聚体蛋白,分子量为56KDa。

每个单体由449个氨基酸组成,完整的AKP 分子呈现典型的α/β的拓扑结构,同时每个单体均具有一个活性中心,活性中心区域由Asp101-Ser102-Ala103三连体、Arg166、水分子、三个金属离子及其配体氨基酸组成。

碱性磷酸酶高的原因

碱性磷酸酶高的原因

碱性磷酸酶高的原因碱性磷酸酶(alkalinephosphatase,ALP)是一种在体内常见的酶,它可以分解膳食磷酸盐,参与多种生物体内代谢过程。

此外,碱性磷酸酶活动水平的变化也可以反映多种生理疾病的进展情况,因此,正常的碱性磷酸酶水平和如何控制碱性磷酸酶的升高是十分重要的问题。

碱性磷酸酶的水平受多种因素的影响,其中包括生物学因素、营养因素和环境因素,因此,碱性磷酸酶高的原因可以归结为这些因素。

一、物学因素1.病:某些病症,如肝炎、胆囊炎、十二指肠炎和肾炎等,都可能导致碱性磷酸酶高。

此外,恶性肿瘤和消化性肿瘤也可能引起碱性磷酸酶升高。

2.龄:小儿和老年人碱性磷酸酶的水平较高,而出生、婴儿及成人期间碱性磷酸酶的水平则相对较低。

3.分泌紊乱:某些内分泌紊乱病症,如甲状腺功能减退症、糖尿病和非酒精性脂肪肝等,都可能导致碱性磷酸酶升高。

二、养因素1.食:大量摄入碳水化物和钠含量较高的食物可能会导致碱性磷酸酶升高,如加工食品和高脂肪食物。

2.酒:酗酒会导致胆红素释放到血液中,引起碱性磷酸酶升高。

三、境因素1.射线:X射线照射会抑制肝脏碱性磷酸酶的表达,从而导致血液中的碱性磷酸酶水平升高。

2.物:服用某些药物,如氯霉素、对乙酰氨基酚和糖皮质类激素等,可能会引起碱性磷酸酶高。

3.学物:吸入或摄入一定剂量的有毒化学物质,如硝酸盐或硝基苯等,也可能会引起碱性磷酸酶升高。

四、他因素1.康状况:慢性疾病、营养不良和老化等都可能导致碱性磷酸酶升高。

2.度体力活动:高强度的体力活动可能会分解筋膜,从而导致碱性磷酸酶升高。

总之,碱性磷酸酶高的原因可能是由于生物学因素、营养因素、环境因素和其他因素所致,进行正确的治疗对于碱性磷酸酶高的患者来说至关重要。

治疗方案应考虑分析患者的病历、体检结果,以及结合碱性磷酸酶的实验结果等因素,进行诊断。

建议患者采取积极的治疗,改善和控制碱性磷酸酶高的病情。

碱性磷酸酶高的原因

碱性磷酸酶高的原因

碱性磷酸酶高的原因
碱性磷酸酶(ALP)可以在体内分解脂肪酸和胆固醇,是一种重要的酶,其正常水平对维持健康至关重要。

ALP一种指标,能用来检测和诊断某些疾病,其中最常见的是肝脏和骨骼系统疾病。

一般来说,当 ALP平超标时,就会出现各种症状,如肝炎、骨质疏松症、肾脏疾病等。

那么,碱性磷酸酶高的原因是什么呢?大多数情况下,ALP平高可能是由于下列原因之一引起的:
一、肝炎:
肝炎是最常见的原因之一,肝脏损伤可能会导致肝细胞凋亡,从而增加碱性磷酸酶水平。

二、骨病:
骨病也是高 ALP平的常见原因,因为骨病会导致骨骼组织受损,从而使碱性磷酸酶水平也增高。

三、肾脏疾病:
肾脏疾病也是高 ALP平的原因之一,因为肾脏失去了其正常功能,造成体内 ALP平偏高。

四、性激素失衡:
由于性激素失衡,也可能导致 ALP平偏高,特别是怀孕期间,雌激素水平增加,也可能会导致 ALP平升高。

五、肠道疾病:
肠道疾病也可能导致碱性磷酸酶水平偏高。

道炎症可能会破坏肠
道粘膜,从而激活 ALP性,使 ALP平增加。

六、营养不良:
如果人体缺乏必要的矿物质和维生素,也可能导致 ALP平升高。

此,摄入充足的矿物质和维生素,如钙、锌等,有助于维护 ALP平正常。

虽然碱性磷酸酶高的原因有很多,但最重要的是要及时寻求医生的帮助,以便及时确诊病因,采取合理的治疗措施,避免疾病的发展和恶化。

时,为了预防 ALP平升高,还需要注意健康饮食,多运动,保持良好的生活习惯,积极改善饮食习惯,少吃辛辣和油腻的食物。

碱性磷酸酶低是怎么回事

碱性磷酸酶低是怎么回事

碱性磷酸酶低是怎么回事大家平时都会说我的身体我知道,我的身体我做主,但是很多的时候往往是我们自己最不了解自己的身体状况了,我们总是自以为是的挥霍这自己的健康,一般都不会去体检,但是一旦体检就会出现这样那样的问题,接下来咱们就一起来说一下碱性磷酸酶低是怎么回事这个大家都很关心的一个关于身体的话题。

碱性磷酸酶低是怎么回事1、碱性磷酸酶(ALP)是广泛分布于人体肝脏、骨骼、肠、肾和胎盘等组织中,可经肝脏向胆外排出的一种能够将对应底物去磷酸化的酶。

碱性磷酸酶主要是用于骨骼、肝胆系统疾病的诊断和鉴别,像营养不良、贫血、儿童甲状腺机能不全、维生素C缺乏症、坏血病等均可导致碱性磷酸酶偏低。

因此,为了避免误诊误治影响您的病情,耽误治疗,建议碱性磷酸酶偏低的患者及时到大型正规医院进一步做出相关检查,待明确病因及病情轻重后再采取相应的治疗措施,这样才能从根本上解决碱性磷酸酶偏低的问题。

2、我们知道了碱性磷酸酶偏低的原因,希望对大家了解及对症治疗有所帮助。

专家提醒:碱性磷酸酶偏低的原因有很多,因此患者应该积极到正规的肝病医院进行科学的检查,积极查明病因,进行对症的治疗,才是治疗疾病的关键。

肝病病毒要提高警惕,切勿忽视不理,要及时到正规肝病医院进行正规治疗。

3、济南中医肝病医院是一家肝病专科医院,在治疗肝病上有着丰富的经验,拥有国际先进的检测诊疗设施、权威的专家队伍、规范高效的治疗方案。

独家引进的“超氧自体血激活疗法”更是治疗肝病的一大利器,大部分患者在使用该疗法后当天即可好转,5-7天明显见效,一般一个疗程病毒临床治愈。

是广大乙肝患者最佳的选择。

同时配合七十六辨扶正还原疗法,从七十六个方面辨证分析、科学用药、扶正为本、祛除毒邪;治疗手段多样化、固本还原、标本兼治;还能够调理腑脏,改善人体内环境。

与西医有效结合,滋养肝脏。

看到小编为大家解答的有关于碱性磷酸酶低是怎么回事给出的一些简单的回答之后,大家是不是都对自己的健康产生了一些的质疑呢,有些看似健康的外表下不一定有一个健康的身体,我们还是要在生活工作之余尽量多多的运动,尽量多吃一些有机蔬菜和离油腻远一点,这样的话我们才能够更好的保养自己的身体。

碱性磷酸酶偏高的原因

碱性磷酸酶偏高的原因

碱性磷酸酶偏高的原因
碱性磷酸酶(Alkaline phosphatase,ALP)是一种普遍存在于肝脏、胆管粘膜和骨
骼细胞的酶蛋白,其检测可帮助医生了解患者的肝脏和骨骼细胞的健康状况。

一般情况下,碱性磷酸酶的血液浓度稳定不变,偏高的情况可以帮助医生发现病变情况。

碱性磷酸酶的血液浓度可能由以下几种原因造成偏高:
一是肝脏疾病所致。

肝硬化、梗阻性黄疸、病毒性肝炎、脂肪肝和肝癌等肝脏疾病都
会导致碱性磷酸酶水平升高。

二是胆管疾病所致。

胆道感染、梗阻及泌尿系结石等都会导致碱性磷酸酶升高。

三是骨疾病所致。

骨质疏松、软骨质变性、类风湿性关节炎等骨疾病也会造成碱性磷
酸酶水平升高。

四是肝细胞损伤所致。

服用有毒药物或暴露于致癌物质,会对肝细胞造成损伤,从而
引起碱性磷酸酶水平升高。

五是其他原因所致。

如运动过度、接受放射治疗、核素和激素治疗等,也会造成碱性
磷酸酶水平偏高。

碱性磷酸酶偏高的原因很多,所以检查前需要了解患者的病史、家族史,以及进行全
面的实验检查,以便确诊治疗。

如果碱性磷酸酶血液浓度长期高于正常范围,可能需要进
行进一步的检查,以确定具体的病因,并采取有效的治疗措施。

碱性磷酸酶(ALP)

碱性磷酸酶(ALP)

碱性磷酸酶(ALP)碱性磷酸酶(ALP或AKP)是广泛分布于人体肝脏、骨骼、肠、肾和胎盘等组织经肝脏向胆外排出的一种酶。

这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA片段的5’-P末端转换成5’-OH末端。

但它不是单一的酶,而是一组同功酶。

目前已发现有ALP1、ALP2、ALP3、ALP4、ALP5与ALP6六种同功酶。

①第1、2、6种均来自肝脏,②第3种来自骨细胞,③第4种产生于胎盘及癌细胞,④第5种则来自小肠绒毛上皮与成纤维细胞。

碱性磷酸酶的参考值碱性磷酸酶的参考值会根据测试方法或人群的不同会有所区别,正常值范围的不同也与各医院使用的方法和仪器有关。

一般情况下碱性磷酸酶正常参考值为:女性50~135U/L、男性45~125U/L。

超出这个范围就可以认为是偏高了。

发育期的儿童、孕妇、以及处于骨折愈合期这三类人群,碱性磷酸酶高是较常见的。

临床意义临床上测定ALP主要用于骨骼、肝胆系统疾病的诊断和鉴别诊断,尤其是黄疸的鉴别诊断。

对于不明原因的高ALP血清水平,可测定同工酶以协助明确其器官来源。

碱性磷酸酶偏高是怎么回事?生理性因素1、儿童在生理性的骨骼发育期,碱性磷酸酶活力可比正常人高1~2倍,骨质疏松症时碱性磷酸酶正常。

2、处于生长期的青少年,以及孕妇和进食脂肪含量高的食物后、剧烈运动后血清碱性磷酸酶水平均可以升高。

3、妊娠可导致血清碱性磷酸酶水平升高,妊娠九个月血清碱性磷酸酶水平可达正常水平的2~3倍。

病理性因素1、各种肝胆疾病均可使血清碱性磷酸酶水平升高,肝外胆道阻塞时血清碱性磷酸酶水平可达参考值上限3倍以上,并且阻塞愈完全碱性磷酸酶水平愈高。

肝内胆道阻塞时血清碱性磷酸酶水平上升幅度较小。

2、原发性和继发性肝癌时碱性磷酸酶亦明显升高,与癌组织中或癌肿周围肝细胞合成碱性磷酸酶增加有关。

3、其他肿瘤如乳腺癌、肺癌、卵巢癌、骨细胞瘤、骨肉瘤等,碱性磷酸酶增高时,提示可能有肝脏转移。

4、变形性骨炎患者血清碱性磷酸酶水平最高,常达参考值上限10~25倍;成骨细胞癌患者碱性磷酸酶也很高;骨软化症时,碱性磷酸酶水平中度升高;佝偻病患者血清碱性磷酸酶水平可以升至参考值上限2~4倍。

骨源性碱性磷酸酶

骨源性碱性磷酸酶

骨源性碱性磷酸酶
骨源性碱性磷酸酶(ALP),是一种广泛存在于某些骨骼肌肉细胞中的酶,其
作用是将磷酸活性化,参与骨形成的重要过程。

由于ALP的关键作用,它与骨骼生长有很大的关联,在大学生人体发育及骨骼结构更新阶段。

有研究显示,ALP水平
低于期望水平时,伴随面骨骼结构及其他骨骼发育变化,可以提高发育和生长。

ALP水平在高等教育生活期间有很多变化。

一方面,对于大学生来说,减少外
出活动和运动,生活方式不规律,课业时间延迟也可能使ALP水平下降。

另一方面,大学生中的营养不良、缺乏睡眠等都是低ALP的原因,也可能导致生理机能受损,甚至影响学业成绩。

因此,大学生应注意妥善管理ALP,尤其是那些原本ALP水平较低并且正处于
人体发育及骨骼结构更新期的学生。

大学生可以通过合理调整生活方式,如多锻炼,保持乐观心态,充分休息,保证充足的膳食营养,以控制ALP的水平。

此外,有必要定期进行血液检查,以更好的评估ALP的状况,及早发现和控制可能影响学业的疾病。

总之,考虑到高等教育的健康进度,大学生必须重视ALP的水平及其控制,定
期看医生,进行专业健康检查,以便进一步保障骨骼发育及维持正常人体衰老。

科学合理的生活方式,适当的营养补充,最大程度地控制ALP水平及学业,考虑到大学生健康进度,均可获得良好的发展。

碱性磷酸酶生化实验报告

碱性磷酸酶生化实验报告

一、实验目的1. 熟悉碱性磷酸酶(ALP)的生化特性;2. 掌握ALP的分离纯化方法;3. 学习ALP比活性测定和动力学分析;4. 提高实验操作技能和数据分析能力。

二、实验原理碱性磷酸酶(ALP)是一种广泛存在于生物体内的酶,具有磷酸基团转移活性,在碱性条件下能水解多种磷酸单酯化合物。

ALP在生物体内具有重要的生理功能,如参与骨骼生长发育、肝脏解毒、钙磷代谢等过程。

本实验旨在通过分离纯化ALP,测定其比活性和动力学参数,为进一步研究ALP的生物学功能提供实验基础。

三、实验材料与仪器1. 实验材料:兔肝匀浆液、正丁醇、丙酮、乙醇、NaCl、MgCl2、MnCl2、磷酸苯二钠、4-氨基安替比林、铁氰化钾、pH缓冲液等。

2. 实验仪器:恒温水浴箱、离心机、分光光度计、移液器、试管、试管架等。

四、实验方法1. ALP的分离纯化(1)将兔肝匀浆液与等体积的正丁醇混合,充分振荡,静置,取上层滤液。

(2)向滤液中加入1/10体积的MgCl2、MnCl2溶液,混匀。

(3)加入等体积的丙酮或乙醇,静置,离心(3000r/min,10min),取沉淀。

(4)沉淀用少量pH7.0的磷酸缓冲液溶解,再次离心,取上清液。

2. ALP比活性测定采用磷酸苯二钠为底物,在pH10的碳酸缓冲液中,ALP催化磷酸苯二钠水解生成苯酚和磷酸盐。

苯酚与4-氨基安替比林作用,经铁氰化钾氧化生成红色醌类衍生物,通过测定吸光度变化计算ALP的比活性。

3. ALP动力学分析采用Lineweaver-Burk双倒数作图法,测定不同底物浓度下的酶活性,计算米氏常数(Km)和最大反应速度(Vmax)。

五、实验结果1. ALP的分离纯化通过有机溶剂沉淀法,从兔肝匀浆液中成功提取纯化ALP。

SDS-PAGE结果显示,纯化后的ALP蛋白呈单一条带。

2. ALP比活性测定通过测定不同底物浓度下的酶活性,计算出ALP的比活性为1.5U/mg。

3. ALP动力学分析采用Lineweaver-Burk双倒数作图法,计算出ALP的米氏常数(Km)为0.01mmol/L,最大反应速度(Vmax)为200U/min。

碱性磷酸酶是检查什么

碱性磷酸酶是检查什么

碱性磷酸酶是检查什么很多人都不是专业的医疗人员,很难明白一些治疗的意义,或是一些医生的做法。

有时候自己由于自己不明白自己的情况,就会呆滞一些问题的产生,容易导致和医生发生冲突。

所以大家还是要增长一些医生的知识。

下面小编带大家去关注一个问题,碱性磷酸酶是检查什么?碱性磷酸酶是检查什么碱性磷酸酶(ALP或AKP)是一种磷酸单酯酶,血清中ALP来源于不同的组织(肝、骨、肾、小肠、胎盘等),主要以游离形式存在,极少量与脂蛋白和免疫球蛋白结合。

正常情况下,体内ALP是来源于肝(肝ALP)和骨(骨ALP)各半。

某些病理原因(如各种肝、骨等疾病)和生理性原因(如儿童生长发育期、妊娠2个月后等)均可引起血清ALP水平改变,临床主要为肝胆和骨骼疾病所引起。

碱性磷酸酶检查偏高怎么回事1、代谢异常原因主要用于阻塞性黄疸、肝癌、胆汁淤积性肝炎等的检查,阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎都会使碱性磷酸酶偏高。

胆道排泄异常碱性磷酸酶是需要经过肝脏,然后由胆汁排出,当排泄过程中出现异常,那就会引起碱性磷酸酶偏高。

2、骨骼组织原因由于骨组织中此酶亦很活跃。

因此,孕妇、骨折愈合期、骨软化症。

佝偻病、骨细胞癌、骨质疏松等血清碱性磷酸酶会升高。

3、肝胆疾病:血清总ALP病理性升高,机会60%是由肝脏和胆道疾病引起的。

ALP是胆汁淤积性疾病的敏感指标。

其他肿瘤如乳腺癌、肺癌、卵巢癌、骨细胞瘤、骨肉瘤等,碱性磷酸酶增高时,提示可能有肝脏转移。

以上就是小编对于碱性磷酸酶是检查什么这一问题的有关资料整理。

一些定期的体检也是可以体现这样的一个问题,在体检中也可以发现一些小的问题,检查就是为了发现问题,也可以起到一个预防的作用,所以大家一定要多多注意。

小编祝大家身体健康!。

alp偏低的原因

alp偏低的原因

alp偏低的原因
ALP(碱性磷酸酶)偏低的原因可能涉及多个方面。

首先,我们需要了解碱性磷酸酶主要来源于肝脏和骨骼,同时也存在于小肠粘膜、肾脏、甲状腺等器官中。

因此,这些器官的功能异常都可能导致碱性磷酸酶偏低。

一种可能的原因是营养不良。

营养不良可能导致碱性磷酸酶合成减少,从而使得其在血液中的浓度降低。

此时,建议增加营养摄入,特别是钙质的补充,多吃新鲜蔬菜和水果,以改善营养状况。

另一种可能是肝脏功能受损。

肝脏是碱性磷酸酶的主要来源之一,当肝脏功能受损时,其合成和释放碱性磷酸酶的能力可能会下降,从而导致血液中碱性磷酸酶浓度降低。

这种情况下,需要进一步检查肝功能,并采取相应的治疗措施,如服用护肝片等。

此外,维生素D缺乏、钙磷代谢紊乱、甲状腺功能低下、贫血、坏血病等因素也可能导致碱性磷酸酶偏低。

维生素D缺乏会影响肠道对钙和磷的吸收,进而影响碱性磷酸酶的合成。

钙磷代谢紊乱可能导致骨骼发育异常,影响碱性磷酸酶的释放。

甲状腺功能低下和贫血则可能影响全身代谢和营养状况,从而导致碱性磷酸酶偏低。

坏血病则是一种维生素C缺乏症,可能导致碱性磷酸酶活性降低。

总之,碱性磷酸酶偏低的原因可能涉及多个方面,需要根据具体情况进行诊断和治疗。

在出现碱性磷酸酶偏低的情况时,建议及时就医,进行全面检查和评估,以便找到确切的原因并采取有效的治疗措施。

同时,保持良好的生活习惯和饮食习惯,增加营养摄入,也有助于预防碱性磷酸酶偏低的发生。

碱性磷酸酶值测定实验报告

碱性磷酸酶值测定实验报告

碱性磷酸酶值测定实验报告一、实验目的碱性磷酸酶(Alkaline Phosphatase,简称 ALP)是一种广泛分布于人体肝脏、骨骼、肠、肾和胎盘等组织经肝脏向胆外排出的一种酶。

本次实验的目的是测定样本中碱性磷酸酶的活性,以评估相关生理或病理状态。

二、实验原理碱性磷酸酶在碱性环境下能够催化磷酸酯的水解反应,生成无机磷和醇。

通过测定生成的无机磷的量,可以间接反映碱性磷酸酶的活性。

本实验采用磷酸苯二钠法,磷酸苯二钠在碱性条件下被碱性磷酸酶水解生成苯酚和磷酸氢二钠。

苯酚与 4-氨基安替比林反应生成红色醌亚胺衍生物,在 510nm 波长处有最大吸收峰。

通过测定吸光度值,并与标准曲线对照,即可计算出碱性磷酸酶的活性。

三、实验材料与设备1、材料血清样本磷酸苯二钠溶液碳酸盐缓冲液(pH 100)4-氨基安替比林溶液铁氰化钾溶液酚标准液2、设备分光光度计恒温水浴锅移液器试管、刻度吸管等四、实验步骤1、标准曲线的绘制取 6 支干净试管,分别编号为 0、1、2、3、4、5。

按表 1 向各试管中加入试剂,混匀。

置于 37℃水浴中保温 15 分钟。

加入铁氰化钾溶液 30ml,立即混匀。

用分光光度计在 510nm 波长处,以 0 号管调零,读取各管的吸光度值。

以酚含量(μg)为横坐标,吸光度值为纵坐标,绘制标准曲线。

表 1 标准曲线绘制的试剂加入量|试管编号|0|1|2|3|4|5||||||||||酚标准液(ml)|0|005|010|020|030|040||蒸馏水(ml)|10|095|090|080|070|060||碳酸盐缓冲液(ml)|30|30|30|30|30|30||4-氨基安替比林溶液(ml)|10|10|10|10|10|10||铁氰化钾溶液(ml)|30|30|30|30|30|30|2、样本测定取 3 支干净试管,分别编号为测定管、对照管和空白管。

按表 2 向各试管中加入试剂,混匀。

置于 37℃水浴中保温 15 分钟。

碱性磷酸酶高怎么办

碱性磷酸酶高怎么办

碱性磷酸酶高怎么办
碱性磷酸酶(ALP)是一种酶,通常存在于肝脏、骨骼、肠道和胎盘等组织中。

当碱性磷酸酶的水平升高时,可能表示有一些潜在的健康问题存在。

如果你的碱性磷酸酶水平高,请考虑以下几种可能的原因:
1. 肝脏疾病:肝脏疾病(如肝炎、肝硬化、胆道梗阻)可以导致碱性磷酸酶水平升高。

2. 骨骼疾病:骨骼疾病(如骨转移瘤、骨折)也可能引起碱性磷酸酶水平升高。

3. 药物:某些药物(如某些抗生素、抗癫痫药物和降血脂药物)可能引起碱性磷酸酶升高。

4. 其他疾病:其他疾病(如肾脏问题、甲状旁腺功能亢进症、白血病)也可能导致碱性磷酸酶水平升高。

如果你的碱性磷酸酶水平高,建议你咨询医生以确定潜在的原因,并根据具体情况进行治疗。

治疗方法可能包括:
- 针对肝脏疾病的治疗,如药物治疗、手术或其他治疗方法。

- 针对骨骼疾病的治疗,如骨折修复、肿瘤治疗等。

- 如果是药物引起的,可能需要更换药物或适当的调整药物剂量。

- 如果是其他疾病引起的,需要根据具体疾病进行相应治疗。

总之,请务必咨询医生进行准确的诊断和治疗建议。

他们将能够为你提供个性化的治疗方案。

碱性磷酸酶km值测定误差分析

碱性磷酸酶km值测定误差分析

碱性磷酸酶km值测定误差分析
碱性磷酸酶(ALP)是一种酶,它参与了人体内的多种代谢过程。

测定ALP酶值可以辅助诊断肝胆道疾病、骨骼疾病等多种疾病。

km值是代表酶和底物之间反应速率的基本指标之一,km 值越小,则酶与底物的亲和力越高,反应速率也越快。

误差分析如下:
1. 环境影响:ALP酶在不同的温度、pH等条件下反应速率可能会有所变化,环境条件变化对测定km值会产生影响。

为了减小这种误差,需要严格控制测定环境的相对稳定性。

2. 操作技能:km值的测定需要精准的实验操作和技术熟练度。

实际操作中,不同的实验人员的技能水平和经验不同也会对测定结果产生误差。

3. 样本数量:样本数量如果太少,不足以覆盖实验误差,会导致实验结果不准确。

建议进行多次测定,取平均值。

4. 仪器误差:使用不同的仪器和试剂盒,也可能会对km值的测定产生影响。

为了保持实验数据的一致性和可比性,需要严格控制试剂品种、使用相同的仪器和试剂盒等。

总结一下,减少ALP酶测定km值误差的方法主要有:控制实验条件的相对稳定性、提高操作技能水平、增加样本数量、使用统一的仪器和试剂盒等。

alp 酶结构

alp 酶结构

alp 酶结构ALP酶结构概述碱性磷酸酶(ALP)是一种酶类蛋白质,广泛存在于人体的组织和细胞中。

它在生物体内起着重要的生理功能,参与骨骼和肝脏的代谢过程以及酸碱平衡调节。

ALP酶的结构对其功能发挥至关重要。

本文将重点介绍ALP酶的结构组成及其功能。

一、ALP酶的结构组成1. 蛋白质组成ALP酶是由四个亚基(subunit)组成的二聚体,每个亚基都是由一个蛋白质链构成。

这四个亚基中,有三个亚基属于同一类型的基因,分别是组织非特异性碱性磷酸酶(TNSALP)基因编码的亚基。

第四个亚基是组织特异性碱性磷酸酶(TSALP)基因编码的亚基。

2. 糖基化修饰ALP酶的亚基上有大量的糖基化修饰,这些修饰可以增加酶的稳定性和活性。

糖基化修饰还可以影响酶的细胞定位和分布,从而调节其功能。

3. 金属离子结合位点ALP酶的结构中存在多个金属离子结合位点,其中最重要的是锌离子结合位点。

锌离子通过与酶的氨基酸残基相互作用,稳定酶的结构并参与催化反应。

二、ALP酶的功能1. 磷酸酶活性ALP酶具有磷酸酶活性,可以催化磷酸酯的水解反应。

它能够将磷酸酯分子中的磷酸基团水解成无机磷酸盐和醇。

这个反应在生物体内起着重要的代谢调节作用。

2. 骨骼代谢ALP酶在骨骼代谢中发挥着重要的作用。

它参与了骨骼中无机磷酸盐的代谢,调节骨骼生长和修复过程。

ALP酶的活性水平可以反映出骨骼生长发育的状态,因此常被用作骨骼疾病的诊断指标。

3. 肝脏功能ALP酶在肝脏中也起着重要的作用。

肝脏是合成和分泌ALP酶的主要器官,它通过胆汁排泄到肠道中。

肝脏疾病或胆道梗阻会导致ALP酶在血液中的水平升高,因此ALP酶也常被用作肝功能的指标之一。

4. 酸碱平衡调节ALP酶参与了酸碱平衡的调节。

它可以催化无机磷酸盐的水解反应,产生氢离子和碱性物质。

这些碱性物质可以中和体液中的酸性物质,起到维持酸碱平衡的作用。

结语ALP酶是一种重要的生物催化剂,在人体内发挥着重要的生理功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)Scientific DivisionCommittee on Reference Systems for Enzymes (C-RSE)IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37 °CPart 9. Reference Procedure for the Measurement of Catalytic Concentration of Alkaline Phosphatase[Orthophosphoric-Monoester Phosphohydrolase, Alkaline Optimum, EC 3.1.3.1]Gerhard Schumann1, Rainer Klauke1, Francesca Canalias2, Steffen Bossert-Reuther3, Paul F.H. Franck4, F.-Javier Gella5, Poul J. Jørgensen6, Dongchon Kang7, Jean-Marc Lessinger8, Mauro Panteghini9, Ferruccio Ceriotti101Medizinische Hochschule Hannover, Institut für Klinische Chemie, Hannover, Germany2Departament de Bioquímica i Biologia Molecular, Laboratori de Referència d'Enzimologia Clínica, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain3 Roche Diagnostics GmbH, Research & Development Department, Mannheim,Germany4Klinisch Chemisch en Hematologisch Laboratorium, HagaZiekenhuis, Den Haag, The Netherlands5BioSystems S.A., Barcelona, Spain6Department of Clinical Chemistry, Kolding Hospital, Kolding, Denmark7 Department of Clinical Chemistry and Laboratory Medicine, Kyushu UniversityGraduate School of Medical Sciences, Fukuoka, Japan8 Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie Générale etSpécialisée, Strasbourg, France9 Centro Interdipartimentale per la Riferibilità Metrologica in Medicina di Laboratorio(CIRME), Università degli Studi, Milano, Italy10Diagnostica e Ricerca San Raffaele, Scientific Institute H. San Raffaele, Milan, ItalyAbstractThis paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with:Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 °C; Part 8. Reference Procedure for the Measurement of Catalytic Concentration of α-Amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.Key w ords: IFCC reference procedure; alkaline phosphatase; reference intervals.Abbreviations:ALP, alkaline phosphatase; NPP, 4-nitrophenyl phosphate; AMP, 2-amino-2-methyl-1-propanolIntroductionThe catalytic concentration of alkaline phosphatase (ALP) in serum represents the activity of multiple forms of the enzyme. More than seventeen isoforms of ALP are detectable by use of an isoelectric focusing technique (1). The catalytic concentration of ALP in serum of healthy adults originates from the liver and from bone in similar proportions. ALP from small intestine contributes to approximately 10% of total ALP in healthy individuals. If not physiologically induced by growth of bone or in pregnancy, increase of ALP in serum occurs as a consequence of disease of the liver and/or bone.The determination of the catalytic concentration of ALP in serum depends strongly on the chosen measurement parameters. Among these, the choice of the buffer is of great importance. In 1983 an expert group of the International Federation of Clinical Chemistry (IFCC) provided a proposal for a standardized measurement procedure for ALP (2, 3). The reaction principle was based on the use of 2-amino-2-methyl-1-propanol (AMP) and 4-nitrophenyl phosphate (NPP); the measurement temperature was 30 °C. Even though this procedure for ALP was never endorsed as official IFCC recommendation by the IFCC member societies, many commercial test kits for ALP currently use the AMP buffer.This paper describes the IFCC primary reference measurement procedure for ALP, which is based on the previous IFCC work (2, 3). The change of the measurement temperature from 30 °C to 37 °C necessitated a re-evaluation of the measurement conditions. The results of this re-evaluation with very detailed definition of the measurement parameters relevant for high level standardization are described. This paper is the ninth in a series dealing with reference procedures for the measurementof catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations (4-11).The reference measurement procedure for ALP will be of use in a reference measurement system for the certification of calibrators and control materials, thus providing the basis to allow the clinical laboratories to produce traceable measurement results and to establish definitive reference intervals (12, 13). In particular, here we provide only preliminary reference intervals for adult subjects; ALP reference intervals undergo important changes dependent on age and gender and further work is needed to obtain the full range of reference intervals.Reaction PrincipleALP catalyzes the hydrolysis of NPP, forming phosphate and free 4-nitrophenol; under alkaline conditions, 4-nitrophenol is converted to the 4-nitrophenoxide ion. AMP and H2O are used as phosphate-acceptors:1.) 4-Nitrophenyl phosphate + H2O ALP 4-Nitrophenoxide + Phosphate2.) 4-Nitrophenyl phosphate + AMP ALP 4-Nitrophenoxide + AMP-Phosphate SpecimensCalibration materials, control specimens and human sera.Measurement ConditionsConcentrations in the final reaction mixture and the measurement conditions are listed in Tables 1 and 2.Table 1 (insert here)Table 2 (insert here)Note: The compliances with the prescribed maximum allowable expanded uncertainties (95 % probability) of the values for temperature, pH, light pathand wavelength are confirmed if the expanded uncertainty of the calibration (95 % probability) is equal to or smaller than the maximum allowable expanded uncertainty, and the result of the calibration does not differ significantly (p ≤ 0.05) from the target value. This is valid if1≤+-?U ²U (value value cal max ncalibratio et arg tvalue targettarget value prescribed in the IFCC document value calibrationresult determined with the calibration procedure U max maximum allowable expanded uncertainty prescribed in the IFCCdocumentU cal maximum expanded uncertainty of the result of the calibrationprocedureReagents1. 2-Amino-2-methyl-1-propanol (C 4H 11NO), M r = 89.142. 4-Nitrophenyl phosphate, disodium salt, hexahydrate (C 6H 4NNa 2O 6P · 6H 2O ),M r = 371.143. Magnesium acetate (Mg(C 2H 3O 2)2 · 4H 2O), M r = 214.464. Zinc sulfate (ZnSO 4 · 7H 2O), M r = 287.545. N-(2-Hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), trisodium salt(C 10H 15N 2Na 3O 7), M r = 344.20 (anhydrous)6. Hydrochloric acid (HCl), M r = 36.46, 25 %7. Hydrochloric acid (HCl), M r = 36.46, 2 mol/L8. Sodium chloride (NaCl), M r = 58.44Note: AMP may contain inhibitors for ALP. The manufacturers should declare that the buffer substance is suitable for the investigation of ALP.Note: The content of water in commercially available HEDTA differs. The percentage of water in the used lot shall be documented in a certificate of analysis of the manufacturers and shall be taken into account by the preparation of the metal ion buffer.Note: The NPP reagent must meet the following criteria (declared in manufacturers’ certificate of analysis or confirmed by investigations of the user):∙Enzymatic conversion of NPP to 4-nitrophenol should result in a hydrolysis of >0.98,∙The molar absorption coefficient of NPP at 311 nm in sodium hydroxide, 10 mmol/L at 25 °C, should be 986.7 m²/mol ± 7.6 m²/mol,∙The mol fraction of 4-nitrophenol to NPP must be less than 0.0003,∙The mol fraction of inorganic phosphate to NPP must be less than 0.01.Detailed procedures for checking these conditions are given by Bowers et al.(14).Reagents of the highest purity must be used. If a chemical is suspected of containing impurities affecting the catalytic activity of the analyte further investigations must be performed: e.g. comparisons with products from different manufacturers and different lots.It is recommended to use reagents which have already been tested and approved in comparisons.Charts for the Adjustment and Control of pHProcedure for the adjustment of pH at temperatures diverging from 37 °C.Both the thermometer and the pH electrode are suspended in the mixed solution simultaneously. The stirred solution is then titrated to the pH listed in the chart for the actually measured temperature. The speed of agitation should be the same duringthe calibration and the control of the pH-meter and the adjustment of the pH of the reagent solutions. The pH electrode should be positioned in the center of the stirred solution.The possibility that the temperature can change during the titration must be taken into account. For this reason, the temperature in the proximity of the target value should be controlled again and the target pH has to be corrected if necessary. The same applies for the adjustment of the temperature compensation of the pH meter. Table 3 (insert here)Preparation of SolutionsThe given mass of the compounds for the preparation of solutions refers to 100 % content. If the content of the reagent chemical employed is less (e.g. yz %), the amount equivalent to the given mass is calculated by the use of a factor:F content = 100 / yzHighly purified water shall be used for the preparation of the reagent solutions. Guidelines describing the preparation and testing of reagent water are published elsewhere (15).The expanded (k = 2) combined uncertainty (normally distributed) of each weighing procedure (including the uncertainty of the purity of the substance) shall be 1.5 %. Solution 10.878 g (25.50 mmol/L) HEDTA0.367 g (12.75 mmol/L) Zinc sulfate0.547 g (25.50 mmol/L) Magnesium acetate-Dissolve the HEDTA in about 70 mL water.-Add the zinc sulfate to the solution.-Add the magnesium acetate only when the zinc sulfate is completely dissolved.-Dissolve the magnesium acetate in the solution.-Transfer to a 100 mL volumetric flask.-Equilibrate volumetric flask and water to 20 °C.-Fill water up to the calibration mark of the volumetric flask (20 °C).Stability at 2 °C - 8 °C: 3 months Reaction Solution8.52 g (956.3mmol/L) 2-Amino-2-methyl-1-propanol-Dissolve in about 70 mL water.-Adjust pH (37 °C) 10.3 - pH (37 °C) 10.5 with 25 % hydrochloric acid.-Add 10 mL Solution 1.-Adjust pH (37 °C) 10.2 with hydrochloric acid (2 mol/L)-Transfer to a 100 mL volumetric flask.-Equilibrate volumetric flask and water to 20 °C.-Fill water up to the calibration mark of the volumetric flask (20 °C).Stability at 2 °C - 8 °C: 3 months Start Reagent Solution0.757 g (81.6 mmol/L) 4-Nitrophenyl phosphate, disodium salt, hexahydrate-Dissolve in about 15 mL water.-Transfer to a 25 mL volumetric flask.-Equilibrate volumetric flask and water to 20 °C.Fill water up to the calibration mark of the volumetric flask (20 °C).Stability at 2 °C - 8 °C: 1 week Measurement ProcedureDegas carefully the amount of Reaction Solution required for the experiment.The degassing can be performed by using a vacuum oven with a temperature set at 35°C or warming the solution up to approx. 35 °C following by storage of it for 1 h in a vacuum desiccator while stirring with a magnetic stirrer. If the degassed solution is not used within the day, degas it again just before use.Equilibrate only an adequate volume of start reagent solution at 37 °C in preparation for the measurement procedure. The remaining volume of the start reagent solution should be stored at 2 °C - 8 °C.Pipette the volumes as listed in Table 4 one after another into the cuvette.Table 4 (insert here)Reagent Blank RateTo determine the reagent blank rate, the specimen is replaced by 9 g/L (154 mmol/L) sodium chloride solution. The measurement procedure is then carried out as described above.The reagent blank shows a non-linear kinetic. The acceptable reagent blank rate is between 0 U/L and 5 U/L (<3.0 x 10-5 s-1 or <0.0018 min-1).Note: Due to the non-linearity of the kinetic, the reagent blanks have a lower reproducibility. It is advisable to perform at least three replicates and use the mean for further calculations.Sample Blank RateFor the determination of the sample blank rate, the start reagent solution is replaced by 9 g/L (154 mmol/L) sodium chloride solution. The measurement procedure is then carried out as described above.Note: The sample blank rate is determi ned and documented, but not taken into account for calculation of the catalytic concentration of ALP in control sera and calibrators. In case of the value of the sample blank rate exceeding 1 % of total ALP, a warning that the respective material is not appropriate for calibration should be issued.Note: The reagent blank rate for the sample blank rate is determined by replacing the start reagent solution and the sample by 9 g/L (154 mmol/L) sodium chloride solution.Note: Effects of the matrix of the sample on the indicator reaction have not been considered due to the omission of NPP from the reaction mixture.Upper Limit of the Measurement RangeIf the change of absorbance exceeds 0.0042 s-1(0.25 min-1) in the measurement interval, an analytical portion of the sample must be diluted with 9 g/L (154 mmol/L) sodium chloride solution and the measurement procedure must be repeated with the diluted specimen (16). The obtained value must then be multiplied by the corresponding factor of the dilution.Note: The following rules for the dilution of samples are recommended for improved standardization.The sample shall be diluted if the interval of the combined expanded uncertainty and the upper limit of the measurement range are overlapping. Inthis case pre-dilution of ten volume parts of the sample with one volume part of 9 g/L (154 mmol/L) sodium chloride solution is recommended.Adequate dilution shall be performed if the interval of the combined expanded uncertainty is completely located above the upper limit of the measurement range. The change of absorbance of the reaction mixture containing the pre-diluted sample shall be in a range from 0.0034 s-1 (0.20 min-1) to 0.0038 s-1 (0.23 min-1)Sources of Error∙The temporal conversion rate is not linear for all samp les. The non-linearity depends on the matrix of the material and the catalytic concentration of ALP.Deviations from the described delay time and measurement time can lead to non-commutability of the material and changed method.∙The optimum pH in some control materials and calibrators differs from the described pH of the reference procedure. This leads to an increased sensitivity to the uncertainty of the pH adjustment.∙Absorbed carbon dioxide from the air changes the pH of the reaction solution.Therefore, the container of reaction solution shall be closed tightly. The pH in solution 1 shall be controlled at least weekly.∙The catalytic concentration of ALP in some control materials increases during the storage. Such a material is not suitable as calibrator or as control material.∙ A thorough mixing of the final complete reaction mixture is necessary due to the high buffer concentration. Otherwise the formation of streaks leads to a poor precision of the measurement results.CalculationThe temporal change of absorbance (s-1) is calculated with analysis of regression (method of the least squares). After subtraction of the reagent blank rate the corrected change of absorbance is multiplied with the factorF = 2729(measurement at 405 nm,ε405= 1869 m²/mol)Note: The use of the molar absorption coefficient ε405= 1869 m²/mol is recommended by IFCC and IRMMThe catalytic concentration of ALP is calculated in µkat/L.∆A/∆t ALP: change of absorbance after correction of the reagent blank rate (in s-1)b ALP: catalytic concentration of ALP (µkat/L)b ALP = 2729∆A/∆t ALPThe catalytic concentration in µkat/L can be converted to U/L by multiplication by the factor f = 60.Preliminary reference valuesFemales (18 – 49 years): 0.55 µkat/L – 1.64 µkat/L 33 U/L – 98 U/LMales (≥ 20 years) 0.72 µkat/L– 1.92 µkat/L 43 U/L– 115 U/LDetails about the definition of the preliminary reference values are given in Appendix II.Appendix I: Changes in the IFCC reference procedure for measurements at37 °C compared with the reference method for measurements at 30 °C as described in the original IFCC documentThe primary reference procedure is derived from the draft of the IFCC reference method (2, 3), which provides optimized conditions for the measurement of catalytic concentration of ALP at 30 °C.The measurement temperature of 37 °C instead of 30 °C requires only minor changes of certain measurement parameters to retain the optimum measurement conditions. The modifications are listed and commented on in this appendix. Furthermore, if in comparison to the 30 °C reference method a more accurate specification has become necessary for improving the standardization of the measurements, it is also described here.Table 5 (insert here)Appendix II: Determination of preliminary reference intervalsSample collection was performed in four different European centres: 2 sites in Milan (Italy) (Ospedale L. Sacco and Ospedale S. Raffaele), one in Nancy (France) (Centre Medicine Preventive) and one in Bursa (Turkey) (Uludag University Medical School). The serum was collected using BD Vacutainer system (BD Becton, Dickinson and Company) into plastic tubes with serum separator (SST TM II). The samples were allowed to clot at room temperature and centrifuged (2000 g) within one hour. Serum was separated and aliquoted within four hours from blood collection. The aliquots were frozen at -80 °C. The frozen aliquots were sent in dry ice to the reference laboratory in Hannover where all the analyses were performed. The referenceanalyses were performed on a KoneLab 30i instrument (Thermo Fisher Scientific). The reagents were self prepared according to the prescriptions in this document. The measurement parameters and the measurement design were configured as closely related as technically feasible. The calibration was performed by use of a set of pooled sera with assigned target values for ALP obtained by measurements using the manually performed primary IFCC reference measurement procedure.Subjects in Italy and Turkey were specifically enrolled for the reference interval experiment and they gave an informed consent and replied to an ad hoc questionnaire; the samples from France were leftover samples from those collected for a health screening program. All of the samples were obtained from individuals in the fasting state. In addition to ALP, the following tests were performed locally in all the samples: AST, ALT, GGT, glucose and creatinine; in addition, total calcium and inorganic phosphate were measured in the Hannover reference laboratory.The ages of the enrolled subjects spanned from 5 to 87 years, but the number of subjects in the younger and older age ranges was insufficient to provide reliable reference intervals. Thus, results are presented only for adult pre-menopausal females and adult males. The origin of the participants and their age group distributions are shown in Table 6.Table 6 (insert here)The population sizes from the different sites were similar, but the Turkish group had a larger number of young subjects.To exclude the possibility that any of the reference individuals were in late puberty, only individuals who were 18 years or older if females and 20 years or older if males were included in the calculation. The decrease in ALP catalytic activity to typical adultranges is known to differ from subject to subject and occurs on average two years earlier in females than in males.Moreover, as for females a progressive increase of both lower and upper reference limit following the menopause is described (17), we excluded females older than 49 years. As for males no age-related increase in ALP has been described, all the data, including those from elderly people, were included in the calculation.Exclusion criteria. Participants were excluded from the study if suffering for diabetes (glucose > 7.0 mmol/L), renal impairment [creatinine > 115 μmol/L if females, 133 μmol/L if males], liver damage (AST, ALT or GGT >100 U/L), total calcium and inorganic phosphate outside the reference intervals (2.15 – 2.60 mmol/L and 0.80 –1.50 mmol/L, respectively).ALP results. The results of adult males and adult pre-menopausal females were compared using the approach proposed by Lahti et al. (18, 19) and partitioning was suggested, so the two groups were considered separately.Results for women from the three collection sites were compared using the Lahti statistical method (18, 19) and the Turkish group was found to be significantly different from the French group, whereas difference with the Italian group was only marginal; the Italian and French groups were significantly different only at the lower reference limit. Hence statistically the three groups were different; however, because the Turkish group was significantly younger and the lower reference limit is clinically less relevant, all the data were merged. The differences among the results from men across the three sites were less pronounced than those of the women. The application of the Lahti algorithm indicated only marginal differences.The reference limits, calculated with the non parametric approach, are reported in Table 7.Table 7 (insert here)AcknowledgementsReference subject samples and additional medical laboratory information was provided by Yesim Ozarda, Uludag University Medical School, Department of Biochemistry and Clinical Biochemistry, Bursa, Turkey through support of the Uludag University Research Fund (Grant# UAP(T)-2009/10 ), Joseph Henny, Laboratoire de Biologie Clinique, Centre de Médecine Préventive, Vandoeuvre-lès-Nancy, France, and Cristina Valente, Laboratorio Analisi Chimico-Cliniche, Azienda Ospedaliera Luigi Sacco, Milano, Italy.Elena Guerra (Diagnostica e Ricerca S. Raffaele, Milano, Italy) and Rolf Nagel (Diagnostics GmbH, Research & Development Department, Mannheim, Germany) contributed with their suggestions and technical assistance.James Boyd, Josep M. Queraltó and Shen Zyiu, members of the IFCC Committee Reference Intervals and Decision Limits (C-RIDL), contributed with fruitful discussion and suggestions.The German Society for Clinical Chemistry and Laboratory Medicine (DGKL) has granted the work of the accredited reference laboratory DKD-K-20602.References1. Wallach BA, Lott JA, Griffiths J, Kirckpatrick B. Isoforms of alkaline phosphatasedetermined by isoelectric focusing in patients with chronic liver disorders. Eur J Clin Chem Clin Biochem1996;34:711-20.2. Tietz NW, Rinker AD, Shaw LM. International Federation of Clinical Chemistry.IFCC methods for the measurement of catalytic concentration of enzymes. Part 5.IFCC method for alkaline phosphatase (orthophosphoric-monoesterphosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC Document Stage 2, Draft 1, 1983-03 with a view to an IFCC Recommendation. Clin Chim Acta 198330;135:339F-367F.3. Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ, Rinker AD, et al. Areference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 1983;29:751-61.4. Siekmann L, Bonora R, Burtis CA, Ceriotti F, Clerc-Renaud P, Férard G, et al.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes.Clin Chem Lab Med 2002;40:631-4.5. Schumann G, Bonora R, Ceriotti F, Clerc-Renaud P, Férard G, Ferrero CA, et al.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 2. Reference Procedure for the Measurement of Catalytic Activity Concentration of Creatine Kinase [ATP: Creatine N-Phosphotransferase (CK), EC 2.7.3.2]. Clin Chem Lab Med 2002;40:635-42.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 3. Reference Procedure for the Measurement of Catalytic Activity Concentration of Lactate Dehydrogenase [L-Lactate: NAD+ Oxidoreductase (LDH), EC 1.1.1.27]. Clin Chem Lab Med 2002;40:636-48.7. Schumann G, Bonora R, Ceriotti F, Férard G, Ferrero CA, Franck PFH, et a l.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 4. Reference Procedure for the Measurement of Catalytic Activity Concentration of Alanine Aminotransferase [L-Alanine: 2-Oxoglutarate Aminotransferase (ALT), EC 2.6.1.2] Clin Chem Lab Med 2002;40:718-24.8. Schumann G, Bonora R, Ceriotti F, Férard G, Ferrero CA, Franck PFH, et al.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 5. Reference Procedure for the Measurement of Catalytic Activity Concentration of Aspartate-Aminotransferase [L-Aspartate: 2-Oxoglutarate-Aminotransferase (AST), EC 2.6.1.1]. Clin Chem Lab Med 2002;40:725-33.9. Schumann G, Bonora R, Ceriotti F, Férard G, Ferrero CA, Franck PFH, et al.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 6. Reference Procedure for the Measurement of Catalytic Activity Concentration of γ-Glutamyltransferase [(γ-Glutamyl)-Peptide: Amino Acid γ-Glutamyltransferase (GGT), EC 2.3.2.2]. Clin Chem Lab Med 2002;40:734-8.IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of γ-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase according to IFCC Procedures at 37 °C. Clin Chem Lab Med 2002; 40:739-45. 11. Schumann G, Aoki R, Ferrero CA, Ehlers G, Férard G, Gella FJ, et al. IFCCPrimary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 8. Reference Procedure for the Measurement of Catalytic Activity Concentration of α-amylase [α-amylase: 1,4-α-D-glucan 4-glucanohydrolase (AMY), EC 3.2.1.1]. Clin Chem Lab Med 2006;44:1146-55.12. Panteghini M, Ceriotti F, Schumann G, Siekmann L. Establishing a referencesystem in clinical enzymology. Clin Chem Lab Med 2001;39:795-800.13. Infusino I, Schumann G, Ceriotti F, Panteghini M. Standardization in clinicalenzymology: a challenge for the theory of metrological traceability. Clin Chem Lab Med 2010;48:301-7.14. Bowers GN Jr, McComb RB, Umbretti A. 4-Nitrophenyl Phosphate -Characterization of High-Purity Materials for Measuring Alkaline Phosphatase Activity in Human Serum. Clin Chem 1981;27:135-43.15. Clinical and Laboratory Standards Institute (CLSI). Preparation and Testing ofReagent Water in the Clinical Laboratory; Approved Guideline – Fourth Edition.CLSI document C3-A4.。

相关文档
最新文档