全国中考数学模拟汇编一 52方案设计与决策型问题
中考数学 专题三 方案设计与决策型问题
![中考数学 专题三 方案设计与决策型问题](https://img.taocdn.com/s3/m/04ded14a4b7302768e9951e79b89680203d86b21.png)
汇报人: 2023-12-11
目 录
• 方案设计型问题 • 决策型问题 • 方案设计与决策型问题的关系 • 方案设计与决策型问题的实际应用 • 方案设计与决策型问题的备考策略
01
方案设计型问题
定义与特点
定义
方案设计型问题通常是指给定一 个具体的任务或目标,要求考生 设计一个可操作的具体方案或计 划,以实现该任务或目标。
特点
方案设计型问题通常需要考生具 备一定的创新能力和实际操作经 验,同时还需要对相关领域的知 识有一定的了解和掌握。
常见类型与解题思路
• 常见类型:方案设计型问题可以涵盖各个领域,如工程设 计、市场营销、金融投资、产品设计等等。
常见类型与解题思路
解题思路 1. 仔细阅读题目,明确任务和目标。
2. 分析相关领域的知识和背景资料,了解行业标准和最佳实践。
常见类型与解题思路
3. 设计具体的方案和计划,确保其可 行性和可操作性。
5. 综合评估方案的经济效益、社会效 益和环境效益,确保其综合效益最大 化。
4. 针对可能出现的风险和问题,制定 相应的应对措施。
经典案例解析
案例
某城市计划建设一个大型公园,要求实现以下目标:提高市民的生活质量、促进城市的可持续发展、 提升城市的生态环境。请设计一个具体的方案,包括选址、设计、施工和维护等方面的具体计划。
掌握转换技巧与应用场景
1 2 3
代数式转换
掌握代数式转换的技巧和方法,如提取公因式、 平方差公式、完全平方公式等,了解代数式转换 在实际问题中的应用场景。
函数图像转换
了解函数图像的转换方法和技巧,如平移、伸缩 、对称等变换,熟悉函数图像转换在实际问题中 的应用场景。
全国各地中考数学模拟题目分类52方案与决策型问题目含答案
![全国各地中考数学模拟题目分类52方案与决策型问题目含答案](https://img.taocdn.com/s3/m/95b729db700abb68a982fbd8.png)
52.方案设计与决策型问题解答题1、(2011年北京四中五模)我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):.方案(3):.答案:方案(2):该角恰为两边的夹角时;(3分)方案(3):该角为钝角时.(6分)2、(2011年浙江省杭州市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx解得:7≤ x≤ 9∵x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元)∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元)方案二: 建造A 型沼气池8个, 建造B 型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 )方案三: 建造A 型沼气池9个, 建造B 型沼气池11个,总费用为:9×2 + 11×3 = 51( 万元 )∴方案三最省钱.3、(2011年浙江省杭州市中考数学模拟22)(根据初中学业考试总复习P23例3改编)(2011年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
最新中考数学专项训练:方案设计与决策型问题--知识讲解(基础)(含答案解析)
![最新中考数学专项训练:方案设计与决策型问题--知识讲解(基础)(含答案解析)](https://img.taocdn.com/s3/m/1d41d067fad6195f302ba636.png)
中考冲刺:方案设计与决策型问题—知识讲解(基础)责编:常春芳【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【答案与解析】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y 吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?【答案】解:(1)设男生有6x人,则女生有5x人.依题意得:6x+5x=55,∴x=5,∴6x=30,5x=25.答:该班男生有30人,女生有25人.(2)设选出男生y人,则选出的女生为(20-y)人.由题意得:2027y yy--⎧⎨⎩>≥,解得:7≤y<9,∴y的整数解为:7、8.当y=7时,20-y=13,当y=8时,20-y=12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数(件)x 2x 200运费(元)30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【思路点拨】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往C地的产品件数:运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费,进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【答案与解析】(1)①根据信息填表:A地B地C地合计产品件数(件)200-3x运费(元) 1 600-24x 50x 56x+1 600②由题意得20032 1600564000x xx-≤⎧⎨+≤⎩解得40≤x≤4267.∵x为正整数,∴x=40或41或42,∴有3种方案,分别为:(ⅰ)A地40件,B地80件,C地80件;(ⅱ)A地41件,B地77件,C地82件;(ⅲ)A地42件,B地74件,C地84件.(2)由题意得30x+8(n-3x)+50x=5800,整理得n=725-7x.∵n-3x≥0,∴x≤72.5.又∵x≥0,∴0≤x≤72.5且x为正整数.∵n随x的增大而减小,∴当x=72时,n有最小值为221.【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n的最小值. 举一反三:【高清课堂:方案设计与决策型问题例2】【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】解:(1)设一台甲型设备的价格为x万元,由题意3x+2×0.75x=54,解得x=12,∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a台,由题意有12a+9(8-a)≤84①;200a+160(8-a)≥1300②,解得:12≤a≤4,由题意a为正整数,∴a=1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W万元,W=12a+9(8-a)+1×10a+1.5×10(8-a),化简得:W=-2a+192,∵W随a的增大而减少∴当a=4时,W最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?(2)该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.【思路点拨】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【答案与解析】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍需资金y万元,则34803400x yx y+=⎧⎨+=⎩,解得90130xy=⎧⎨=⎩.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍需资金130万元.(2)设A类学校应该有a所,则B类学校有(8-a)所.则2030(8)(90-20)(13030)(8)a aa a+-⎧⎨+--⎩≥210≤770,解得aa⎧⎨⎩≤3≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案:方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A 类学校有3所,B 类学校有5所. 【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键. 举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要y 1元,买x 支钢笔需要y 2元,求y 1、y 2关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【答案】解:(1)设每个文具盒x 元,每支钢笔y 元,由题意得5210047161x y x y +=⎧⎨+=⎩,解得1415x y =⎧⎨=⎩. 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x .由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y 2=15x .当买10支以上时,超出部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +30.(3)当y 1<y 2,即12.6x <12x +30时,解得x <50; 当y 1=y 2,即12.6x =12x +30时,解得x =50; 当y 1>y 2,即12.6x >12x +30时,解得x >50.综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱; 当购买奖品等于50件时,买文具盒和买钢笔钱数相等; 当购买奖品超过50件时,买钢笔省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A 地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,填写表2,写出 运费w (元)与a 的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费. 表1 甲地(元/辆) 乙地(元/辆) 货车 700 800 小货车 400 600 表2. 甲地 乙地 大货车 a 辆 辆小货车辆辆【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W 与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【答案与解析】解:(1)设需要大货车x辆,则需要小货车(18﹣x)辆,由题意,得15x+10(18﹣x)=220,解得:x=8,需要小货车18﹣8=10辆.答:需要大货车8辆,则需要小货车10辆;(2)设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,表格2答案为:大货车去乙地(8﹣a)辆,小货车去甲、乙两地各(8﹣a)辆,(2+a)辆.由题意,得W=700a+800(8﹣a)+400(8﹣a)+600(2+a),W=100a+10800.15a+10(8﹣a)≥110,a≥6.∵k=100>0,∴W随a的增大而增大,∴a=6时,W最小=11400,∴运往甲地的大货车6辆,小火车2辆,运往乙地的大货车2辆,小火车8辆.最小运费为11400辆.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计【高清课堂:方案设计与决策型问题例1】5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.【答案与解析】 解:(1)由题意得, πy+πx=628,∵3.14y+3.14x=628, ∴y+x=200则y=200﹣x ;(2)①W=428xy+400π2()2y+400π2()2x ,=428x (200﹣x )+400×3.14×2(200)4x +400×3.14×24x ,=200x 2﹣40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x ﹣100)2+1.056×107>107, 所以不能; ③由题意可知:x≤23y 即x≤23(200﹣x )解之得x≤80, ∴0≤x≤80,又题意得:W=200(x ﹣100)2+1.056×107=107+6.482×105,整理得(x ﹣100)2=441,解得x 1=79,x 2=121(不合题意舍去), ∴只能取x=79,则y=200﹣79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 【总结升华】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.。
2011中考模拟分类汇编52.方案设计与决策型问题
![2011中考模拟分类汇编52.方案设计与决策型问题](https://img.taocdn.com/s3/m/389500f1d15abe23482f4d3a.png)
52.方案设计与决策型问题解答题1、(2011年北京四中五模)我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2): .方案(3): .答案:方案(2):该角恰为两边的夹角时;(3分)方案(3):该角为钝角时.(6分)2、(2011年浙江省杭州市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx解得:7≤ x≤ 9∵ x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种 .(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y随x 增大而减小,当x =9 时,y 的值最小,此时y = 51( 万元 )∴此时方案为:建造A 型沼气池9个,建造B 型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A 型沼气池7个, 建造B 型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分方案二: 建造A 型沼气池8个, 建造B 型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分方案三: 建造A 型沼气池9个, 建造B 型沼气池11个,总费用为:9×2 + 11×3 = 51( 万元 )∴方案三最省钱.3、(2011年浙江省杭州市中考数学模拟22)(根据初中学业考试总复习P23例3改编)(2011年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
最新中考专项训练:方案设计与决策型问题(提高)(含答案解析)
![最新中考专项训练:方案设计与决策型问题(提高)(含答案解析)](https://img.taocdn.com/s3/m/a6822fbfbb4cf7ec4bfed028.png)
中考冲刺:方案设计与决策型问题(提高)一、选择题1.(2016春•内江期末)有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.2002.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.① B.②C.③ D.④3. 下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个 B.3个 C.2个 D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):______.方案(3):______.5.(重庆校级期中)适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择______厂更划算.6. 几何模型:条件:如下左图,A、B是直线同旁的两个定点.问题:在直线上确定一点P,使PA+PB的值最小.方法:作点A关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,则的最小值是___________;(3)如图3,,是内一点,,分别是上的动点,则周长的最小值是___________.三、解答题7. (2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?8.(2015•宜昌模拟)今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.9. 某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m,一套B型桌椅(一桌三椅)需木料0.7m,工厂现有库存木料302m.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10. 如图1,矩形铁片ABCD的长为,宽为;为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______ .答案与解析【答案与解析】一、选择题1.【答案】B;【解析】设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.2.【答案】B;【解析】如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故选B.3.【答案】A【解析】根据旋转、轴对称的定义来分析.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有 4个.故选 A.二、填空题4.【答案】方案(2):该角恰为两边的夹角时;方案(3):该角为钝角时.5.【答案】甲【解析】设每一份校庆专刊的单价为a元.甲厂的花费:2000a(1﹣20%)(1﹣10%)=1440a;乙厂的花费:1000a(1﹣10%)+1000a(1﹣30%)=1600a;1440a<1600a所以选择甲厂更划算.故答案为:甲.6.【答案】(1);(2);(3).【解析】解:(1)的最小值是DE,.(2)延长AO交⊙o于点D,连接CD交OB于P则PA=PD,PA+PC=PC+PD=CD连接AC,∵AD为直径,∴∠ACD=90°,AD=4∵∠AOC=60°,∴∠ADC=30°在Rt△ACD中,CD=cos30°・AD=,即PA+PC的最小值为(3)解:分别作点P关于OA,OB的对称点E,F,连接EF交OA,OB于R,Q,则△PRQ的周长为:EF,∵OP=OE=OF=10, ∠FOB=∠POB,∠POA=∠AOE,∵∠AOB=45°, ∴∠EOF=90°在Rt△EOF中,∵OE=OF=10,∴EF=10,即△PRQ的周长最小值为10三、解答题7.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.8.【答案与解析】解:(1)设2011年热水器的财政补贴为x亿元,则2012年热水器的财政补贴为1.1x,洗衣机的财政补贴1.2×1.1x、平板电视的财政补贴1.4×1.1x、空调的财政补贴×1.1x,根据题意列方程得:1.1x+1.2×1.1x+1.4×1.1x+×1.1x=264解得:x=5答:2011年热水器的财政补贴为5亿元;(2)设“十二五”的最后两年用于此项财政补贴的年平均增长率为m.根据题意列方程得:(264﹣a)+264+(264+a)+(264+a)×(1+m)+(264+a)(1+m)2=264×5.31+2.31a 即(264+a)m2+3(264+a)m﹣0.31(a+264)=0,m2+3m﹣0.31=0解得:m1=3.1(舍去),x2=0.1.答:此项财政补贴的年平均增长率是10%.9.【答案与解析】解:(1)设生产型桌椅套,则生产型桌椅套,由题意得解得因为是整数,所以有11种生产方案.(2),随的增大而减少.∴当时,有最小值.∴当生产型桌椅250套、型桌椅250套时,总费用最少.此时(元)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.10.【答案与解析】(1)是菱形如图,过点M作MG⊥NP于点GM、N、P、Q分别是AD、AB、BC、CD的中点∴△AMN≌△BPN≌△CPQ≌△DMQ∴MN=NP=PQ=QM∴四边形MNPQ是菱形MN=∴MG=∴此时铁片能穿过圆孔.(2)①如图,过点A作AH⊥EF于点H, 过点E作EK⊥AD于点K显然AB=,故沿着与AB垂直的方向无法穿过圆孔过点A作EF的平行线RS,故只需计算直线RS与EF之间的距离即可BE=AK=,EK=AB=,AF=∴KF=,EF=∠AHF=∠EKF=90°,∠AFH=∠EFK∴△AHF∽△EKF∴可得AH=∴该直角梯形铁片不能穿过圆孔.②或.。
人教版中考数学专题总复习《方案设计与决策型问题》练习题及答案精品教学课件PPT
![人教版中考数学专题总复习《方案设计与决策型问题》练习题及答案精品教学课件PPT](https://img.taocdn.com/s3/m/acae5408998fcc22bdd10d6a.png)
(3)当 y1<y2,即 12.6x<12x+30 时,解得 x<50; 当 y1=y2,即 12.6x=12x+30 时,解得 x=50; 当 y1>y2,即 12.6x>12x+30 时,解得 x>50. 综上所述,当购买奖品超过 10 件但少于 50 件时, 买文具盒省钱; 当购买奖品正好是 50 件时,买文具盒和买钢笔的 钱数相等; 当购买奖品超过 50 件时,买钢笔省钱.
3.今年 4 月份,李大叔收获洋葱 30 吨,黄瓜
13 吨.现计划租用甲、乙两种货车共 10 辆,将这两种
蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱
4 吨和黄瓜 1 吨,一辆乙种货车可装洋葱和黄瓜各
2 吨.李大叔租用甲、乙两种货车的方案有( B )
A.2 种
B.3 种
C.4 种
D.5 种
解析:设租用甲种货车 x 辆,则租用乙种货车 (10-x)辆,依题意,得x4+x+22101-0-xx≥≥133,0, 解这个不 等式组,得 5≤x≤7.∵x 是整数,∴x 可取 5,6,7,即租 用甲、乙两种货车有三种方案:①甲种货车 5 辆,乙种 货车 5 辆;②甲种货车 6 辆,乙种货车 4 辆;③甲种货 车 7 辆,乙种货车 3 辆.故选 B.
(1)每个文具盒、每支钢笔各多少元?
(2)时逢“五一”,商店举行“优惠促销”活动, 具体办法如下:文具盒“九折”优惠;钢笔 10 支以上 超出部分“八折”优惠.若买 x 个文具盒需要 y1 元, 买 x 支钢笔需要 y2 元,求 y1,y2 关于 x 的函数关系式;
中考数学冲刺复习专题训练5方案设计与决策型问题
![中考数学冲刺复习专题训练5方案设计与决策型问题](https://img.taocdn.com/s3/m/dbedbe335022aaea988f0f49.png)
方案设计与决策型问题例 1.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.例2.为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)例3.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A 种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B 种造型需甲种花卉5盆,乙种花卉9盆.(l )某个课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?例4.在△ABC 中, BC =a ,BC 边上的高h =2a ,沿图中线段DE 、CF 将△ABC 剪开,分成的三块图形恰能拼成正方形CFHG ,如图所示.请你解决如下问题: 已知:在锐角△A ′B ′C ′中, B ′C ′=a ,B ′C ′边上的高h =a 21.请你设计两种不同的分割方法,将△A ′B ′C ′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,画出分割线及拼接后的图形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1【答案】B【解析】0.056用科学记数法表示为:0.056=-25.610 ,故选B.2.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是 A . B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C 选项符合题意.故选C .3.下列二次根式,最简二次根式是( )A .8B 12C 5D 27【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含开的尽的因数,故A 不符合题意;B 、被开方数含分母,故B 不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.5.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.6.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C【答案】C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3【答案】D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角【答案】B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.9.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.10.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数【答案】D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.二、填空题(本题包括8个小题)11.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .【答案】5 5【解析】在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.【详解】在直角△ABD中,BD=1,AB=2,则AD=22AB BD+=2221+=5,则sinA=BDAD=15=55.故答案是:5 5.12.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCED的面积四边形的面积=_____.【答案】1 8【解析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【详解】解:∵DE∥BC,AD1=DB2,∴AD1= AB3,由平行条件易证△ADE~△ABC, ∴S△ADE:S△ABC=1:9,∴ADE S ADEBCED S ABC S ADE的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 13.分解因式:2x y 4y -= .【答案】()()y x 2x 2+-.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式y 后继续应用平方差公式分解即可:()()()22x y 4y y x 4y x 2x 2-=-=+-. 考点:提公因式法和应用公式法因式分解.14.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1, 故答案为:6×1. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.16.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.【答案】1.【解析】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.17.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.2【解析】设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=2222AB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=2222AB=cm,∴扇形OAB的弧AB的长=90222180π⋅⋅=π,∴2πr=2π,∴r=22(cm).故答案为22.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.18.分解因式:m2n﹣2mn+n= .【答案】n(m﹣1)1.【解析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.三、解答题(本题包括8个小题)19.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.【答案】300米【解析】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.20.已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;以点B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并直接写出C 2点的坐标及△A 2BC 2的面积.【答案】解:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2).(2)如图,△A 2BC 2即为所求,C 2(1,0),△A 2BC 2的面积:10【解析】分析:(1)根据网格结构,找出点A 、B 、C 向下平移4个单位的对应点1A 、1B 、1C 的位置,然后顺次连接即可,再根据平面直角坐标系写出点1C 的坐标;(2)延长BA 到2A 使A 2A =AB ,延长BC到2C ,使C 2C =BC ,然后连接A 2C 2即可,再根据平面直角坐标系写出2C 点的坐标,利用△2A B 2C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)(2)如图,△2A B 2C 为所求,2C (1,0),△2A B 2C 的面积: 6×4−12×2×6−12×2×4−12×2×4=24−6−4−4=24−14=10, 21.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B 、C 两点的对应点B′、C′的坐标;如果△OBC 内部一点M 的坐标为(x ,y ),写出M 的对应点M′的坐标.【答案】 (1)画图见解析(2)B'(-6,2)、C '(-4,-2)(3) M'(-2x,-2y )【解析】解:(1)(2)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)22.如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.【答案】(1)4yx=;(2)1<x<1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.23.央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200;(2)见解析;(3)126°;(4)240人.【解析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人, ∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键24.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【解析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.25.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.26.某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?【答案】(1)y1=4x,y2=-5x+1.(2)409km.(3)23h.【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=10 9.当x=109时,y2=−5×109+1=409,∴相遇时乙班离A地为409km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=23 h.∴甲、乙两班首次相距4千米时所用时间是23 h.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【答案】C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D 错误.故答案选C.考点:角的度量.2.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF 的长度为()A.2 B.23C.3D.22【答案】B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=3OE=23.3.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【答案】B【解析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.4.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H【答案】C【解析】根据被开方数越大算术平方根越大,可得答案.91016∴310<4,∵10,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出310<4是解题关键.5.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵【答案】D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.6.下列关于x的方程中一定没有实数根的是()A.210=-D.220-+=C.2x xx mx--=4690x x--=B.2x x【答案】B【解析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 2-+=, △=36-144=-108<0,∴原方程没有实数根,4x6x90C. 2x x+=, △=1>0,∴原方程有两个不相等的实数根,=-, 2x x0D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.7.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.8.下列计算正确的是( )A .x 2+x 2=x 4B .x 8÷x 2=x 4C .x 2•x 3=x 6D .(-x )2-x 2=0【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【答案】B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.二、填空题(本题包括8个小题)。
数学中考复习专题专题三方案设计与决策型问题
![数学中考复习专题专题三方案设计与决策型问题](https://img.taocdn.com/s3/m/2fd93d73767f5acfa0c7cd09.png)
专题三方案设计与决策型问题中考典例精析例1:某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费 2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【点拨】先分别求出y1和y2关于x的函数关系式,再根据y1=y2,y1>y2和y1<y2三种方案求x,进行比较、决策.例2:某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分.方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下图是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【点拨】对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及其三种统计量的意义即可.专题训练1.迎接大运,美化深圳,园林部门决定利用现有的 3 490盆甲种花卉和 2 950盆乙种花卉搭配A、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?2.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树形图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你设计该游戏规则,使游戏公平.专题训练【练习篇】一、选择题(每小题4分,共4分)1.(2012中考预测题)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有( )A.4种 B.3种 C.2种 D.1种二、填空题(每小题6分,共6分)2.(2010中考变式题)如图所示,AB为⊙O的直径,DC⊥AB,现有的长方形长、宽分别为AC、CB,若要设计一个正方形,使其面积等于长方形面积,则正方形的边长应为________.三、解答题(共90分)3.(15分)(2012中考预测题)某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基本费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元.(1)分别写出顾客甲按A、B两种方式计费的上网费y元与上网时间x分钟之间的函数关系式,并在图示的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网更合算?4.(15分)(2010中考变式题)某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)求A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有供学校参考的购买方案,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.5.(15分)(2011·福州)郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用 1 000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?6.(15分)(2012中考预测题)某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x≥3)个乒乓球,已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市更合算?(2)当x=12时,请设计最省钱的购买方案.7.(15分)(2011·广东)如图①,△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图②.(1)问:始终与△AGC相似的三角形有________及________;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图②的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.8.(15分)(2011·深圳)深圳某科技公司在甲、乙两地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台.运往A、B两馆的运费如下表:出发地甲地乙地目的地A馆800元/台700元/台B馆500元/台600元/台(1)设甲地运往A馆的设备有x台,请填写下表,并求出总运费y(元)与x(台)的函数关系式;出发地甲地乙地目的地A 馆x(台) ______(台)B 馆______(台) ______(台)(2)要使总运费不高于20 200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?。
中考数学冲刺:方案设计与决策型问题--知识讲解(提高)
![中考数学冲刺:方案设计与决策型问题--知识讲解(提高)](https://img.taocdn.com/s3/m/34435d27f12d2af90242e6e2.png)
1
2
根据题意得解得,
类型三、利用方程(组)3
类型四、利用函数知识进行方案设计4
5
【思路点拨】
本题以紧密联系学生生活的“将军饮马”问题为原型,情景设计合理,设问层次分明,可以参照“将军饮马”问题来解决该题.
【答案与解析】
解:方案一:由题意可得:MB⊥OB,
∴点M到甲村的最短距离为MB.
∵点M到乙村的最短距离为MD.
∴将供水站建在点M处时,管道沿MD、MB线路铺设的长度之和最小.
PE 1 2
方案三:如答图②,作点M关于射线OF的对称点M′,连接作M′N⊥OE于点N,交OF于点G,交AM于点H,
∴M′N为点M′到OE的最短距离,即M′N=GM+GN.
在Rt△M′HM中,∠MM′N=30°,MM′=6.
∴MH=3,
∴NE=MH=3.
∵DE=3,
∴N、D两点重合,即M′N过D点.。
2011全国中考数学模拟汇编一 52方案设计与决策型问题
![2011全国中考数学模拟汇编一 52方案设计与决策型问题](https://img.taocdn.com/s3/m/9ecd97d0e2bd960591c6771a.png)
方案设计与决策型问题解答题1、(2011年四中五模)我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):.方案(3):.答案:方案(2):该角恰为两边的夹角时;(3分)方案(3):该角为钝角时.(6分)2、(2011年某某省某某市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx解得:7≤ x≤ 9∵ x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y 随x 增大而减小,当x =9 时,y 的值最小,此时y = 51( 万元 )∴此时方案为:建造A 型沼气池9个,建造B 型沼气池11个. 解法②:由(1)知共有三种方案,其费用分别为: 方案一: 建造A 型沼气池7个, 建造B 型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱.3、(2011年某某省某某市中考数学模拟22)(根据初中学业考试总复习P23例3改编)(2011年我国某某盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
中考冲刺:方案设计与决策型问题(基础)
![中考冲刺:方案设计与决策型问题(基础)](https://img.taocdn.com/s3/m/8b904681a48da0116c175f0e7cd184254a351b4a.png)
中考冲刺:方案设计与决策型问题(基础)一转眼,距离中考只有短短几个月了,这个时候,我们不能再像以前那样慢慢悠悠地学习,而是要全力以赴,做好冲刺。
我将为大家分享一套中考冲刺方案,主要针对基础阶段的方案设计与决策型问题。
1.分析问题类型我们要明确决策型问题的特点。
这类问题通常涉及多个选项,需要我们根据已知信息进行分析、比较和判断,最终作出最佳选择。
这类问题分为两种:一种是单一决策问题,另一种是多阶段决策问题。
2.确定解题思路(1)理解题意:仔细阅读题目,确保理解题目所描述的情境、条件和目标。
(2)分析选项:对每个选项进行分析,找出其优点和缺点。
(3)比较选项:将各选项进行对比,找出最佳方案。
(4)作出决策:根据比较结果,作出最终选择。
3.实战演练下面,我们通过几个例子来具体讲解决策型问题的解题方法。
A.方案一:投资100万元,预计一年后收回投资并盈利50万元;B.方案二:投资200万元,预计一年后收回投资并盈利100万元;C.方案三:投资300万元,预计一年后收回投资并盈利150万元。
请问,该企业应该选择哪个方案?解答:我们要分析每个方案的优缺点。
方案一投资较少,但收益也较低;方案二投资适中,收益适中;方案三投资较多,收益也较高。
我们需要比较这三个方案。
从收益角度看,方案三最优;但从投资角度看,方案一最具优势。
综合考虑,我们可以认为方案二是最佳选择。
A.方案一:投资50亿元,预计五年后收回投资并盈利10亿元;B.方案二:投资80亿元,预计四年半后收回投资并盈利15亿元。
请问,该城市应该选择哪个方案?解答:同样地,我们先分析每个方案的优缺点。
方案一投资较少,但收益较低;方案二投资较多,收益也较高。
我们比较这两个方案。
从投资角度看,方案一更具优势;但从收益角度看,方案二更佳。
考虑到地铁建设对城市发展的长远影响,我们可以认为方案二是最佳选择。
4.决策型问题拓展(1)考虑时间因素:如上面的例2,我们需要根据项目的投资回收期来判断方案的优劣。
中考冲刺方案设计与决策型问题—知识讲解(基础).doc
![中考冲刺方案设计与决策型问题—知识讲解(基础).doc](https://img.taocdn.com/s3/m/94aff0cd8e9951e79a89279d.png)
中考冲刺:方案设计与决策型问题—知识讲解(基础)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【答案与解析】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x ≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元; 第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元; 第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元; 即购买A 型污水处理设备13台,则购买B 型污水处理设备7台时,所需购买资金最少,最少是226万元.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案? 【答案】解:(1)设男生有6x 人,则女生有5x 人. 依题意得:6x +5x =55, ∴x =5,∴6x =30,5x =25.答:该班男生有30人,女生有25人.(2)设选出男生y 人,则选出的女生为(20-y )人.由题意得:,解得:7≤y <9,∴y 的整数解为:7、8. 当y =7时,20-y =13, 当y =8时,20-y =12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.(1)当n =200时,①根据信息填表:A 地B 地C 地 合计 产品件数(件)x 2x 200 运费(元)30x2027y y y --⎧⎨⎩>≥②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n 的最小值.【思路点拨】(1)①运往B 地的产品件数=总件数n -运往A 地的产品件数-运往C 地的产品件数:运费=相应件数×一件产品的运费;②根据运往B 地的件数不多于运往C 地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A 产品的运费+B 产品的运费+C 产品的运费,进而根据函数的增减性及(1)中②得到的x 的取值求得n 的最小值即可.【答案与解析】(1)①根据信息填表:A 地B 地C 地合计产品件数(件) 200-3x运费(元)1 600-24x 50x56x +1 600②由题意得解得40≤x ≤42.∵x 为正整数,∴x =40或41或42,∴有3种方案,分别为: (ⅰ)A 地40件,B 地80件,C 地80件; (ⅱ)A 地41件,B 地77件,C 地82件; (ⅲ)A 地42件,B 地74件,C 地84件. (2)由题意得30x +8(n -3x )+50x =5800, 整理得n =725-7x . ∵n -3x ≥0,∴x ≤72.5.又∵x ≥0,∴0≤x ≤72.5且x 为正整数.∵n 随x 的增大而减小,∴当x =72时,n 有最小值为221.【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n 的最小值.举一反三:【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.200321600564000x xx -≤⎧⎨+≤⎩(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费) 【答案】解:(1)设一台甲型设备的价格为x 万元,由题意3x+2×0.75x=54,解得x =12,∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有12a+9(8-a)≤84①;200a+160(8-a)≥1300②,解得:≤a≤4,由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为 方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台 方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台 (3)设二期工程10年用于治理污水的总费用为W 万元, W=12a+9(8-a )+1×10a+1.5×10(8-a ), 化简得:W=-2a +192,∵W 随a 的增大而减少 ∴当a =4时,W 最小(逐一验算也可) ∴按方案四甲型购买4台,乙型购买4台的总费用最少.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A 、B 两类学校的校舍进行改造.根据预测,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校和一所B 类学校的校舍所需资金分别是多少万元?(2)该县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所. 【思路点拨】(1)等量关系为:改造一所A 类学校和三所B 类学校的校舍共需资金480万元;改造三所A 类学校和一所B 类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A 类学校的总钱数+地方财政投资B 类学校的总钱数≥210;12国家财政投资A 类学校的总钱数+国家财政投资B 类学校的总钱数≤770.【答案与解析】解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则,解得.答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元.(2)设A 类学校应该有a 所,则B 类学校有(8-a )所. 则,解得,∴1≤a ≤3,即a =1,2,3. 答:有3种改造方案:方案一:A 类学校有1所,B 类学校有7所; 方案二:A 类学校有2所,B 类学校有6所; 方案三:A 类学校有3所,B 类学校有5所. 【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键. 举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要y 1元,买x 支钢笔需要y 2元,求y 1、y 2关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【答案】解:(1)设每个文具盒x 元,每支钢笔y 元,由题意得 ,解得. 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x .由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y 2=15x . 当买10支以上时,超出部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10),即y 2=12x +30.(3)当y 1<y 2,即12.6x <12x +30时,解得x <50; 当y 1=y 2,即12.6x =12x +30时,解得x =50; 当y 1>y 2,即12.6x >12x +30时,解得x >50.34803400x y x y +=⎧⎨+=⎩90130x y =⎧⎨=⎩2030(8)(90-20)(13030)(8)a a a a +-⎧⎨+--⎩≥210≤770a a ⎧⎨⎩≤3≥152********x y x y +=⎧⎨+=⎩1415x y =⎧⎨=⎩综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱;当购买奖品等于50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,填写表2,写出运费w(元)与a的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费.【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【答案与解析】解:(1)设需要大货车x辆,则需要小货车(18﹣x)辆,由题意,得15x+10(18﹣x)=220,解得:x=8,需要小货车18﹣8=10辆.答:需要大货车8辆,则需要小货车10辆;(2)设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,表格2答案为:大货车去乙地(8﹣a)辆,小货车去甲、乙两地各(8﹣a)辆,(2+a)辆.由题意,得W=700a+800(8﹣a)+400(8﹣a)+600(2+a),W=100a+10800.15a+10(8﹣a)≥110,a≥6.∵k=100>0,∴W随a的增大而增大,∴a=6时,W最小=11400,∴运往甲地的大货车6辆,小火车2辆,运往乙地的大货车2辆,小火车8辆.最小运费为11400辆.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y 米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.【答案与解析】解:(1)由题意得,πy+πx=628,∵3.14y+3.14x=628,∴y+x=200则y=200﹣x;(2)①W=428xy+400π+400π,=428x (200﹣x )+400×3.14×+400×3.14×,=200x 2﹣40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下, 由①知W=200(x ﹣100)2+1.056×107>107, 所以不能;③由题意可知:x≤y 即x≤(200﹣x )解之得x≤80, ∴0≤x≤80,又题意得:W=200(x ﹣100)2+1.056×107=107+6.482×105, 整理得(x ﹣100)2=441,解得x 1=79,x 2=121(不合题意舍去), ∴只能取x=79,则y=200﹣79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 【总结升华】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.2()2y2(200)4x 24x。
中考专题--利用函数与不等式解方案设计与决策型问题
![中考专题--利用函数与不等式解方案设计与决策型问题](https://img.taocdn.com/s3/m/b7c21d98d1d233d4b14e852458fb770bf78a3b36.png)
利用函数与不等式解方案设计与决策型问题一、从一道例题的解答看方案设计与决策型问题引例:恩发建筑公司从上海某厂购得挖机4台,从北京某厂购得挖机10台。
现在决定运往重庆分公司8台,其余都运往汉口分公司;从上海运往汉口、重庆的运费分别是300元/台、500元/台,从北京运往汉口、重庆的运费分别是400元/台、800元/台 。
(1)若总运费为8400元,上海运往汉口应多少台?解:(1)设上海运往汉口应x 台,则400(6-x)+ 300x + 800(x+4) + 500(4-x) = 8400解得:x=4因此,若总运费为8400元, 上海运往汉口应4台。
(2)若总运费少于8400元,有哪几种调运方案?解:(2)由题意知:200x+7600<8400解得:x < 4∵x 为非负整数∴x=0、1、2或3∴若要求总运费不超过 8400元,共有4种调运方案。
如下表:(3)求出总运费最低的调运方案,总运费是多少?设总运费为y 元,由题意知:y= 200x+7600∵200>0 ∴x=0时y 最小,为7600元。
调运方案如下: 北京到汉口6台,北京到重庆4台,上海到重庆4台.二、方案设计与决策型问题的基本解题方法方案设计型问题是指应用数学基础知识建模的方法,来按题目所呈现的要求进行计算,论证,选择,判断,设计的一种数学试题。
纵观近年来各地的中考试题,涉及方案设计与应用的试题大量涌现,它在考查学生数学创新应用能力方面可谓独树一帜,新颖别致。
其类型有利用不等式(组)进行方案设计,利用概率与统计进行方案设计,利用函数知识进行方案设计,利用几何知识进行方案设计。
其中以利用函数与不等式解决的方案设计问题为最多。
利用函数与不等式解决的方案设计问题的基本方法是:(1)根据题意建立一次函数关系式;(2)根据实际意义建立关于自变量的不等式组,求函数自变量的取值范围;(3)根据函数自变量的取值范围,确定符合条件的设计方案;(4)利用一次函数的性质求最大值或最小值,确定最优化方案。
九年级数学专题复习方案设计与决策型问题
![九年级数学专题复习方案设计与决策型问题](https://img.taocdn.com/s3/m/d667eeca31b765ce0408142c.png)
中考冲刺:方案设计与决策型问题【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计例1.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.运往地车型甲 地(元/辆) 乙 地(元/辆) 大货车 720 800 小货车 500 650类型二、利用不等式(组)进行方案设计例2.为美化市容,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A,B两种园艺造型共50个,摆放在文庙广场,搭配每个造型所需花卉情况如表,解答问题:造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用哪种方案成本最低?举一反三:【变式】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和l辆乙型汽车共需费用2450元.且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.类型三、利用方程(组)、不等式(组)综合知识进行方案设计例3.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?举一反三:【变式】为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20∶1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅(课桌凳和办公桌椅均成套购进).(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.类型四、利用函数知识进行方案设计例4.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?类型五、利用几何知识进行方案设计例5.某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所饮水站,由供水站直接铺设管道到另外两处.如图所示,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的23km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?举一反三:【变式】在△ABC 中,BC =a ,BC 边上的高h =2a ,沿图中线段DE 、CF 将△ABC 剪开,分成的三块图形恰能拼成正方形CFHG ,如图所示.请你解决如下问题:已知:在锐角△A ′B ′C ′中,B ′C ′=a ,B ′C ′边上的高h =a 21.请你设计两种不同的分割方法,将△A ′B ′C ′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,画出分割线及拼接后的图形.【巩固练习】 一、选择题1.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需( )A .50B .100C .150D .2002.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④3. 下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个 B.3个 C.2个 D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2): .方案(3): .5.适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择厂更划算.6.几何模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.+=的值最小(不必证方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方+的最小值是形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB PE___________;(2) 如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,则PA PC +的最小值是___________;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值是___________.三、解答题7. 现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式; (2)小明选择哪家快递公司更省钱? 8.今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a 亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a 亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元? (2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.ABA 'PlOA B PRQ 图3OABC 图2ABE CPD图1P9.某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10.如图1,矩形铁片ABCD 的长为a 2,宽为a ;为了要让铁片能穿过直径为a 1089的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M 、N 、P 、Q 分别是AD 、AB 、BC 、CD 的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD 的中心作一条直线分别交边BC 、AD 于点E 、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=a 51时,判断直角梯形铁片EBAF 能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF 顺利穿过圆孔,请直接写出线段BE 的长度的取值范围 .。
中考冲刺:方案设计与决策型问题(提高)
![中考冲刺:方案设计与决策型问题(提高)](https://img.taocdn.com/s3/m/129db498c850ad02df80410b.png)
中考冲刺:方案设计与决策型问题(提高)中考冲刺:方案设计与决策型问题(提高)一、选择题1.(20XX春•内江期末)有甲,乙,丙三种商品,如果购甲3,乙2,丙1共需315元钱,购甲1,乙2,丙3共需285元钱,那么购甲,乙,丙三种商品各一共需()A.50B.100C.150D.200 2.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④3.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你处理和安排这三个条,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):______.方案(3):______.5.(重庆校级期中)适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择______厂更划算.6.几何模型:条:如下左图,A、B是直线同旁的两个定点.问题:在直线上确定一点P,使PA+PB的值最小.方法:作点A关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,则的最小值是___________;(3)如图3,,是内一点,,分别是上的动点,则周长的最小值是___________.三、解答题7.(20XX•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?8.(20XX•宜昌模拟)今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2021年增长10%,则2021年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.9.某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m,一套B型桌椅(一桌三椅)需木料0.7m,工厂现有库存木料302m.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10.如图1,矩形铁片ABCD的长为,宽为;为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______ .答案与解析【答案与解析】一、选择题1.【答案】B;【解析】设购甲,乙,丙三种商品各一需要x元、y元、z 元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一共需150元.2.【答案】B;【解析】如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故选B.3.【答案】A 【解析】根据旋转、轴对称的定义来分析.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有 4个.故选 A.二、填空题4.【答案】方案(2):该角恰为两边的夹角时;方案(3):该角为钝角时.5.【答案】甲【解析】设每一份校庆专刊的单价为a元.甲厂的花费:2000a(1﹣20%)(1﹣10%)=1440a;乙厂的花费:1000a(1﹣10%)+1000a(1﹣30%)=1600a;1440a<1600a所以选择甲厂更划算.故答案为:甲.6.【答案】(1);(2);(3).【解析】解:(1)的最小值是DE,.(2)延长AO交⊙o于点D,连接CD交OB于P则PA=PD,PA+PC=PC+PD=CD连接AC,∵AD为直径,∴∠ACD=90°,AD=4∵∠AOC=60°,∴∠ADC=30°在Rt△ACD中,CD=cos30°・AD=,即PA+PC的最小值为(3)解:分别作点P关于OA,OB的对称点E,F,连接EF交OA,OB于R,Q,则△PRQ的周长为:EF,∵OP=OE=OF=10, ∠FOB=∠POB,∠POA=∠AOE,∵∠AOB=45°, ∴∠EOF=90°在Rt△EOF中,∵OE=OF=10,∴E F=10,即△PRQ的周长最小值为10 三、解答题7.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.8.【答案与解析】解:(1)设2021年热水器的财政补贴为x亿元,则20XX 年热水器的财政补贴为1.1x,洗衣机的财政补贴1.2×1.1x、平板电视的财政补贴1.4×1.1x、空调的财政补贴×1.1x,根据题意列方程得:1.1x+1.2×1.1x+1.4×1.1x+×1.1x=264解得:x=5答:2021年热水器的财政补贴为5亿元;(2)设“十二五”的最后两年用于此项财政补贴的年平均增长率为m.根据题意列方程得:(264﹣a)+264+(264+a)+(264+a)×(1+m)+(264+a)(1+m)2=264×5.31+2.31a即(264+a)m2+3(264+a)m﹣0.31(a+264)=0,m2+3m﹣0.31=0解得:m1=3.1(舍去),x2=0.1.答:此项财政补贴的年平均增长率是10%.9.【答案与解析】解:(1)设生产型桌椅套,则生产型桌椅套,由题意得解得因为是整数,所以有11种生产方案.(2),随的增大而减少.∴当时,有最小值.∴当生产型桌椅250套、型桌椅250套时,总费用最少.此时(元)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.10.【答案与解析】(1)是菱形如图,过点M作MG⊥NP于点GM、N、P、Q分别是AD、AB、BC、CD的中点∴△AMN≌△BPN≌△CPQ≌△DMQ ∴MN=NP=PQ=QM∴四边形MNPQ是菱形MN=∴MG=∴此时铁片能穿过圆孔.(2)①如图,过点A作AH⊥EF于点H, 过点E作EK⊥AD于点K 显然AB=,故沿着与AB垂直的方向无法穿过圆孔过点A作EF的平行线RS,故只需计算直线RS与EF之间的距离即可BE=AK=,EK=AB=,AF=∴KF=,EF=∠AHF=∠EKF=90°,∠AFH=∠EFK ∴△AHF∽△EKF ∴可得AH=∴该直角梯形铁片不能穿过圆孔.②或.第 11 页共 11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国中考数学模拟汇编一 52方案设计与决策型问题解答题1、(2011年北京四中五模)我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2): .方案(3): . 答案:方案(2):该角恰为两边的夹角时;(3分)方案(3):该角为钝角时.(6分)2、(2011年浙江省杭州市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx解得:7≤ x≤ 9∵ x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种 .(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元 )∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱.3、(2011年浙江省杭州市中考数学模拟22)(根据初中学业考试总复习P23例3改编)(2011年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
(1)若一共租用了9辆货车,且使救灾物资一次性地运往灾区,共有哪几种运货方案? (2)若甲、乙两种货车的租车费用每辆分别为4000元、3500元,在(1)的方案中,哪种方案费用最低?最低是多少?(3) 若甲、乙两种货车的租车费用不变,在保证救灾物资一次性运往灾区的情况下,还有没有费用更低的方案?若有,请直接写出该方案和最低费用,若没有,说明理由。
(租车数量不限)答案: 解:(1)设甲型汽车x 辆,则乙型汽车(9-x )辆53(9)302(9)134x x x x x +-≥+-≥≤解得342x ≤≤ 2分 因为x 是整数,所以可以是2,3,4.即有甲型车2辆乙型车7辆; 甲型车3辆乙型车6辆;甲型车4辆乙型车5辆三种方案 2分 (2)设车辆总费用为w 元则40003500(9)50031500w x x x =+-=+ 2分 因为k=500大于0,所以当x 取最小值2时,费用50023150032500w =⨯+=最小。
2分 (3)有。
甲型车3辆乙型车5辆. 2分4、(2011年北京四中模拟26)某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,计划这两种产品全年共生产20件,这20件的总产值P 不少于1140万元,且不多于1170万元。
已知产品 每件产品的产值甲 45万元 乙75万元(1) 设安排生产甲产品X 件(X 为正整数),写出X 应满足的不等式组; (2) 请你帮助设计出所有符合题意的生产方案。
答案:(1)1140≤45x+75(20-x)≤1170(2)11≤x ≤12∵x 为正整数∴当x=11时,20-11=9当=12时20-12=8∴生产甲产品11件,生产乙产品9件或 生产甲产品12件,生产乙产品8件。
5、(2011年北京四中模拟28)据悉,上海市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证。
如图(1),射线OA 、射线OB 分别表示现行的、方案一的每户每月的用水费y (元)与每户每月的用水量x (立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图(2)表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1︰1.5︰2(精确到0.01元后). (1) 写出现行的用水价是每立方米多少元?(2) 求图(1)中m 的值和射线OB 所对应的函数解析式,并写出定义域;(3) 若小明家某月的用水量是a 立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b (用a 的代数式表示);(4) 小明家最近10个月来的每月用水量的频数分布直方图如图(3)所示,估计小明会赞同采用哪个方案?请说明理由。
图(1)x (立方米) y (元) 92 50 O A B m 图(2) 级数 水量基数 (立方米) 调整后价格 (元/立方米)第一级 0~15(含15) 2.61第二级 15~25(含25) 3.92 第三级 25以上 n用水量(立方米) 月份数(个) 12 3 413 14 15 16 17 (注:每小组含最小值不含最大值)小明家每月用水量频数分布直方图(08.6~09.3) 图(3)答案:解:(1)现行的用水价为1.84元/立方米(2)因为方案一的用水价=1.84+0.96=2.8元/立方米,所以m=2.8×50=140设OB 的解析式为y=kx (x ≥0),则140=50k ,所以k=2.8所以y =2.8x (x ≥0) (3)现行的情况下:b=1.84a 方案一的情况下:b=2.8 a因为第一、二、三级的用水价格比为1︰1.5︰2,所以n=5.22元/立方米 方案二的情况下:①当0≤a ≤15时,b=2.61a②当15<a ≤25时,b=3.92a ③当x >25时,b=5.22a(4)估计小明赞同方案一因为小明家的平均月用水量超过了15立方米,此时方案一的水价2.8元<方案二的水价3.92元,所以,他可能会赞同方案一6、(2011年浙江杭州二模)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。
已知这种商品每月的广告费用m (千元)与销售量倍数p 关系为p = m m 24.02+- ;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由! 答案: 解:设涨价x 元,利润为y 元,则 方案一:9000)20(10500040010)10500)(4050(22+--=++-=--+=x x x x x y∴方案一的最大利润为9000元; 方案一:10125)25.2(2000900020001000500)4050(22+--=+-=-⨯-=x m m m p y∴方案二的最大利润为10125元; ∴选择方案二能获得更大的利润。
7、(2011年浙江杭州二模)如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=32,直线y=323-x 经过点C ,交y 轴于点G 。
…… 4′ …… 2′(1)点C 、D 的坐标分别是C ( ),D ( ); (2)求顶点在直线y=323-x 上且经过点C 、D 的抛物线的解析式;(3)将(2)中的抛物线沿直线y=323-x 平移,平移后 的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG 为等腰三角形? 若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
答案:(1))324(,C ),(321D(2)由二次函数对称性得顶点横坐标为25241=+,代入一次函数2332253=-⨯=y ,得顶点坐标为(25,23), ∴设抛物线解析式为23)25(2+-=x a y ,把点),(321D 代入得,332=a∴解析式为23)25(3322+-=x y (3)设顶点E 在直线上运动的横坐标为m ,则)0)(323(>-m m m E ,∴可设解析式为323)(3322-+-=m m x y ①当FG=EG 时,FG=EG=2m ,)322,0(-m F 代入解析式得:3223233322-=-+m m m ,得m=0(舍去),233-=m , 此时所求的解析式为:2373)233(3322-++-=x y ; ②当GE=EF 时,FG=4m ,)324,0(-m F 代入解析式得:3243233322-=-+m m m ,得m=0(舍去),2332-=m , …… 2′…… 2′ …… 2′此时所求的解析式为:2376)2332(3322-++-=x y ; ③当FG=FE 时,不存在;B 组三、解答题1.(2011 天一实验学校 二模)五一节假日,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的. ⑴于是爸爸咨询导游后,让小宝上午先从A :太空世界;B :神秘河谷中随机选择一个项目, 下午再从C :恐龙半岛;D :儿童王国;E :海螺湾中随机选择两个项目游玩,请用树状图或列表法表示小宝所有可能的选择方式.(用字母表示)⑵在⑴问的随机选择方式中, 求小宝当天恰能游玩到太空世界和海螺湾这两个项目的概率.答案:⑴画树状图: 列表: 或下午 上午 CD CE DE A ACDACE ADE B BCDBCEBDE…… 2′ CD CE DE CD CE DEA B C E C D C D C E D E D E C D E C D E A B画树状图或列表正确 ⑵()P AE =2163=或41()123P AE ==.2.(2011 天一实验学校 二模)阅读下列材料: 小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG. 请你参考小明的做法解决下列问题:................(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ ,请在图4中探究平行四边形MNPQ 面积的大小(画图表明探究方法并直接写出结果).答案:⑴如图中平行四边形即为所求。