陕西省西安市长安中学2017-2018学年度第二学期期末学习评价七年级数学纸笔测试(PDF版)

合集下载

2017-2018学年新课标最新陕西省西安市七年级下期末数学试卷(有答案)-精品试卷

2017-2018学年新课标最新陕西省西安市七年级下期末数学试卷(有答案)-精品试卷

2017-2018学年陕西省七年级(下)期末数学试卷一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6D.2a3•3a2=6a53.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55° D.65°4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1 5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣26.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为()A.3cm B.6cm C.9cm D.12cm9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.1210.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2二、填空题11.用科学记数法表示:0.00000108= .12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.13.若3x=2,9y=6,则3x﹣2y= .14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:t 的值为 .15.已知,则代数式的值为 .16.如图,已知△ABC 中,AC=BC ,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B'处,DB'、EB'分别交AC 于点F 、G ,若∠ADF=66°,则∠EGC 的度数为 .17.在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,AD 是∠BAC 的平分线,若P 、Q 分别是AD和AC上的动点,则PC+PQ 的最小值是 .三、解答题18.计算(1)﹣(3x+y )(x ﹣y )(2)(4a 3b ﹣6a 2b 2+12ab 3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a ,∠β.求作:△ABC ,使BC=a ,∠ABC=∠β,∠ACB=2∠β.20.如图,已知∠A=∠F ,∠C=∠D ,试说明BD ∥CE .解:∵∠A=∠F(已知)∴AC∥(内错角相等,两直线平行)∴∠C=∠CEF().∵∠C=∠D(已知),∴=∠CEF(等量代换)∴BD∥CE()21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是千米,他在120分钟内共跑了千米;(2)小明在这次慢跑过程中,停留所用的时间为分钟;(3)小明在这段时间内慢跑的最快速度是每小时千米.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=()2(2)无论n取何值,9n2﹣6n+1 0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t >0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE= cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.参考答案与试题解析一、选择题1.如图所示的四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:最:不是轴对称图形,不符合题意;美:是轴对称图形,符合题意;铁:不是轴对称图形,不符合题意;一:是轴对称图形,符合题意.故选:B.2.下列计算正确的是()A.(﹣a3)2=﹣a6B.9a3÷3a3=3a3C.2a3+3a3=5a6D.2a3•3a2=6a5【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的乘除法、合并同类项法则即可作出判断.【解答】解:(A)原式=a6,故A错误;(B)原式=3,故B错误(C)原式=5a3,故C错误故选(D)3.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35° B.45° C.55° D.65°【考点】平行线的性质.【分析】先求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,即可得出答案.【解答】解:如图,∵∠ACB=90°,∠1=35°,∴∠ACE=90°﹣35°=55°,∵MN∥EF,∴∠2=∠ACE=55°,故选C.4.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中10环B.任取一个有理数x,都有|x|≥0C.画一个三角形,使其三个内角的和为199°D.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为1【考点】概率的意义.【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1;必然事件概率为1;不可能事件概率为0.【解答】解:A、是随机事件,概率大于0并且小于1;B、是必然事件,概率=1;C、是不可能事件,概率=0;D、是随机事件,概率大于0并且小于1;故选:C.5.若整式x+3与x﹣a的乘积为x2+bx﹣6,则b的值是()A.1 B.﹣1 C.2 D.﹣2【考点】多项式乘多项式.【分析】根据题意列出等式,利用多项式乘多项式法则变形即可确定出b的值.【解答】解:根据题意得:(x+3)(x﹣a)=x2+(3﹣a)x﹣3a=x2+bx﹣6,可得3﹣a=b,﹣3a=﹣6,解得:a=2,b=1.故选A.6.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)【考点】全等三角形的判定.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.7.为配合地铁五号线建设,市政部分现对雁翔路某段进行雨、污水管道改造施工,施工单位在工作了一段时间后,因天气原因被迫停工几天,随后施工单位加快了施工进度,按时完成了管道施工任务,下面能反映该工程尚未改造的管道长度y(米)与时间x(天)的关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】分析施工过程的进度,由先慢、停工几天后快即可找出合适的函数图象,此题得解.【解答】解:∵开始几天施工速度较慢,中间停工几天,后面加快进度,∴函数的大致图象为D选项中图象.故选D.8.如图,在△ABC中,BD平分∠ABC,DE⊥AB交AB于点E,DF⊥BC交BC于点F,若AB=12cm,BC=18cm,S△ABC=90cm2,则DF长为()A.3cm B.6cm C.9cm D.12cm【考点】角平分线的性质.【分析】根据角平分线的性质得到DE=DF,然后根据三角形的面积列方程即可得到结论.【解答】解:∵BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,∴DE=DF,∵S△ABC=S△ABD+S△BDC=AB•DE+BC•DF=90cm2,∴DF=6cm,故选B.9.如图,在△ABC中,直线ED是线段BC的垂直平分线,直线ED分别交BC、AB于点D、点E,已知BD=4,△ABC的周长为20,则△AEC的周长为()A.24 B.20 C.16 D.12【考点】线段垂直平分线的性质.【分析】由BC的垂直平分线交AB于点E,可得BE=CE,又由△ABC的周长为10,BC=4,易求得△ACE的周长是△ABC的周长﹣BC,继而求得答案.【解答】解:∵BC的垂直平分线交AB于点E,∴BE=CE,∵△ABC的周长为20,BC=2BD=8,∴△ACE的周长是:AE+CE+AC=AE+BE+AC=AB+AC=AB+AC+BC﹣BC=20﹣8=12.故选D.10.如图,G是△ABC的重心,直线L过A点与BC平行.若直线CG分别与AB,L交于D,E两点,直线BG与AC交于F点,则△AED的面积:四边形ADGF的面积=()A.1:2 B.2:1 C.2:3 D.3:2【考点】三角形的重心.【分析】根据重心的概念得出D,F分别是三角形的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE≌△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【解答】解:设三角形ABC的面积是2∴三角形BCD的面积和三角形BCF的面积都是1∵BG:GF=CG:GD=2∴三角形CGF的面积是∴四边形ADGF的面积是2﹣1﹣=∵△ADE≌△BDC(ASA)∴△ADE的面积是1∴△AED的面积:四边形ADGF的面积=1: =3:2.故选D.二、填空题11.用科学记数法表示:0.00000108= 1.08×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000108=1.08×10﹣6.故答案为:1.08×10﹣6.12.一个不透明袋中放入7枚只有颜色不同的围棋棋子,其中4枚黑色,3枚白色,任意摸出一枚,摸到棋子是黑色的概率为.【考点】概率公式.【分析】根据概率公式用黑色棋子的个数除以总棋子的个数即可.【解答】解:∵共有7枚棋子,其中4枚黑色,3枚白色,∴摸到棋子是黑色的概率为;故答案为:.13.若3x=2,9y=6,则3x﹣2y= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:32y=(32)y=9y=6,3x﹣2y=3x÷32y=2÷6=,故答案为:.14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:t的值为136 .【考点】函数关系式.【分析】观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t与x 的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=2.9千克代入即可求出烤制时间.【解答】解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得,所以t=40x+20.当x=2.9千克时,t=40×2.9+20=136.故答案为:136.15.已知,则代数式的值为11 .【考点】完全平方公式.【分析】把两边平方,再根据完全平方公式展开,即可得问题答案.【解答】解:∵,∴(x﹣)2=9,∴x2﹣2+=9,∴x2+=11,故答案为:11.16.如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°.【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可.【解答】解:由翻折变换的性质得:∠B′=∠B,∵AC=BC,∴∠A=∠B,∴∠A=∠B′,∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,∴∠B′GF=∠ADF=66°,∴∠EGC=∠B′GF=66°.故答案为:66°.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P、Q分别是AD和AC 上的动点,则PC+PQ的最小值是 2.4 .【考点】轴对称﹣最短路线问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC此时PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴此时PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题18.计算(1)﹣(3x+y)(x﹣y)(2)(4a3b﹣6a2b2+12ab3)÷2ab(3)[4365×(﹣0.25)366﹣2﹣3]×(3.14﹣π)0(4)20152﹣2016×2014.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)原式利用多项式除以单项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用零指数幂、负整数指数幂法则计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=﹣3x2+2xy+y2;(2)原式=2a2﹣3ab+6b2;(3)原式=[(﹣4×0.25)365×(﹣0.25)﹣]×1=;(4)原式=20152﹣×=20152﹣20152+1=1.19.作图题(要求尺规作图,保留作图痕迹,不写作法)已知:线段a,∠β.求作:△ABC,使BC=a,∠ABC=∠β,∠ACB=2∠β.【考点】作图—复杂作图.【分析】先作线段BC=a,再作∠MBC=α,∠ACB=2α,BM和NC相交于点A,则△ABC满足条件.【解答】解:如图,△ABC为所作.20.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥DF (内错角相等,两直线平行)∴∠C=∠CEF(两直线平行,内错角相等).∵∠C=∠D(已知),∴∠D =∠CEF(等量代换)∴BD∥CE(同位角相等,两直线平行)【考点】平行线的判定与性质.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质得出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行),故答案为:DF,两直线平行,内错角相等,∠D,同位角相等,两直线平行.21.为了提高身体素质,小明假期为自己制定了慢跑锻炼计划,某日小明从省体育场出发沿长安路慢跑,已知他离省体育场的距离s( km)与时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)小明离开省体育场的最远距离是 4 千米,他在120分钟内共跑了8 千米;(2)小明在这次慢跑过程中,停留所用的时间为20 分钟;(3)小明在这段时间内慢跑的最快速度是每小时8 千米.【考点】一次函数的应用.【分析】(1)观察函数图象即可得出结论;(2)观察函数图象二者做差即可得出结论;(3)根据速度=路程÷时间,即可小明在这段时间内慢跑的最快速度,此题得解.【解答】解:(1)由图象知,小明离开省体育场的最远距离是4千米,他在120分钟内共跑了8千米;(2)小明在这次慢跑过程中,停留所用的时间为:60﹣40=20分钟;(3)小明在这段时间内慢跑的最快速度是4÷=8千米/小时.故答案为:4,8,20,8.22.如图,△ABC是等边三角形,延长BA至点D,延长CB至点E,使得BE=AD,连结CD,AE.求证:AE=CD.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】只要证明△ABE≌△ACD,即可推出AE=CD.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠CAB=∠ABC=60°,∴∠DAC=∠ABE=120°,在△ABE和△ACD中,,∴△ABE≌△ACD,∴AE=CD.23.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即:a2±2ab+b2=(a±b)2.根据阅读材料解决下面问题:(1)m2+4m+4=(m+2 )2(2)无论n取何值,9n2﹣6n+1 ≥0(填“<”,“>”,“≤”,“≥”或“=”)(3)已知m,n是△ABC的两条边,且满足10m2+4n2+4=12mn+4m,若该三角形的第三边k的长是奇数,求k的长.【考点】配方法的应用;完全平方式;三角形三边关系.【分析】(1)根据完全平方式得出结论;(2)9n2﹣6n+1=(3n﹣1)2≥0;(3)将已知等式配方后,利用非负性得结论:,求出m和n的值,再根据三角形的三边关系得出k的值.【解答】解:(1)原式=(m+2)2;故答案为:m+2;(2)9n2﹣6n+1=(3n﹣1)2≥0;∴无论n取何值,9n2﹣6n+1≥0,故答案为:≥;(3)10m2+4n2+4=12mn+4m,已知等式整理得:9m2﹣12mn+4n2+m2﹣4m+4=0,(3m﹣2n)2+(m﹣2)2=0,,∴,∵m,n是△ABC的两条边,∴3﹣2<k<3+2,1<k<5,∵第三边k的长是奇数,∴k=3.24.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t >0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD= 3t cm,CE= t cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.【考点】三角形综合题.【分析】(1)根据路程=速度×时间,即可得出结果;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值即可;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)根据题意得:CD=3tcm,CE=tcm;故答案为:3t,t;(2)∵S△ABD=BD•AH=12,AH=4,∴AH×BD=24,∴BD=6.若D在B点右侧,则CD=BC﹣BD=2,t=;若D在B点左侧,则CD=BC+BD=14,t=;综上所述:当t为s或s时,△ABD的面积为12 cm2;(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动4秒时,△ABD≌△ACE.理由如下:如图所示①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣3t∴t=8﹣3t,∴t=2,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=3t﹣8,∴t=3t﹣8,∴t=4,∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).2017年4月13日。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(共五套)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(共五套)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(共五套)陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)一、选择题(请将答案填入答题卡内)1.下列计算正确的是()A.(2x+3)(2x﹣3)=2x2﹣9 B.(x+4)(x﹣4)=x2﹣4C.(5+x)(x﹣6)=x2﹣30 D.(﹣1+4b)(﹣1﹣4b)=1﹣16b22.(4x2﹣5y)需乘以下列哪个式子,才能使用平方差公式进行计算()A.﹣4x2﹣5y B.﹣4x2+5y C.(4x2﹣5y)2D.(4x+5y)23.如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100°C.110°D.130°4.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则BD+DE=()A.10cm B.8cm C.6cm D.9cm5.下面的运算正确的是()A.(a+1)2=a2+1 B.(x+1)(x+2)=x2+3x+2C.(2a﹣b)2=4a2﹣2ab+b2D.(a﹣b)2=a2﹣b26.如图,∠1与∠2是对顶角的是()A .B .C .D .7.下列长度的3条线段,能构成三角形的是( )A .1,2,3B .2,3,4C .6,6,12D .5,6,128.盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A .B .C .D .9.自行车以10千米/小时的速度行驶,它所行走的路程S (千米)与所用的时间t (时)之间的关系为( )A .S=10+tB .C .S=D .S=10t10.下面有4个汽车标志图案,其中不是轴对称图形的是( )A .B .C .D .二、填空题(请将答案填入答题卡内)11.计算(﹣3x 3)2的结果等于 .12.(1+x )(1﹣x )(1+x 2)(1+x 4)= .13.(2x ﹣y )2= .14.已知∠A=35°,则∠A 的补角是 度.15.已知:如图,AD ⊥BC 于D ,EG ⊥BC 与G ,∠E=∠3,试问:AD 是∠BAC 的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD ⊥BC ,EG ⊥BC (已知)∴∠4=∠5=90°(垂直的定义)∴AD ∥EG∴∠1=∠E∠2=∠3∵∠E=∠3(已知)∴=∴AD是∠BAC的平分线(角平分线的定义).三、解答题(共50分)16.计算题(1)(﹣3a4)2﹣a•a3•a4﹣a10÷a2(2)(x+2)2﹣(x﹣1)(x﹣2)(3)1982(4)[(x+y)2﹣(x﹣y)2]÷(2xy)17.当x=2,时,求代数式(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy)的值.18.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.19.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?20.如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.参考答案与试题解析一、选择题(请将答案填入答题卡内)1.下列计算正确的是()A.(2x+3)(2x﹣3)=2x2﹣9 B.(x+4)(x﹣4)=x2﹣4C.(5+x)(x﹣6)=x2﹣30 D.(﹣1+4b)(﹣1﹣4b)=1﹣16b2【考点】平方差公式;多项式乘多项式.【分析】两数之和与两数之差的乘积等于两数的平方差.【解答】解:A、(2x+3)(2x﹣3)=4x2﹣9,错误;B、(x+4)(x﹣4)=x2﹣16,错误;C、(5+x)(x﹣6)=x2﹣x﹣30,错误;D、(﹣1+4b)(﹣1﹣4b)=1﹣16b2,正确;故选D【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.2.(4x2﹣5y)需乘以下列哪个式子,才能使用平方差公式进行计算()A.﹣4x2﹣5y B.﹣4x2+5y C.(4x2﹣5y)2D.(4x+5y)2【考点】平方差公式.【分析】两数之和与两数之差的乘积等于两数的平方差.【解答】解:(4x2﹣5y)(﹣4x2﹣5y)=25y2﹣16x4,故选A【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100°C.110°D.130°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】两条直线平行,内错角相等,然后根据邻补角的概念即可解答.【解答】解:∵AB∥CD,∠A=70°,∴∠2=70°(两直线平行,内错角相等),再根据平角的定义,得∠1=180°﹣70°=110°,故选C.【点评】注意平行线的性质的运用,此类题方法要灵活.也可以求得∠A的同旁内角,再根据对顶角相等,进行求解.4.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则BD+DE=()A.10cm B.8cm C.6cm D.9cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE=AB,求出BD+DE=AE,即可求出答案.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=,AE=,∴AE=AC=BC,∴DE+BD=CD+BE=BC,∵AC=BC,∴BD+DE=AC=AE,∴△BDE的周长是BD+DE+BE=AE+BE=AB=10cm.故选A.【点评】本题考查了勾股定理,角平分线性质,等腰直角三角形,垂线等知识点的应用,关键是求出AE=AC=BC,CD=DE,通过做此题培养了学生利用定理进行推理的能力.5.下面的运算正确的是()A.(a+1)2=a2+1 B.(x+1)(x+2)=x2+3x+2C.(2a﹣b)2=4a2﹣2ab+b2D.(a﹣b)2=a2﹣b2【考点】完全平方公式;多项式乘多项式.【分析】利用完全平方公式化简,即可得到结果.【解答】解:A、(a+1)2=a2+2a+1,错误;B、(x+1)(x+2)=x2+3x+2,正确;C、(2a﹣b)2=4a2﹣4ab+b2,错误;D、(a﹣b)2=a2﹣2ab+b2,错误;故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.如图,∠1与∠2是对顶角的是()A.B.C.D.【考点】对顶角、邻补角.【专题】应用题.【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.【解答】解:A 、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A 选项错误;B 、∠1与∠2没有公共顶点,不是对顶角,故B 选项错误;C 、∠1与∠2的两边互为反向延长线,是对顶角,故C 选项正确;D 、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D 选项错误.故选:C .【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的.7.下列长度的3条线段,能构成三角形的是( )A .1,2,3B .2,3,4C .6,6,12D .5,6,12【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A 、1+2=3,不能组成三角形,不符合题意;B 、2+3>4,能够组成三角形,符合题意;C 、6+6=12,不能够组成三角形,不符合题意;D 、5+6<12,不能够组成三角形,不符合题意.故选:B .【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8.盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A .B .C .D .【考点】概率公式.【分析】任意摸出一个球有6种情况,其中绿球有四种情况.根据概率公式进行求解.【解答】解:从盒子中任意摸出一个球,是绿球的概率是.故选C.【点评】本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.自行车以10千米/小时的速度行驶,它所行走的路程S(千米)与所用的时间t(时)之间的关系为()A.S=10+t B.C.S=D.S=10t【考点】函数关系式.【分析】根据路程等于速度乘以时间的关系解答即可.【解答】解:自行车以10千米/小时的速度行驶,可得:它所行走的路程S(千米)与所用的时间t(时)之间的关系为s=10t,故选D【点评】此题考查函数关系式问题,关键是根据路程等于速度乘以时间的关系解答.10.下面有4个汽车标志图案,其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(请将答案填入答题卡内)11.计算(﹣3x3)2的结果等于9x6.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法则进行计算即可.【解答】解:(﹣3x3)2=9x6.故答案为:9x6.【点评】注意掌握:幂的乘方法则:底数不变,指数相乘,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.12.(1+x)(1﹣x)(1+x2)(1+x4)=1﹣x8.【考点】平方差公式.【分析】两数之和与两数之差的乘积等于两数的平方差.【解答】解:(1+x)(1﹣x)(1+x2)(1+x4)=(1﹣x2)(1+x2)(1+x4)=(1﹣x4)(1+x4)=1﹣x8,故答案为:1﹣x8【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13.(2x﹣y)2=4x2﹣4xy+y2.【考点】完全平方公式.【分析】直接利用完全平方公式展开即可.【解答】解:(2x﹣y)2=4x2﹣4xy+y2.【点评】本题考查完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了完全平方式,熟记公式是解题的关键.14.已知∠A=35°,则∠A的补角是145度.【考点】余角和补角.【分析】根据互补两角之和为180°即可求解.【解答】解:∵∠A=35°,∴∠A的补角=180°﹣35°=145°.故答案为:145.【点评】本题考查了补角的知识,掌握互补两角之和等于180°是解题的关键.15.已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG同位角相等,两直线平行∴∠1=∠E两直线平行,同位角相等∠2=∠3两直线平行,内错角相等∵∠E=∠3(已知)∴∠1=∠2∴AD是∠BAC的平分线(角平分线的定义).【考点】平行线的判定与性质;垂线.【专题】推理填空题.【分析】先根据AD⊥BC,EG⊥BC得出∠4=∠5,故可得出AD∥EG,再由平行线的性质得出∠1=∠E,∠2=∠3,根据∠E=∠3即可得出结论.【解答】解:是.∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠E,(两直线平行,同位角相等)∠2=∠3.(两直线平行,内错角相等)∵∠E=∠3,(已知)∴∠1=∠2,∴AD是∠BAC的平分线(角平分线的定义).故答案为:同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.三、解答题(共50分)16.计算题(1)(﹣3a4)2﹣a•a3•a4﹣a10÷a2(2)(x+2)2﹣(x﹣1)(x﹣2)(3)1982(4)[(x+y)2﹣(x﹣y)2]÷(2xy)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用幂的乘方与积的乘方,同底数幂的乘除法则计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算即可得到结果;(3)原式变形后,利用完全平方公式化简即可得到结果;(4)原式中括号中利用完全平方公式化简,再利用单项式除以单项式法则计算即可得到结果.【解答】解:(1)原式=9a8﹣a8﹣a8=7a8;(2)原式=x2+4x+4﹣x2+3x﹣2=7x+2;(3)原式=(200﹣2)2=40000﹣800+4=39304;(4)原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)=4xy÷(2xy)=2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.17.当x=2,时,求代数式(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy)的值.【考点】整式的混合运算—化简求值.【分析】先利用平方差公式和完全平方公式把原式展开,再合并同类项,最后代数求值.【解答】解:(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy),=x2﹣y2+x2﹣2xy+y2﹣x2+3xy,=x2+xy,当x=2,时,原式=22+2×=5.【点评】主要考查平方差公式和完全平方公式,先化简再求值使运算更加简便.18.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.【考点】完全平方公式.【分析】把已知两个式子展开,再相加或相减即可求出答案.【解答】解:∵(a+b)2=25,(a﹣b)2=9,∴a2+2ab+b2=25①,a2﹣2ab+b2=9②,∴①+②得:2a2+2b2=34,∴a2+b2=17,①﹣②得:4ab=16,∴ab=4.【点评】本题考查了完全平方公式的应用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.19.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?【考点】函数的图象.【分析】(1)根据函数图象,可得自变量、因变量;(2)根据函数图象的纵坐标,可得答案;(3)根据函数图象的横坐标、纵坐标,可得答案;(4)根据函数图象的横坐标,可得函数值,根据函数值相减,可得答案;(5)根据函数图象的纵坐标,可得答案;(6)根据函数图象的纵坐标,可得距离,根据函数图象的横坐标,可得时间,根据路程除以时间,可得答案.【解答】解:(1)由函数图象,得图象表示了时间、距离的关系,自变量是时间,因变量是距离;(2)由纵坐标看出10时他距家15千米,13时他距家30千米;(3)由横坐标看出12:00时离家最远,由纵坐标看出离家30千米;(4)由纵坐标看出11时距家19千米,12时距家30千米,11时到12时他行驶了30﹣19=11(千米);(5)由纵坐标看出12:00﹣13:00时距离没变且时间较长,得12:00﹣13:00休息并吃午饭;(6)由横坐标看出回家时用了2两小时,由纵坐标看出路程是30千米,回家的速度是30÷2=15(千米/小时).【点评】本题考查了函数图象,观察函数图象的纵坐标可得出离家的距离,观察函数图象的横坐标得出时间.20.如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【考点】等腰三角形的判定;全等三角形的判定与性质.【专题】证明题.【分析】由已知可利用SAS判定△ABC≌△AED,根据全等三角形的对应边相等可得到AC=AD,即△ACD是等腰三角形,已知AF⊥CD,则根据等腰三角形三线合一的性质即可推出CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).【点评】此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题:(每小题3分,共30分)1.下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a62.同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c()A.平行B.垂直C.相交D.重合3.下列各式能用平方差公式计算的是()A.(﹣3+x)(3﹣x)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x) D.(3x+2)(2x ﹣3)4.体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短 D.两点确定一条直线5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm6.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm7.如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.150°B.80°C.100°D.115°8.已知a2+b2=2,a+b=1,则ab的值为()A.﹣1 B.﹣C.﹣D.39.等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cm B.17cm C.16cm,17cm D.11cm10.三角形三条高线所在直线交于三角形外部的是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.内角为30°、80二、填空:(每小题3分,共24分)11.如果x2+kxy+9y2是一个完全平方式,那么k的值是.12.已知一个角的补角为132°,求这个角的余角.13.已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF的周长为cm.14.如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=.15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.16.∠1与∠2互余,∠2与∠3互补,∠1=50°,那么∠3=.17.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.18.一个原子的质量为0.000 000 000 000 000 000 000 000 095千克,请用科学记数法表示.三.解答题:(19题每小题20分,共20分20题9分)19.计算(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)(2)(2x﹣y)2﹣4(x﹣y)(x+2y)(3)(2x2y)3•(﹣7xy2)÷14x4y3(4)1232﹣124×122.20.化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.21.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)22.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC (已知)∴∠EFB=∠ADB=90°(垂直的意义)∴EF∥AD∴∠1=∠BAD又∵∠1=∠2 (已知)∴∠2=∠BAD∴..23.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.24.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.3a2•2a3=6a6D.a8÷a2=a6【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据负整数指数幂、同底数乘除法、幂的乘方与积的乘方的知识进行解答.【解答】解:A、选项属于幂的乘方,法则为:底数不变,指数相乘.(a5)2=a5×2=a10,错误;B、2x﹣2中2是系数,只能在分子,错误;C、选项是两个单项式相乘,法则为:系数,相同字母分别相乘.3a2•2a3=(3×2)•(a2•a3)=6a5,错误;D、选项属于同底数幂的除法,法则为:底数不变,指数相减a8÷a2=a8﹣2=a6.故选D.2.同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c()A.平行B.垂直C.相交D.重合【考点】平行线的性质.【分析】根据平行线的性质,两直线平行,同位角相等可得∠1=∠2,根据垂直的定义可得a与c垂直.【解答】解:如图所示:∵b∥c,∴∠1=∠2,又∵a⊥b,∴∠1=90°,∴∠1=∠2=90°,即a⊥c.故选B.3.下列各式能用平方差公式计算的是()A.(﹣3+x)(3﹣x)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x) D.(3x+2)(2x ﹣3)【考点】平方差公式.【分析】利用平方差公式的结果特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣a﹣b)(﹣b+a).故选B.4.体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短 D.两点确定一条直线【考点】垂线段最短.【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:C.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【考点】函数的概念.【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.6.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能组成三角形;D、3+2<6,不能够组成三角形.故选B.7.如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.150°B.80°C.100°D.115°【考点】平行线的性质;翻折变换(折叠问题).【分析】先利用折叠的性质得到∠BFE=∠2,再利用平角的定义计算出∠BFE=65°,然后根据两直线平行,同旁内角互补求解.【解答】解:∵矩形ABCD沿EF对折,∴∠BFE=∠2,∴∠BFE==×=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=180°﹣65°=115°.故选D.8.已知a2+b2=2,a+b=1,则ab的值为()A.﹣1 B.﹣C.﹣D.3【考点】完全平方公式.【分析】由已知条件,根据(a+b)2的展开式知a2+b2+2ab,把a2+b2=2,a+b=1代入整体求出ab的值.【解答】解:(a+b)2=a2+b2+2ab,∵a2+b2=2,a+b=1,∴12=2+2ab,∴ab=﹣.故选:B.9.等腰三角形的一边长为5cm,另一边长为6cm,那么它的周长为()A.16cm B.17cm C.16cm,17cm D.11cm【考点】等腰三角形的性质;三角形三边关系.【分析】分5cm是腰长和底边两种情况,利用三角形的三边关系判断是否能够组成三角形,再利用三角形的周长的定义解答即可.【解答】解:当等腰三角形的腰长是5cm时,周长是:5+5+6=16cm;当等腰三角形的腰长是6cm时,周长是5+6+6=17cm.故选C.10.三角形三条高线所在直线交于三角形外部的是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.内角为30°、80【考点】三角形的角平分线、中线和高.【分析】锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.【解答】解:由题意知,如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选B二、填空:(每小题3分,共24分)11.如果x2+kxy+9y2是一个完全平方式,那么k的值是±6.【考点】完全平方式.【分析】这里首末两项分别是x和3y这两个数的平方,那么中间一项为加上或减去x 和3y积的2倍,故k=±6.【解答】解:∵(x±3y)2=x2±6xy+9y2=x2+kxy+9y2,∴k=±6.故本题答案为±6.12.已知一个角的补角为132°,求这个角的余角42°.【考点】余角和补角.【分析】设这个角为x,由互补的两角之和为180°得出补角、根据题意得出方程,解方程求出这个角的度数,即可求出这个角的余角.【解答】解:设这个角为x,则补角为,余角为(90°﹣x),由题意得,180°﹣x=132°,解得:x=48°,∴90°﹣48°=42°;故答案为:42°.13.已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF的周长为12 cm.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求出△DEF的三边长,根据三角形的周长公式计算即可.【解答】解:∵△ABC的三边长分别为3,4,5,△ABC≌△DEF,∴△DEF的三边长分别为3,4,5,∴△DEF的周长为3+4+5=12cm,故答案为:12.14.如图,已知AE∥BD,∠1=3∠2,∠2=28°.求∠C=56°.【考点】平行线的性质.【分析】根据内错角相等,两直线平行可得∠1=∠3=3∠2,再根据内角与外角的关系可得∠C=2∠2,然后可得答案.【解答】解:∵AE∥DB,∴∠1=∠3=3∠2,∵∠2+∠C=∠3,∴∠2+∠C=3∠2,∴∠C=2∠2,∵∠2=28°.∴∠C=56°,故答案为:56°.15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.【考点】函数的图象.【分析】根据横纵坐标的意义,分别分析得出即可.【解答】解:由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.故答案为:2,276,4.16.∠1与∠2互余,∠2与∠3互补,∠1=50°,那么∠3=140°.【考点】余角和补角.【分析】根据互余两角之和为90°,互补两角之和为180°求解.【解答】解:∵∠1与∠2互余,∠1=50°,∴∠2=90°﹣∠1=90°﹣50°=40°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣40°=140°.故答案为:140°.17.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【考点】余角和补角.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.18.一个原子的质量为0.000 000 000 000 000 000 000 000 095千克,请用科学记数法表示9.5×10﹣26.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 000 000 000 000 000 095=9.5×10﹣26,故答案为:9.5×10﹣26.三.解答题:(19题每小题20分,共20分20题9分)19.计算(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)(2)(2x﹣y)2﹣4(x﹣y)(x+2y)(3)(2x2y)3•(﹣7xy2)÷14x4y3(4)1232﹣124×122.【考点】整式的混合运算.【分析】(1)根据平方差公式计算,再合并同类项即可求解;(2)根据多项式乘以多项式的计算法则和完全平方公式计算,再合并同类项即可求解;(3)根据单项式的乘除法法则计算即可求解;(4)根据平方差公式计算即可求解.【解答】解:(1)(x+2y)(x﹣2y)+(x+1)(x﹣1)=x2﹣4y2+x2﹣1=2x2﹣4y2﹣1;(2)(2x﹣y)2﹣4(x﹣y)(x+2y)=4x2﹣4xy+y2﹣4(x2+2xy﹣xy﹣2y2)=9y2﹣8xy;(3)(2x2y)3•(﹣7xy2)÷14x4y3=﹣4x3y2;(4)1232﹣124×122=1232﹣=1232﹣20.化简求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.【考点】整式的混合运算—化简求值.【分析】原式被除数括号中第一项利用平方差公式化简,合并后利用多项式除以单项式法则计算,得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=(x2y2﹣4﹣2x2y2+4)÷(xy)=(﹣x2y2)÷(xy)=﹣xy,当x=10,y=﹣时,原式=﹣10×(﹣)=.21.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:不写作法,但要保留作图痕迹,且写出结论)【考点】作图—基本作图.【分析】根据作一个角等于已知角的方法作图即可.【解答】解:如图所示:,∠BAC即为所求.22.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.证明:∵AD⊥BC,EF⊥BC (已知)∴∠EFB=∠ADB=90°(垂直的意义)∴EF∥AD同位角相等,两直线平行∴∠1=∠BAD两直线平行,同位角相等又∵∠1=∠2 (已知)∴∠2=∠BAD等量代换∴DG∥BA.内错角相等,两直线平行.【考点】平行线的判定与性质.【分析】根据平行线的判定推出EF∥AD,根据平行线的性质得出∠1=∠BAD,推出∠BAD=∠2,根据平行线的判定推出即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴EF∥AD(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),∵∠1=∠2,∴∠2=∠BAD(等量代换),∴DG∥BA(内错角相等,两直线平行),故答案为:同位角相等,两直线平行,两直线平行,同位角相等,等量代换,DG∥BA,内错角相等,两直线平行.23.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】由AD是BC边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD﹣∠DAE=30°,然后根据AE是∠BAC的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.24.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?【考点】函数关系式;函数值.【分析】(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值;(3)把y=0代入(1)中的函数式即可得到相应的x的值.【解答】解:(1)y=﹣0.6x+48;(2)当x=35时,y=48﹣0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48﹣0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0时,则0=﹣0.6x+48,解得x=80(千米).故这车辆在中途不加油的情况下最远能行驶80千米.陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(三)一、选择题(共10小题,每小题3分,满分30分)1.下列计算正确的是()A.a2+a3=a5 B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.2016年是中国农历丙申猴年,下列四个猴子头像中,是轴对称图形的是()A.B.C.D.3.下列事件中,随机事件是()A.购买一张福利彩票中奖了B.通常水加热到100℃时会沸腾C.在地球上,抛出的篮球会下落D.掷一枚骰子,向上一面的字数一定大于零4.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱 B.水的温度C.所晒时间D.热水器5.若a>0且a x=2,a y=3,则a x﹣2y的值为()A.B.﹣C.D.6.如图,直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDB=30°,那么∠C的度数为()A.150°B.130°C.120°D.100°7.下列说法错误的是()A.三角形中至少有两个锐角。

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(四)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(四)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(四)一、精心选一选(每小题3分,共30分)1.下列计算正确的是()A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3D.(﹣bc)4÷(﹣bc)2=b2c22.中国国旗上的一个五角星的对称轴的条数是()A.1条B.2条C.5条D.10条3.人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为()A.7.7×10﹣5m B.77×10﹣6m C.77×10﹣5m D.7.7×10﹣6m4.下列成语所描述的事件概率为0的是()A.水中捞月B.守株待兔C.瓮中捉鳖D.十拿九稳5.汽车开始行使时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q(升)与行驶时间t(时)的关系式为()A.Q=5t B.Q=5t+40C.Q=40﹣5t(0≤t≤8)D.以上答案都不对6.如图已知△ABD≌△ABC,则图中还有()对全等三角形.A.1 B.2 C.3 D.47.如图,△ABC与△A′B′C′关于直线L成轴对称,则下列结论中错误的是()A.AB=A′B′B.∠B=∠B′C.AB∥A′C′D.直线L垂直平分线段AA′8.已知a,b,c是△ABC的三条边长,且a>b>c,若b=8,c=3,则a可能是()A.9 B.8 C.7 D.69.如图,若AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.70°B.40°C.35°D.20°10.“和谐号”列车从北京站缓缓驶出,加速行驶一段时间后又匀速行驶.因车站调度需要,该次列车路经西安站时停靠了一段时间之后,又开始加速、匀速行驶.下列图中可以近似刻画该列车在这段时间内速度变化情况的是()A. B. C. D.二、耐心填一填(每小题3分,共18分)11.大家知道,冰层越厚,所承受的压力越大,这其中自变量是,因变量是.12.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的.13.在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是.14.观察下列各式:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为.15.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为11cm,AC=5cm,则△ABC的周长是.16.如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.三、解答题(本题包括9个小题,共72分,要求写出必要的解答过程)17.计算(1)5x(2x2﹣3x+4)(2)(2a+b)(﹣2a﹣b)(3)(3x2y﹣xy2+xy)÷(﹣xy)18.先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.19.如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?20.如图,AB∥EF,∠1=60°,∠2=120°,试说明CD∥EF.21.如图,点D、E在△ABC的边BC上,AB=AC,AD=AE,AH⊥BC,垂足为H,试猜想BD与CE的数量关系,并说明理由.22.已知△ABC.(1)请用尺规作图法作BC的垂直平分线.(2)过点A作一条直线,使其将三角形ABC分成面积相等的两部分.(保留作图痕迹,不写作法)23.一个不透明的袋中装有4个红球和5个白球,每个球除颜色外,其余特征均相同.(1)任意摸出1个球,摸出红球的概率是多少?(2)任意摸出1个球,摸到红球小明胜,摸出白球小刚胜,这个游戏公平吗?如果不公平,请你在此基础上设计一个公平的游戏,并说明你的设计理由.24.秦华公司生产A型产品,每件产品的出厂价为48元,成本价为23元.因为在生产过程中平均每生产1件产品将排出0.5立方米污水,为了保护环境,造福民众需对污水进行处理.为此公司设计了两种污水处理方案,并准备实施.方案一:公司对污水先净化再排出,每处理1立方米污水需原料费2元,并且每月排污设备损耗为35000元.方案二:公司委托污水处理厂同一处理,每处理1立方米污水需付费16元.(1)设秦华公司每月生产A型产品x件,每月利润y元,请你分别求出方案一和方案二处理污水时,y与x之间的函数关系式;(设方案一,方案二每月利润分别为y1,y2.又利润=总收入﹣总支出)25.已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上的两点,且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题.①如图1若∠BCA=90°,∠α=90°,则BE CF,EF|BE﹣AF|(填“>”、“<”、“=”);②如图2,若∠α+∠BCA=180°,则①BE与CF的关系还成立吗?请说明理由.(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求说明理由).参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列计算正确的是()A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3D.(﹣bc)4÷(﹣bc)2=b2c2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【解答】解:A.x5•x5=x10,所以此选项错误;B.a3+a2,不能运算,所以此选项错误;C.(a2b)3=a6b3,所以此选项错误;D.(﹣bc)4÷(﹣bc)2=(﹣bc)2=b2c2,所以此选项正确,故选D.2.中国国旗上的一个五角星的对称轴的条数是()A.1条B.2条C.5条D.10条【考点】轴对称的性质.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可解决问题.【解答】解:根据轴对称图形的定义可知:五角星有5条对称轴,故选:C.3.人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为()A.7.7×10﹣5m B.77×10﹣6m C.77×10﹣5m D.7.7×10﹣6m【考点】科学记数法—表示较小的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n<0,n=﹣6.【解答】解:0.000 007 7=7.7×10﹣6.故选D.4.下列成语所描述的事件概率为0的是()A.水中捞月B.守株待兔C.瓮中捉鳖D.十拿九稳【考点】概率的意义.【分析】根据发生的概率是0的事件即不可能事件就是一定不能发生的事件,依次判定即可得出答案.【解答】解:A、水中捞月为不可能事件,故符合题意;B、守株待兔为可能性较小的事件,是随机事件,故不符合题意;C、瓮中捉鳖为必然事件,故不符合题意;D、十拿九稳为可能性较大的事件,是随机事件,故不符合题意.故选A.5.汽车开始行使时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q(升)与行驶时间t(时)的关系式为()A.Q=5t B.Q=5t+40C.Q=40﹣5t(0≤t≤8)D.以上答案都不对【考点】根据实际问题列一次函数关系式.【分析】根据油箱内余油量=原有的油量﹣x小时消耗的油量,可列出函数关系式.【解答】解:依题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40﹣5t(0≤t≤8),故选C.6.如图已知△ABD≌△ABC,则图中还有()对全等三角形.A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质.【分析】由全等三角形的性质得出AD=AC,BD=BC,∠BAD=∠BAC,∠ABD=∠ABC,由SAS证明ADE≌△ACE,同理:△BDE≌△BCE.【解答】解:∵△ABD≌△ABC,∴AD=AC,BD=BC,∠BAD=∠BAC,∠ABD=∠ABC,在△ADE和△ACE中,,∴△ADE≌△ACE(SAS),同理:△BDE≌△BCE.故选:B.7.如图,△ABC与△A′B′C′关于直线L成轴对称,则下列结论中错误的是()A.AB=A′B′B.∠B=∠B′C.AB∥A′C′D.直线L垂直平分线段AA′【考点】轴对称的性质;线段垂直平分线的性质.【分析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选C.8.已知a,b,c是△ABC的三条边长,且a>b>c,若b=8,c=3,则a可能是()A.9 B.8 C.7 D.6【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值范围,然后根据a>b>c 确定a的可能值即可.【解答】解:∵b=8,c=3,∴8﹣3<a<8+3即:5<a<11,∵a>b>c,∴8<a<11,故选A.9.如图,若AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.70°B.40°C.35°D.20°【考点】平行线的性质.【分析】先根据平行线的性质求出∠ACD的度数,再由AC=CD得出∠CAD的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠1=70°,∴∠ACD=∠1=70°.∵AD=CD,∴∠CAD=∠ACD=70°,∴∠2=180°﹣∠ACD﹣∠CAD=180°﹣70°﹣70°=40°.故B.10.“和谐号”列车从北京站缓缓驶出,加速行驶一段时间后又匀速行驶.因车站调度需要,该次列车路经西安站时停靠了一段时间之后,又开始加速、匀速行驶.下列图中可以近似刻画该列车在这段时间内速度变化情况的是()A. B. C. D.【考点】函数的图象.【分析】根据加速则速度变大,图象升高,减速则图象降低,停止速度为0,匀速速度不变,图象为平行x轴的直线,则可得出答案.【解答】解:先加速,则开始时速度逐渐增大,图象上升,再匀速,则图象平行x轴,因车站调度需要,该次列车路经西安站时停靠了一段时间,则需要先减速,则图象下降,再停止,则速度为0,又加速,图象上升,最后匀速,则图象平行x轴故选B.二、耐心填一填(每小题3分,共18分)11.大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力.【考点】常量与变量.【分析】根据常量与变量,即可解答.【解答】解:大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力;故答案为:冰层的厚度,冰层所承受的压力.12.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的稳定性.【考点】三角形的稳定性.【分析】三角形的三边一旦确定,则形状大小完全确定,即三角形具有稳定性.【解答】解:人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的稳定性.故答案为:稳定性.13.在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是平行四边形.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:线段是轴对称图形;角是轴对称图形;等腰三角形是轴对称图形;平行四边形不是轴对称图形;正方形是轴对称图形.故答案为:平行四边形.14.观察下列各式:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为n•(n+2)=(n+1)2﹣1(n为正整数).【考点】规律型:数字的变化类.【分析】根据所给的各式,每个等式的左边是两个数的乘积的形式,第二个因数比第一个因数多2,每个等式的右边是一个数的平方与1的差的形式,这个数比左边的第一个因数多1,据此判断即可.【解答】解:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为:n•(n+2)=(n+1)2﹣1(n为正整数).故答案为:n•(n+2)=(n+1)2﹣1(n为正整数).15.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为11cm,AC=5cm,则△ABC的周长是16.【考点】线段垂直平分线的性质.【分析】由DE是AC的垂直平分线,可得出AD=DC,结合,△ABD的周长为11cm,AC=5cm,即可算出△ABC的周长.【解答】解:依照题意画出图形,如图所示.∵DE是AC的垂直平分线,∴AD=DC,=AB+BD+AD=AB+BD+DC=AB+BC=11,∴C△ABD∵AC=5,=AB+BC+AC=11+5=16.∴C△ABC故答案为:16.16.如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.【考点】几何概率.【分析】根据几何概率的求法:小孔出现在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵图形的总面积为a2+(2a)2=5a2,阴影部分面积为5a2﹣(2a+a)×2a÷2=2a2,∴小孔出现在阴影部分的概率是=.故答案为.三、解答题(本题包括9个小题,共72分,要求写出必要的解答过程)17.计算(1)5x(2x2﹣3x+4)(2)(2a+b)(﹣2a﹣b)(3)(3x2y﹣xy2+xy)÷(﹣xy)【考点】整式的混合运算.【分析】(1)利用乘法分配律用5x分别乘以括号里的每一项即可;(2)利用多项式乘以多项的方法,用第一个括号里的每一项分别乘以第二个括号里的每一项,再合并同类项即可;(3)利用括号里的每一项去除以﹣xy即可.【解答】解:(1)原式=10x3﹣15x2+20x;(2)原式=﹣4a2﹣2ab﹣2ab﹣b2=﹣4a2﹣4ab﹣b2;(3)原式=﹣6x+2y﹣1.18.先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.【考点】多项式乘多项式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质,求出m,n的值,再根据多项式乘以多项式,即可解答.【解答】解:∵|m﹣1|+(n+)2=0,∴m﹣1=0,n+=0,∴m=1,n=﹣,∴(﹣m2n+1)(﹣1﹣m2n)=m2n+m4n2﹣1﹣m2n=m4n2﹣1==1×﹣1==.19.如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?【考点】轴对称-最短路线问题.【分析】如图作点A关于河岸的对称点C,连接BC交河岸于点P,点P就是桥的位置.【解答】解:如图作点A关于河岸的对称点C,连接BC交河岸于点P,点P就是桥的位置.理由:两点之间线段最短.20.如图,AB∥EF,∠1=60°,∠2=120°,试说明CD∥EF.【考点】平行线的判定与性质.【分析】由AB∥EF,利用平行线的性质可得∠E=60°,又∠1=60°,由平行线的判定定理可得CD∥EF.【解答】证明:∵AB∥EF,∴∠E+∠2=180°,∴∠E=180°﹣∠2=180°﹣120°=60°,又∵∠1=60°,∴∠1=∠E,∴CD∥EF.21.如图,点D、E在△ABC的边BC上,AB=AC,AD=AE,AH⊥BC,垂足为H,试猜想BD与CE的数量关系,并说明理由.【考点】全等三角形的判定与性质.【分析】由AB=AC,利用等边对等角得到一对角相等,同理由AD=AE得到一对角相等,再利用外角性质及等量代换可得出一对角相等,利用ASA得出三角形ABD与三角形AEC全等,利用全等三角形的对应边相等可得证.【解答】证明:∵AB=AC,∴∠B=∠C(等边对等角),∵AD=AE,∴∠ADE=∠AED(等边对等角),又∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE(等量代换),在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=CE(全等三角形的对应边相等).22.已知△ABC.(1)请用尺规作图法作BC的垂直平分线.(2)过点A作一条直线,使其将三角形ABC分成面积相等的两部分.(保留作图痕迹,不写作法)【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)利用三角形中线的性质进而得出答案.【解答】解:(1)如图所示:直线MN即为所求;(2)如图所示:线段AD所在直线即为所求.23.一个不透明的袋中装有4个红球和5个白球,每个球除颜色外,其余特征均相同.(1)任意摸出1个球,摸出红球的概率是多少?(2)任意摸出1个球,摸到红球小明胜,摸出白球小刚胜,这个游戏公平吗?如果不公平,请你在此基础上设计一个公平的游戏,并说明你的设计理由.【考点】游戏公平性;概率公式.【分析】(1)根据概率公式求解;(2)通过比较摸出红球的概率和摸出白球的概率可判断这个游戏不公平;然后加上摸到红球得4分,摸到白球得5分可使游戏公平.【解答】解:(1)任意摸出1个球,摸出红球的概率==;(2)小明胜的概率=,小刚胜的概率=,因为<,所以这个游戏不公平.一个公平的游戏可为:任意摸出1个球,摸到红球得4分,摸到白球得5分,摸到红球小明胜,摸出白球小刚胜.此时每摸一次小明的得分为5×=,小明的得分为4×=,所以这个游戏是公平的.24.秦华公司生产A型产品,每件产品的出厂价为48元,成本价为23元.因为在生产过程中平均每生产1件产品将排出0.5立方米污水,为了保护环境,造福民众需对污水进行处理.为此公司设计了两种污水处理方案,并准备实施.方案一:公司对污水先净化再排出,每处理1立方米污水需原料费2元,并且每月排污设备损耗为35000元.方案二:公司委托污水处理厂同一处理,每处理1立方米污水需付费16元.(1)设秦华公司每月生产A型产品x件,每月利润y元,请你分别求出方案一和方案二处理污水时,y与x之间的函数关系式;(设方案一,方案二每月利润分别为y1,y2.又利润=总收入﹣总支出)【考点】一次函数的应用.【分析】(1)每件产品出厂价为48元,共x件,则总收入为:48x,成本费为23x,产生的污水总量2x,按方案一处理污水应花费:2x×0.5+35000,按方案二处理应花费:16x×0.5.根据利润=总收入﹣总支出即可得到y与x的关系;(2)根据(1)中得到的x与y的关系,即可得答案;(3)根据(2)表格中的数据,提出分析建议.【解答】解:(1)由已知得:y1=48x﹣23x﹣(2x×+35000)=24x﹣35000;y2=48x﹣23x﹣16x×0.5=17x.(2)当x=4000时,y1=24×4000﹣35000=61000;当x=5000时,y2=17×5000=85000;当x=6000时,y1=24×6000﹣35000=109000.补充完整表格,如图所示.(3)观察表格数据发现:当每月的产量少于5000件时,选方案二公司获得的利润多一些;当每月的产量等于5000件时,两种方案下公司获得的利润一样多;当每月的产量多于5000件时,选方案一公司获得的利润多一些.25.已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上的两点,且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题.①如图1若∠BCA=90°,∠α=90°,则BE=CF,EF=|BE﹣AF|(填“>”、“<”、“=”);②如图2,若∠α+∠BCA=180°,则①BE与CF的关系还成立吗?请说明理由.(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求说明理由).【考点】三角形综合题.【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE ≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为=,=.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.。

2017—2018学年度第二学期期末试卷含解析与答案2

2017—2018学年度第二学期期末试卷含解析与答案2

2017-2018学年度第二学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。

2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,务必在答题卡规定的地方填写自己的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本人姓名、准考证号是否一致。

3.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。

写在本试卷上无效。

一、精心选一选,慧眼识金(本大题共16个小题:每小题3分,共48分。

在每小题给出的四个选项中,只有一个是符合题目要求的) 1.计算23a a ⋅正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm 用科学记数法表示为n 107.6⨯mm (n 为负整数),则n的值为A.-5B.-6C.-7D.-8 3.下列三天线段不能构成三角形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm 4.如图,直线a ,b 被直线c 所截,若a ∥b ,=∠︒=∠︒=∠3702401,则,A.70°B.100°C.110°D.120°5.当x <a <0时,2x 与ax 的大小关系是A.2x >ax B.2x ≥ax C.2x <ax D.2x ≤ax 6.不等式组⎩⎨⎧≤+x 4-168-x 213x 4>的最小整数解是A.0B.-1C.1D.2 7.如图,下列能判定AB ∥EF 的条件有①︒=∠+∠180BFE B ②21∠=∠ ③43∠=∠ ④5∠=∠B A.1个 B.2个 C.3个 D.4个 8.当a ,b 互为相反数时,代数式2a +ab-4的值为 A.4 B.0 C.-3 D.-4 9.下列运算正确的是A.222b a b a +=+)( B.(-2ab 3)622b a 4-=C.3a 632a a 2-=D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是 A.3 B.5 C.7 D.9 11.若不等式组⎩⎨⎧-ax <<x 312的解集是x <2,则a 的取值范围是A.a <2B.a ≤2C.a ≥2D.无法确定 12.如图,是三个等边三角形(注:等边三角形的三个内角都相等) 随意摆放的图形,则321∠+∠+∠等于A.90°B.120°C.150°D.180° 13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面 为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时, 阴影部分的面积为S 2,则S 1和S 2的大小关系是 A.S 1>S 2 B.S 1<S 2 C.S 1=S 2 D.无法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+= A.3 B.-3 C.5 D.-515.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙得速度的两倍,要保证在2小时以内相遇,则甲的速度A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h 16.如图,E 是△ABC 中BC 边上的一点,且BE=31BC ;点D 是AC 上一点,且AD=41AC ,S =-=∆∆∆AD F EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ (非选择题,共72分)二、细心填一填,一锤定音(每小题3分,共12分) 17.分解因式:2-x 22= 。

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(三)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(三)

陕西省2017-2018学年七年级数学下学期期末模拟试卷及答案(三)一、选择题(共10小题,每小题3分,满分30分)1.下列计算正确的是()A.a2+a3=a5 B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.2016年是中国农历丙申猴年,下列四个猴子头像中,是轴对称图形的是()A.B.C.D.3.下列事件中,随机事件是()A.购买一张福利彩票中奖了B.通常水加热到100℃时会沸腾C.在地球上,抛出的篮球会下落D.掷一枚骰子,向上一面的字数一定大于零4.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱 B.水的温度C.所晒时间D.热水器5.若a>0且a x=2,a y=3,则a x﹣2y的值为()A.B.﹣C.D.6.如图,直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDB=30°,那么∠C的度数为()A.150°B.130°C.120°D.100°7.下列说法错误的是()A.三角形中至少有两个锐角B.两条边及一角对应相等的三角形全等C.两个角及一边对应相等的三角形全等D.三角形的外角大于不相邻的内角8.小明有两根长度分别为5cm和8cm的木棒,他想钉一个三角形的木框.现在有5根木棒供他选择,其长度分别为3cm、5cm、10cm、13cm、14cm.小明随手拿了一根,恰好能够组成一个三角形的概率为()A.B.C.D.19.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD 和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共有10小题,每小题3分,共30分)11.计算;(﹣+1)0﹣(﹣)﹣2=.12.如图所示:已知∠ABD=∠ABC,请你补充一个条件:,使得△ABD≌△ABC.(只需填写一种情况即可)13.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x件,售出x件的总利润为y元,则y与x的函数关系式为.14.如图,△ABC中,DE垂直平分BC,若△ABD的周长为10,AB=4,则AC=.三、解答题(本大题共有11小题,共78分)15.计算:|﹣|+(π﹣3)0+(﹣1)2016﹣()﹣1.16.化简求值:[(2x+y)2﹣(x+y)(x﹣y)﹣2y2]÷2x,其中x=4,y=﹣.17.某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.18.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=35°,求∠2的度数.19.完成下面的证明过程已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.求证:△ABE≌△CDF.证明:∵AB∥CD,∴∠1=.(两直线平行,内错角相等)∵AE⊥BD,CF⊥BD,∴∠AEB==90°.∵BF=DE,∴BE=.在△ABE和△CDF中,∴△ABE≌△CDF.20.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?21.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多少千米?22.如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止.(1)当停止转动时,指针指向奇数区域的概率是多少?(2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述)23.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.24.李大爷按每千克2.1元批发了一批蜜橘到镇上出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降低出售.售出蜜橘千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是元;(2)降价前他每千克蜜橘出售的价格是元/千克;(3)卖了几天,南丰蜜橘卖相不好了,随后他按每千克下降1.5元将剩下的蜜橘售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的蜜橘?25.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD ⊥PQ于D,CE⊥PQ于E.(1)△ADB与△BEC全等吗?为什么?(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列计算正确的是()A.a2+a3=a5 B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;单项式乘单项式:把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.【解答】解:A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、应为a6÷a2=a4,故本选项错误;C、(a2)3=a6,正确;D、应为2a×3a=6a2,故本选项错误.故选C.2.2016年是中国农历丙申猴年,下列四个猴子头像中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.3.下列事件中,随机事件是()A.购买一张福利彩票中奖了B.通常水加热到100℃时会沸腾C.在地球上,抛出的篮球会下落D.掷一枚骰子,向上一面的字数一定大于零【考点】随机事件.【分析】根据随机事件和必然事件的定义对各选项进行逐一分析即可得出答案.【解答】解:A、购买一张福利彩票中奖了是必然事件,故本选项正确;B、通常水加热到100℃时会沸腾是必然事件,故本选项错误;C、在地球上,抛出的篮球会下落是必然事件,故本选项错误;D、掷一枚骰子,向上一面的字数一定大于零是必然事件,故本选项错误;故选A.4.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱 B.水的温度C.所晒时间D.热水器【考点】常量与变量.【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x 叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.5.若a>0且a x=2,a y=3,则a x﹣2y的值为()A.B.﹣C.D.【考点】同底数幂的除法.【分析】逆用同底数幂的除法法则进行变形,然后再逆用幂的乘方法则变形最后将a x=2,a y=3代入计算即可.【解答】解:a x﹣2y=a x÷a2y=a x÷(a y)2=2÷9=.故选:D.6.如图,直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDB=30°,那么∠C的度数为()A.150°B.130°C.120°D.100°【考点】平行线的性质.【分析】先由平行线的性质求出∠ABD的度数,再根据角平分线的定义得出∠ABC的度数,由此即可得出结论.【解答】解:∵AB∥CD,∴∠ABD=∠CDB=30°,∠ABC+∠C=180°,∵BE平分∠ABC,∴∠ABC=2∠ABD=2×30°=60°,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选C.7.下列说法错误的是()A.三角形中至少有两个锐角B.两条边及一角对应相等的三角形全等C.两个角及一边对应相等的三角形全等D .三角形的外角大于不相邻的内角【考点】全等三角形的判定;三角形内角和定理;三角形的外角性质.【分析】利用三角形内角和、全等三角形的判定和外角的性质逐项判断即可.【解答】解:如果三角形中只有一个锐角的话,则另外两个内角必为直角或钝角,则三角形内角和超过180°,所以三角形中至少有两个锐角,故A 正确;当两个三角形中两条边及一角对应相等时,其中如果这组角是两边的夹角时两三角形全等,如果不是这两边的夹角的时候不一定全等,故B 不正确;当两个三角形中两角及一边对应相等时,其中如果边是这两角的夹边时,可用ASA 来判定两个三角形全等,如果边是其中一角的对边时,则可用AAS 来判定这两个三角形全等,故C 正确;由三角形的外角大于任意一个不相邻内角的和可知D 正确;故选B .8.小明有两根长度分别为5cm 和8cm 的木棒,他想钉一个三角形的木框.现在有5根木棒供他选择,其长度分别为3cm 、5cm 、10cm 、13cm 、14cm .小明随手拿了一根,恰好能够组成一个三角形的概率为( )A .B .C .D .1【考点】概率公式;三角形三边关系.【分析】根据构成三角形的条件,确定出第三边长,再由概率求解.【解答】解:小明随手拿了一根,有五种情况,由于三角形中任意两边之和要大于第三边,任意两边之差小于第三边,故只有这根是5cm 或10cm ,∴小明随手拿了一根,恰好能够组成一个三角形的概率=.故选A .9.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h 随注水时间t 变化规律的是( )A .B .C .D .【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h 随时间t 变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B .10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②ABD 和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;三角形的面积.【分析】根据三角形中线的定义可得BD=CD,得出△ABD的面积=△ACD的面积,然后利用“边角边”证明△BDF和△CDE全等,由全等三角形的性质得出∠F=∠CED,∠DEC=∠F,再根据内错角相等,两直线平行可得BF∥CE,最后根据三角形内角和定理求出∠F,得出④正确,即可得出结论.【解答】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积=△ACD的面积,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故①②正确∴∠F=∠CED,∠DEC=∠F,∴BF∥CE,故③正确,∵∠FBD=35°,∠BDF=75°,∴∠F=180°﹣35°﹣75°=70°,∴∠DEC=70°,故④正确;综上所述,正确的是①②③④4个.故答案为:D.二、填空题(本大题共有10小题,每小题3分,共30分)11.计算;(﹣+1)0﹣(﹣)﹣2=﹣3.【考点】负整数指数幂;零指数幂.【分析】首先根据负指数和0次幂的意义求得两式的结果,再根据有理数的加法法则计算即可.【解答】解:.故答案为:﹣3.12.如图所示:已知∠ABD=∠ABC,请你补充一个条件:DB=CB或∠DAB=∠CAB或∠D=∠C,使得△ABD≌△ABC.(只需填写一种情况即可)【考点】全等三角形的判定.【分析】要使得△ABD≌△ABC,已知∠ABD=∠ABC、AB=AB,则可以添加边DB=BC,运用SAS来判定其全等,也可添加一组角运用AAS来判定其全等.【解答】解:△ABD和△ABC中,已知∠ABD=∠ABC;∴当DB=CB或∠DAB=∠CAB或∠D=∠C时,△ABD≌△ABC.故答案为:DB=CB或∠DAB=∠CAB或∠D=∠C.13.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x件,售出x件的总利润为y元,则y与x的函数关系式为y=2x.【考点】函数关系式.【分析】首先求出每件商品的利润,进而得出y与x的函数关系式.【解答】解:根据题意可得:∵每件进价为4元,售价为每件6元,∴每件商品的利润为:2元,∴y与x的函数关系式为:y=2x.故答案为:y=2x.14.如图,△ABC中,DE垂直平分BC,若△ABD的周长为10,AB=4,则AC= 6.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC,根据已知和三角形的周长公式计算即可.【解答】解:∵DE垂直平分BC,∴DB=DC,∵△ABD的周长为10,∴AB+AD+BD=10,即AB+AD+CD=10,∴AB+AC=10,又AB=4,∴AC=6,故答案为:6.三、解答题(本大题共有11小题,共78分)15.计算:|﹣|+(π﹣3)0+(﹣1)2016﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=+1+1﹣3=﹣.16.化简求值:[(2x+y)2﹣(x+y)(x﹣y)﹣2y2]÷2x,其中x=4,y=﹣.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(4x2+4xy+y2﹣x2+y2﹣2y2)÷2x=(3x2+4xy﹣y2)÷2x=x+2y﹣,当x=4,y=﹣时,原式=6﹣1﹣=4.17.某旅游景区内有一块三角形绿地ABC,如图所示,现要在道路AB的边缘上建一个休息点M,使它到A,C两个点的距离相等.在图中确定休息点M的位置.【考点】线段垂直平分线的性质;作图—应用与设计作图.【分析】作AC的垂直平分线交AB于M,根据垂直平分线的性质得到MA=MC,则点M满足条件.【解答】解:作AC的垂直平分线交AB于M点,则点M为所求.18.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=35°,求∠2的度数.【考点】平行线的性质.【分析】根据两条直线平行,同位角相等,得∠1的同位角的度数.再根据平角的定义即可求得∠2.【解答】解:如图:∵a∥b,∴∠1=∠3,又∵∠1=35°,∴∠3=35°,∵AB⊥BC∴∠ABC=90°,∵∠2+∠ABC+∠3=180°,∴∠2=55°.19.完成下面的证明过程已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.求证:△ABE≌△CDF.证明:∵AB∥CD,∴∠1=∠2.(两直线平行,内错角相等)∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°.∵BF=DE,∴BE=DF.在△ABE和△CDF中,∴△ABE≌△CDF(ASA).【考点】全等三角形的判定.【分析】根据AB∥CD,可得∠1=∠2,根据AE⊥BD于E,CF⊥BD于F,可得∠AEB=∠CFD=90°,然后根据BF=DE,可得BE=DF,利用ASA可证明△ABE ≌△CDF.【解答】证明::∵AB∥CD,∴∠1=∠2(两直线平行,内错角相等),∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA).故答案为:∠2;∠CFD;DF;∠2,DF,∠CFD;(ASA).20.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?【考点】全等三角形的应用.【分析】本题让我们了解测量两点之间的距离不止一种,只要符合全等三角形全等的条件,方案的操作性强,需要测量的线段和角度在陆地一侧即可实施.【解答】解:对.理由:∵AC⊥AB∴∠CAB=∠CAB′=90°在△ABC和△AB′C中,∵∴△ABC≌△AB′C(ASA)∴AB′=AB.21.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多少千米?【考点】一次函数的应用.【分析】(1)根据题意可以直接写出y与x的函数关系式;(2)将x=35求出相应的y值,然后将y=12求出相应的x值,本题得以解决.【解答】解:(1)由题意可得,y与x的关系式是:y=48﹣0.6x;(2)当x=35时,y=48﹣0.6×35=48﹣21=27,当y=12时,12=48﹣0.6x,解得,x=60,即这辆汽车行驶35km时,剩油27升;汽车剩油12升时,行驶了60千米.22.如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止.(1)当停止转动时,指针指向奇数区域的概率是多少?(2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述)【考点】几何概率.【分析】(1)让奇数的个数除以数的总数即为所求的概率;(2)合理即可.【解答】解:(1)当转盘停止转动时,指针指向数字区域1,2,3,4,5,6的机会是均等的,故共有6种均等的结果,其中指针可指向奇数区域1,3,5有3种结果,∴P(奇数)=.所以,转盘停止时,指针指向奇数区域的概率是.(2)可在转盘的6个小扇形中,将其中的任意4个填涂成同一种颜色即可,因为转盘停止转动后,指针指向任何一个小扇形区域的机会均等,其概率为,而图中有4个小扇形涂成了同一种颜色,即指针指向这种颜色区域的概率为4×=.23.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】首先利用SAS证明△ABD≌△CEF,根据全等三角形对应角相等,可得∠A=∠C,再根据“内错角相等,两直线平行”,即可证出AB∥CF.【解答】证明:∵AE=CD,∴AE+ED=CD+ED,即:AD=CE,∵EF∥BD,∴∠BDA=∠CEF,在△ABD和△CEF中,,∴△ABD≌△CEF(SAS),∴∠A=∠C,∴AB∥CF.24.李大爷按每千克2.1元批发了一批蜜橘到镇上出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降低出售.售出蜜橘千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是50元;(2)降价前他每千克蜜橘出售的价格是 3.5元/千克;(3)卖了几天,南丰蜜橘卖相不好了,随后他按每千克下降1.5元将剩下的蜜橘售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的蜜橘?【考点】函数的图象.【分析】(1)观察函数图象,当x=0时y值即可李大爷自带的零钱;(2)观察函数图象,找出数据,根据“售价=销售钱数÷销售质量”即可得出销售单价;(3)观察函数图象,找出数据,根据“蜜橘总质量=80+降价后的收入÷降价后的单价”即可得出结论.【解答】解:(1)当x=0时,y=50.故答案为:50;(2)降价前的售价为:÷80==3.5(元/千克).故答案为:3.5;(3)李大爷一共批发的蜜橘重量为:80+÷(3.5﹣1.5)=140(千克).答:李大爷一共批发了140千克的蜜橘.25.如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD ⊥PQ于D,CE⊥PQ于E.(1)△ADB与△BEC全等吗?为什么?(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD、DE、CE有怎样的等量关系?说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)求出∠ADB=∠ABC=∠BEC=90°,求出∠DAB=∠CBE,根据AAS 推出△ADB≌△BEC即可;(2)根据全等得出AD=BE,CE=DB,即可求出答案;(3)证明过程和(1)(2)类似.【解答】解:(1)△ADB≌△BEC,理由是:∵AD⊥PQ,CE⊥PQ,∴∠ADB=∠ABC=∠BEC=90°,∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,∴∠DAB=∠CBE,在△ADB和△BEC中,,∴△ADB≌△BEC(AAS);(2)CE+AD=DE,理由是:∵△ADB≌△BEC,∴AD=BE,CE=DB,∵DB+BE=DE,∴CE+AD=DE;(3)CE﹣AD=DE,理由是:∵AD⊥PQ,CE⊥PQ,∴∠ADB=∠ABC=∠BEC=90°,∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,∴∠DAB=∠CBE,在△ADB和△BEC中,,∴△ADB≌△BEC(AAS);∴AD=BE,CE=DB,∵DB﹣BE=DE,∴CE﹣AD=DE.。

2017-2018学年度人教版七年级下数学期末测评试卷有答案

2017-2018学年度人教版七年级下数学期末测评试卷有答案

期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。

2017-2018学年度第二学期期末考试七年级数学试题及答案

2017-2018学年度第二学期期末考试七年级数学试题及答案

火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2017~2018学年第二学期人教版七年级下期末数学质量检测卷及答案

2017~2018学年第二学期人教版七年级下期末数学质量检测卷及答案

XX市XX中学2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图432-1 118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…A BECDF10题图12题图C′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2XX 市XX 中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.AM PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。

七年级下学期数学期末试卷(含答案)

七年级下学期数学期末试卷(含答案)

2017——2018学年度下学期期末学业水平检测七 年 级 数 学 试 题一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题(C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于( ) (A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( )①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°, 则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m. 13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其它10个小长方形高之和的41,且样本容量是60,则中间一组的频数 学校 年 班 姓名: 考号:21 3 4 B CDE (第6题)(第10是 .三、解答题(每小题5分,共20分)15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°, 求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页) HGF E DC BA七年级数学试题 第3页 (共6页)五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100 件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2) 问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠PAC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠PAC ,∠PBD 之间的关系会发生变化吗? 答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠PAC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)y七年级数学试题 第4页 (共6页)七年级数学试题 第4页 (共6页)一. 单项选择题 (每小题3分,共24分)1. C2. B3. D4. C5. D6. C7. D8. C二. 填空题(每小题3分,共24分)9.答案不唯一,如(1,2) 10. 8 11.±10 12. 同位角相等,两直线平行 13. 四14.7,π 15. 1 16. ()7+410-50x x ≤三.解答题(每小题6分,共24分)17. 解:原式=4259-.…………………3分 =517453-=-.…………………6分 18. 解:由①,得 x=y+3.③ ………………2分把③代入②,得 3(y+3)-8y=14,解得 y=-1. ……………… 4分把y=-1代人③,得 x=2.…… 5分,所以这个方程组的解是21x y =⎧⎨=-⎩. ………………6分19. 解:解不等式213x +>-,得2x >-; ………………1分 解不等式1x x -≤8-2,得x ≤3.………………2分 所以原不等式组的解集为-2<x ≤3 ………………………4分解集在数轴上表示略. ………………6分 20. 解:∵DE ∥CF , ∠D=30 o.∴∠DCF=∠D=30 o (两直线平行,内错角相等)………………2分 ∴∠BCF=∠DCF+∠BCD=30 o +40o =70o ..………………4分 又∵AB ∥CF∴∠B+∠BCF=180 o (两直线平行,同旁内角互补)∴∠B=180 o —70o =110o .………………6分 四.解答题(每小题7分,共28分)21.解:(1)建立直角坐标系略(2分 ) (2)市场(4,3),超市(2,-3)(2分) (3)图略(3分)22. 评分标准:(1)3分,(2)、(3)各2分,满分7分. (1)(2)图②(或扇形统计图)能更好地说明一半以上国家的学生成绩在60≤x <70之间. (3)图①(或频数分布直方图)能更好地说明学生成绩在70≤x <80的国家多于成绩在50≤x <60的国家.23.解:设七年(1)班和七年(2)班分别有x 人、y 人参加“光盘行动”, 根据题意,得⎩⎨⎧=-=++101288y x y x . ……………3分解得⎩⎨⎧==5565y x .……………6分七年级数学试题 第6页 (共6页)C:13.3D :40≤x <50 C :50≤x <60 B :60≤x <70 A :70≤x <80答:七年(1)班、七年(2)班分别有65人、55人参加“光盘行动”. ……………7分 24.评分标准:每个横线1分,满分7分.(1)∠BFD, 两直线平行,内错角相等, ∠BFD, 两直线平行,同位角相等. (2)对顶角相等, ∠D , 内错角相等,两直线平行. 五.解答题(每小题10分,共20分)25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩ . ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分(2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张,所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.点P (2,1)在平面直角坐标系中所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限2.计算05的结果是A .0B .1C .50D .53.人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为A .37.710-⨯B .47710-⨯C .37710-⨯D .47.710-⨯4.下列计算正确的是A .3362a a a ⋅=B .336a a a +=C .3521a a a ÷=D .()336a a =5.已知a b <,下列变形正确的是A .33a b -->B .3131a b -->C .33a b -->D .33a b >6.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°, 那么∠2的度数为 A .10°B .15°C .20°D .25°7.在下列命题中,为真命题的是A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直8.如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么a 的值为 A .1 B .2 C .3D .09.右图是某市 10 月 1 日至10 月 7 日一周内的“日平均气温变化统计图”.在“日平均气温”这组数据中,众数和中位数气温(℃)12分别是 A .13,13 B .14,14 C .13,14D .14,1310.如图,在平面直角坐标系xOy 中,点P (1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至 点P 2(-1,1),第3次向上跳动1个单位至 点P 3,第4次向右跳动3个单位至点P 4,第 5次又向上跳动1个单位至点P 5,第6次向左 跳动4个单位至点P 6,…….照此规律,点P 第100次跳动至点P 100的坐标是 A .(-26,50) B .(-25,50) C .(26,50) D .(25,50)二、填空题(本题共24分,每小题3分)11.如果把方程32x y +=写成用含x 的代数式表示y 的形式,那么y = . 12.右图中四边形均为长方形,根据图形,写出一个正确的等式: . 13.因式分解:34a a -= .14.如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = 度.15.如果关于x ,y 二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足2x y +<,那么a 的取值范围是 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两; 牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5只羊,值金8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 . 17.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FOD = 28°, 那么∠AOG = 度.18.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步 去分母,得 ()15327x x --≥,第二步 去括号,得 153142x x --≥, 第三步 移项,得 321415x x -+-≥, 第四步 合并同类项,得 1x --≥, 第五步 系数化为1,得 1x ≥. 第六步 把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: . 三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算:(1)()()212a a a ---; (2)()()()()643223x x x x -+++-.20.解下列方程组:ABCD EFGOABCDEF12(1)5,22;y x x y =-⎧⎨-=⎩ (2)233,327.x y x y -=⎧⎨-=⎩21.已知12x =,13y =,求()()()232x y x y x y x y xy +++--÷的值.22.解不等式组 ()41710853x x x x ⎧++⎪⎨--⎪⎩,<≤并写出它的所有非负整数....解.23.完成下面的证明:已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F . 求证:∠1=∠2.证明:∵ BE ⊥AD (已知),∴ ∠BED = °( ). 又∵ CF ⊥AD (已知), ∴ ∠CFD = °. ∴ ∠BED =∠CFD (等量代换).∴ BE ∥CF ( ). ∴ ∠1=∠2( ).24.为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: .A .对七年级(1)班的全体同学进行问卷调查;B .对七年级各班的语文科代表进行问卷调查;C .对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:① 在扇形统计图中,“其它”所在的扇形的圆心角等于 度; ② 补全条形统计图;③ 根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有 人.25.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买人数806040漫画科普常识其他种类小说020其它40%小说30% 科普常识漫画3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.四、解答题(本题共13分,26题7分,27题6分)26.已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA 交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).F图1 图2 图327.定义一种新运算“a b ☆”的含义为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=-☆,()()111666222-=--=-☆.(1)填空:()43-=☆ ;(2)如果()()()()34283428x x x x -+=--+☆,求x 的取值范围;(3)填空:()()222325x x x x -+-+-=☆ ;(4)如果()()37322x x --=☆,求x 的值.三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算(本小题满分6分) (1)()()212a a a ---;解:原式22212a a a a =-+-+,…………………………………………………………2分1.=…………………………………………………………………………………3分 (2)()()()()643223x x x x -+++-.解:原式2222449x x x =--+-,………………………………………………………2分28220.x x =---………………………………………………………………3分20.解下列方程组(本小题满分6分) (1)5,22;y x x y =-⎧⎨-=⎩①② 解:把①代入②得 ()252x x --=,……………………………………………………1分 解得 4.x =把4x =代入得① 54 1.y =-=………………………………………………………2分∴ 原方程组的解为41.x y =⎧⎨=⎩……………………………………………………………3分(2)233,327x y x y -=⎧⎨-=⎩①②. 解:由①得 699x y -= ③由②得 6414x y -= ④………………………………………………………………1分 ③-④得 94914y y -+=-,解得 1.y =………………………………………………………………………………2分 把1y =代入①得 233x -=, 解得 1.x =∴ 原方程组的解为31.x y =⎧⎨=⎩……………………………………………………………3分21.(本小题满分4分)解:()()()232.x y x y x y x y xy +++--÷2222222x xy y x y x =+++--,2.xy =……………………………………………………………………………………3分∴ 当12x =,13y =时,原式1112.233=⨯⨯=………………………………………………………………………4分22.(本小题满分4分)解:()4171085.3x x x x ⎧++⎪⎨--⎪⎩①,< ②≤ 由①得 2x ≥-,…………………………………………………………………………1分 由②得 72x <,…………………………………………………………………………2分∴ 原不等式组的解集是72.2x -≤<…………………………………………………………3分∴ 原不等式组的所有非负整数解为0,1,2,3. …………………………………………4分 23.(本小题满分4分)证明:略. ……………………………………………………………………………………4分24.(本小题满分4分)解:略. ………………………………………………………………………………………4分 25.(本小题满分5分) 解:(1)由题意,得 2,23 6.x y x y -=⎧⎨-=-⎩ ………………………………………………………2分解得12,10.x y =⎧⎨=⎩………………………………………………………………………3分(2)设治污公司决定购买A 型设备a 台,则购买B 型设备(10-a )台.由题意,得 ()121010105.a a +-≤解得 5.2a ≤所以,该公司有以下三种方案: A 型设备0台,B 型设备为10台; A 型设备1台,B 型设备为9台;A 型设备2台,B 型设备为8台. …………………………………………………4分(3)由题意,得 ()240200102040.a a +-≥解得: 1.a ≥所以,购买A 型设备1台,B 型设备9台最省钱. ……………………………5分四、解答题(本题共13分,26题7分,27题6分) 26.(本小题满分7分)解:(1)① 补全图形;………………………………………………………………………1分② ∠EDF =∠A . ……………………………………………………………………2分 (2)DE ∥BA . ……………………………………………………………………………3分证明:如图,延长BA 交DF 与G .∵ DF ∥CA , ∴ ∠2=∠3. 又∵ ∠1=∠2, ∴ ∠1=∠3.∴ DE ∥BA . ………………………………………………………………5分(3)∠EDF =∠A ,∠EDF +∠A =180°.…………………………………………7分 、27.(本小题满分6分)解:(1)7-;…………………………………………………………………………………1分 (2)由题意得 3428x x -+<,………………………………………………………2分解得 12.x <∴ x 的取值范围是12.x <………………………………………………………3分 (3)2-;………………………………………………………………………………4分1F A BC DEG23七年级数学试卷 第 11 页 共 11 页 (4)当3732x x --≥,即2x ≥时, 由题意得 ()()37322x x --=+,解得 6.x =…………………………………………………………………………5分 当3732x x --<,即2x <时,由题意得 ()()37322x x --=-,解得 125x =(舍). ∴ x 的值为6. ……………………………………………………………………6分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷

2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷

2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。

七年级2017-2018学年度第二学期期末学业参考答案

七年级2017-2018学年度第二学期期末学业参考答案

2017-2018学年度第二学期期末学业质量监测试题七年级数学试题参考答案一、请把选择题答案填在下列表格中(每小题3分,满分36分)13.71.610-⨯ 14.75° 15.240° 16.-1 17.60° 18.8818x y -三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明或演算步骤) 19. (本题满分12分,每小题4分)(1)481a - (2)994009 (3)5418x y 20. (本题满分12分,每小题4分)(1)()()1b c a -- (2)()()2y x y x y -- (3)()224(4)x y x y -+21.(本题满分7分)解:∵,CD AB EF AB ⊥⊥, ∴180CDF EFD ∠+∠=︒, ∴//CD EF ,………………2分 ∴2DCE ∠=∠,………………3分 又∵12∠=∠, ∴1DCE ∠=∠, ∴//DG BC ,………………5分∴AGD ACB ∠=∠.………………7分 22.(本题满分7分) 解:(1)1 6 15 20 15 6 1 ………………2分(2)()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++-----5分(3)5, 1………………7分 23.(本题满分8分)解:∵MF//AD ,FN//DC ,∴∠BMF=∠A=100°,∠BNF=∠C=70°,………………2分 ∵△BMN 沿MN 翻折得△FMN ,∴111005022BMN BMF ∠=∠=⨯︒=︒, 11703522BNM BNF ∠=∠=⨯︒=︒,………………6分在△BMN 中,∠B=180°-(∠BMN+∠BNM )=95°。

………………8分24. (本题满分10分)解:(1)∵a,b 满足()2460a b -+-= ∴()240a -=,60b -=解得4,6,a b ==∴点B 的坐标是(4,6);………………3分(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O →→→→的线路移动, ∴248⨯=, ∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8-6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度(或点P 在线段CB 的中点处),点P 的坐标是(2,6); ………………7分(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况:当点P 在OC 上时,点P 移动的时间是52 2.5÷=秒;第二种情况:当点P 在BA 上时,点P 移动的时间是()6412 5.5++÷=秒; 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒. ………………10分 25.(本题满分10分) (1)解:如图①所示:∵DE//BC (已知) ∴∠A=∠1 ,∠B=∠2(两直线平行,内错角相等)又∵∠1+∠ACB+∠2=180°(平角的性质) ∴∠A+∠ACB+∠B=180°(等量代换) ∴△ABC 的内角之和等于180°…………3分 (2)解:∵∠AGF+∠EGF=180°(平角的性质) 又∵在△GEF 中∠EGF+∠GEF+∠F=180°(内角和性质) ∴∠AGF=∠GEF+∠F (等量代换)…………6分 (3)解:∵AB//CD ,∠CDE=119°(已知) ∴∠CDE+∠AED=180°(两直线平行,同旁内角互补) ∠CDE=∠BED=119°(两直线平行,内错角相等) ∴∠AED=61°-----------------------------------------------------------------------------------7分 ∵EF 平分∠DEB ∴∠DEF=∠FEB=59.5° ∠AEF=∠GED+∠DEF=120.5°----8分 ∵∠AGF=∠AEF+∠F (外角等于不相邻的两个内角和) ∠AGF=150° ∴∠F=∠AGF-∠AEF =29.5° ………………10分。

《试卷3份集锦》陕西省名校2017-2018年七年级下学期期末学业质量检查模拟数学试题

《试卷3份集锦》陕西省名校2017-2018年七年级下学期期末学业质量检查模拟数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中假命题的是()A.两直线平行,内错角相等B.三角形的一个外角大于任何一个内角C.如果a∥b,b∥c,那么a∥cD.过直线外一点有且只有一条直线与这条直线平行【答案】B【解析】根据平行线的性质、三角形的外角性质、平行公理判断.【详解】解:A、两直线平行,内错角相等,A是真命题;B、三角形的一个外角大于与它不相邻的任何一个内角,B是假命题;C、如果a∥b,b∥c,那么a∥c,C是真命题;D、过直线外一点有且只有一条直线与这条直线平行,D是真命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.如图,下列判断中正确的是()A.如果EF∥GH,那么∠4+∠3=180°B.如果AB∥CD,那么∠1+∠4=180°C.如果AB∥CD,那么∠1=∠2 D.如果AB∥CD,那么∠2=∠3【答案】C【解析】根据平行线的性质进行判断:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【详解】A.如果EF∥GH,那么∠4+∠1=180°,故本选项错误;B.如果AB∥CD,那么∠3+∠4=180°,故本选项错误;C.如果AB∥CD,那么∠1=∠2,故本选项正确;D.如果AB∥CD,那么∠2=∠1,故本选项错误;故选:C.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125°B .120°C .140°D .130°【答案】D 【解析】如图,∵EF ∥GH ,∴∠FCD=∠1.∵∠FCD=∠1+∠A ,∠1=40°,∠A=90°.∴∠1=∠FCD=130°.故选D .4.如图所示,下列判断正确的是( )A .图⑴中∠1和∠2是一组对顶角B .图⑵中∠1和∠2是一组对顶角C .图⑶中∠1和∠2是一对邻补角D .图⑷中∠1和∠2互为邻补角【答案】D【解析】根据对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,由此可得图(4)中∠1和∠2互为邻补角,故选D.5.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23y x =-+B .23y x =--C .23y x =-D .23y x =+【答案】C【解析】把x 看做已知数求出y 即可.【详解】方程2x−y =3,解得:y =2x−3,此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.6.不等式组 的解集是,那么m 的取值范围是A .B .C .D .【答案】A【解析】先求出不等式的解集,再根据不等式组的解集得出答案即可. 【详解】解:, 解不等式②,得:, ∵不等式组 的解集是, ∴.故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.7.下列说法正确的个数是( ).①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC ,则A 、B 、C 三点共线.A .1B .2C .3D .4 【答案】C【解析】线段的基本性质是:所有连接两点的线中,线段最短.故①错误;②任意两个点可以通过一条直线连接,所以,两条直线相交,有且只有一个交点,故②正确; ③任意两个点可以通过一条直线连接,若两条直线有两个公共点,则这两条直线重合;故③正确; ④根据两点间的距离知,故④正确;综上所述,以上说法正确的是②③④共3个.故选C.8.在3π-38-2、0.21、02)中无理数的个数是( )【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.与分数的统称(2)=1是有理数,【详解】38-=-2,0.21,0π-、2是无理数,3故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.9.如图,小明在操场上匀速散步,某一段时间内先从点出发到点,再从点沿半圆弧到点,最后从点回到点,能近似刻画小明到出发点的距离与时间之间的关系的图像是()A.B.C.D.【答案】C【解析】可从MA,弧AB,BM三段去考虑小明到出发点M的距离的变化情况,由此选择合适的图像. 【详解】解:MA段小明距离M越来越远,到点A是距离最远,弧AB段,到M的距离始终不变,且这一段所用时间最长,BM段距离M越来越近,最终到达M点,由于小明匀速散步,MA=BM,MA段所用时间和BM段相同,综上所述,C图像符合题意.故答案为:C【点睛】本题考查了函数图像,结合实际情况选择图像时,关键是理清变量间的变化情况.10.如图所示,有三种卡片,其中边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张.用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为( )A .2244a ab b ++B .22484a ab b ++C .2244a ab b ++D .2224a ab b ++【答案】A 【解析】根据题干中所给的已知条件可知,正方形的面积是边长的平方,长方形的面积是长乘以宽,已知9张卡片的边长可以求出9张卡片拼成一个正方形的总面积.【详解】解:由题可知,9张卡片拼成正方形的总面积为2244a ab b ++.故选:A .【点睛】本题考查了完全平方公式的几何背景.二、填空题题11.请写出命题“互为相反数的两个数和为零”的逆命题:____________________【答案】和为零的两个数是互为相反数.【解析】两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.【详解】逆命题是:和是0的两个数互为相反数;故答案为:和是0的两个数互为相反数.【点睛】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,难度适中.12.已知不等式组1x x n <⎧⎨>⎩有解,则n 的取值范围是__. 【答案】n <1【解析】根据不等式解集是小于大的大于小的,可得答案.【详解】不等式组1x x n <⎧⎨>⎩有解,则n 的取值范围是 n <1, 故答案为:n <1.【点睛】不到(无解).13.已知()2x-y 310x y +++-=,则y x 的值为_________ 【答案】12【解析】根据非负数性质,求得x 、y 的值,然后代入所求求值即可. 【详解】∵()2x-y 30,10x y ≥+-≥+,()2x-y 310x y +++-=∴3010x y x y -+=⎧⎨+-=⎩, 解得12x y =-⎧⎨=⎩ ∴y x =2-1=12. 故答案为:12 【点睛】考核知识点:非负数性质,负指数幂.利用非负数性质求解是关键..14.点(2,3)- 到x 轴的距离为________.【答案】1【解析】根据到x 轴的距离等于点的纵坐标的长度是解题的关键.【详解】解:点(-2,1)到x 轴的距离为|1|=1.故答案为:1.【点睛】本题考查了点的坐标,熟记到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.15.因式分解2()4()x a b b a -+-__________.【答案】()(2)(2)a b x x -+-【解析】先观察该式可提(a-b ),然后在利用平方差公式即可求出.【详解】x 2(a-b )+4(b-a )= x 2(a-b )-4(a-b )=(a-b )(x 2-4)=(a-b)(x+2)(x-2)【点睛】本题利用提公因式法和公式法进行因式分解,学生们熟练掌握因式分解的方法即可.16.分解因式22a b ab +=__________.【答案】ab (a+b )【详解】解:a 2b+ab 2=ab (a+b ).故答案为:ab (a+b ).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.17.若x =1是方程ax+2x =3的解,则a 的值是_____.【答案】1【解析】把x =1代入方程即可得到一个关于a 的方程,解方程即可求解.【详解】解:把x =1代入方程,得:a+2=3,解得:a =1.故答案是:1.【点睛】考核知识点:解一元一次方程.掌握方程一般解法是关键.三、解答题18.已知点(2,0)A -、(0,4)B 、(1,2)C m m +-.(1)当点C 在y 轴上时,求ABC ∆的面积;(2)当//BC x 轴时,求B 、C 两点之间的距离;(3)若P 是x 轴上一点,且满足12APB AOB S S ∆∆=,求点P 的坐标. 【答案】(1)1ABC S ∆=;(1)1;(3)P (-1,0)或(-3,0).【解析】(1)根据题意得出m+1=0,求得m 的值,即可求得C 的坐标,然后根据三角形面积公式即可求得;(1)根据题意得出1-m=4,求得m 的值,即可求得C 的坐标,然后根据两点间的距离公式即可求得; (3)设点P (x ,0),则PA=|x+1|,根据题意求得PA=12OA=1,即可求得x 的值,得出P 的坐标. 【详解】(1)∵点C 在y 轴上,∴m+1=0,解得m=-1,∴C (0,3),∵A (-1,0)、B (0,4),∴OA=1,BC=1,∴S △ABC =12BC•OA=12×1×1=1; (1)∵BC ∥x 轴,∴1-m=4,解得m=-1,∴C (-1,4),(3)设点P(x,0),则PA=|x+1|,OA=1.OB=4,由题意,得12PA•OB=12×12OA•OB,即PA=12OA,∴|x+1|=1,解得x=-1或x=-3,∴P(-1,0)或(-3,0).【点睛】本题考查了坐标与图形性质,三角形面积,是基础题.19.如图,将△ABC平移得到△A1B1C1,使A1点坐标为(﹣2,3).(1)在图中画出△A1B1C1;(2)直接写出另外两个点B1,C1的坐标;(3)求△A1B1C1的面积.【答案】(1)见解析;(2)B1(﹣3,1),C1(﹣6,2);(3)3.5.【解析】(1)直接利用平移的性质得出对应点坐标即可得出答案;(2)利用(1)中画出图形即可得出各点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)B1(﹣3,1),C1(﹣6,2);(3)△A1B1C1的面积为:11142413112 3.5 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.20.如图,在△ABC中,BE平分∠ABD,CE平分∠ACD,且∠BEC=27°,求∠BAC的度数.【答案】54°【解析】根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义列式并整理得到∠BAC=2∠BEC 即可得到结论.【详解】解:∵∠ABC 与∠ACD 的角平分线相交于点E ,∴∠CBE=12∠ABC ,∠ECD=12∠ACD , 由三角形的外角性质得,∠ACD=∠ABC+∠BAC ,∠ECD=∠BEC+∠CBE , ∴12∠ACD=∠BEC+12∠ABC , ∴12(∠ABC+∠BAC )=∠BEC+12∠ABC , 整理得,∠BAC=2∠BEC ,∵∠BEC=27°,∴∠BAC=2×27°=54°.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,熟练掌握三角形的外角的性质是解题的关键. 21.先化简,再求值(1)()()()2212323a a a +--+,其中32a =-; (2)22231269369x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中4x =-; 【答案】(1)410a +,4;(2)126x -+,12【解析】(1)根据完全平方公式和平方差公式进行化简,再代入32a =-计算; (2)先通分计算括号内的分式,再几何平方差公式进行化简,代入4x =-计算.【详解】(1)原式()2244149a a a =++-- 410a =+ 当32a =-,原式341041042a ⎛⎫=+=⨯-+= ⎪⎝⎭(2)原式()()()()223333x x x x x x --=÷+--()()()()231332326x x x x x x x --=⨯=-+--+ 当4x =-时,原式11126862x =-=-=+-+ 【点睛】本题考查完全平方公式和平方差公式及分式化简,解题的关键是掌握完全平方公式和平方差公式. 22.解不等式211143x x +-≤+,并把解集在数轴上表示出来. 【答案】x ⩽52,数轴见解析 【解析】先根据不等式的解法求解不等式,然后把解集在数轴上表示出来.【详解】去分母得:6x+3⩽4x−4+12,移项得:2x ⩽5,系数化为1得:x ⩽52, 在在数轴上表示为:【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算法则. 23.如图,已知△ACE 是等腰直角三角形,∠ACE =90°,B 点为AE 上一点,△CAB 经过逆时针旋转后到达△CED 的位置.问:(1)旋转中心是哪个点?旋转角是哪个角?旋转了多少度?(2)图中哪两个三角形全等?(3)若∠ACB =20°.则∠CDE = ,∠DEB = .【答案】(1)C 点;∠ACE 或∠BCD ;90度;(2)△CAB 和△CED 全等;(3)115°,90°.【解析】(1)利用旋转的定义求解;(2)根据旋转的性质进行判断;(3)先利用等腰直角三角形的性质得∠A=∠CEA=45°,则根据三角形内角和可计算出∠ABC=115°,再根据旋转的性质得∠CDE=∠ABC=115°,∠CED=∠A=45°,从而得到∠DEB=90°.(2)图中△CAB和△CED全等;(3)∵△ACE是等腰直角三角形,∠ACE=90°,∴∠A=∠CEA=45°.∵∠ACB=20°,∴∠ABC=180°﹣45°﹣20°=115°.∵△CAB经过逆时针旋转后到达△CED的位置,∴∠CDE=∠ABC=115°,∠CED=∠A=45°,∴∠DEB=45°+45°=90°.故答案为:115°,90°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形.24.用合适的方法解方程组:(1)2 232x y x y=⎧⎨-=⎩(2)323 5623x yx y+=⎧⎨-=-⎩.【答案】(1)42xy=⎧⎨=⎩(2)-13xy=⎧⎨=⎩【解析】(1)利用代入法求解,把①代入②;(2)利用加减消元法①×3+②得出14x=-14,求出x,把x的值代入①求出y即可;【详解】(1)2232x yx y=⎧⎨-=⎩①②把①代入②得:4y-3y=2解得:y=2;把y=2代入①得:x=4,则方程组的解是:42 xy=⎧⎨=⎩(2)323 5623x yx y+=⎧⎨-=-⎩①②①×3+②得:14x=-14,解得:x=-1,把x=-1代入①得:-3+2y=3,解得:y=3,所以原方程组的解为-13 xy=⎧⎨=⎩【点睛】本题考查了一元一次方程的解法和二元一次方程组的解法,解方程组的基本思想是消元,方法有:代入法和加减法两种,要根据方程组的特点选择适当的方法.25.计算:(1)﹣12017+|1|(2)32425x yx y+=⎧⎨-=⎩.【答案】(1﹣12;(2)方程组的解为21xy=⎧⎨=-⎩.【解析】(1)根据实数的运算法则,先求各项的值,再相加;(2)可以运用加减法解二元一次方程组.【详解】解:(1)原式=﹣1﹣12﹣12;(2)324? 25?x yx y+=⎧⎨-=⎩①②,由方程②×2+①得:7x=14,解得:x=2,把x=2代入方程②得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩.【点睛】本题考核知识点:实数运算和解二元一次方程组;进行实数运算时,要熟记实数运算法则,解方程组要根据实际选好方法(加减法或代入法).七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列计算正确的是( )A 5=±B 9=-C 2=-D =【答案】C【解析】根据平方根和立方根概念和性质,二次根式的加法,可以得到答案.5,所以A 9=,所以B 2=-,所以C 项正=,所以D 项错误.【点睛】本题考查平方根和立方根,解题的关键是熟练掌握平方根和立方根的概念和性质.23的( )A .算术平方根B .平方根C .绝对值D .相反数 【答案】B【解析】根据平方根的定义可得结论.【详解】 是3的平方根,故选:B .【点睛】本题考查了平方根的定义,一个正数的平方根有两个,它们是互为相反数. 3.△ABC 的两边分别为方程组102x y x y +=⎧⎨-=⎩的解,第三边能被4整除.这样的三角形有( )个 A .1B .2C .3D .4【答案】B【解析】首先求出x ,y 的值,再根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围,即可得出答案. 【详解】∵△ABC 的两边分别为方程组102x y x y +=⎧⎨-=⎩的解, ∴64x y =⎧⎨=⎩, ∴设第三边长为x ,则2<x <10,∵第三边能被4整除,∴x =4或8,故这样的三角形有2个.【点睛】此题主要考查了二元一次方程组的求解及三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.4.若x+a >ax+1的解集为x >1,则a 的取值范围为( )A .a <1B .a >1C .a >0D .a <0 【答案】A【解析】根据已知解集得到1﹣a 为正数,即可确定出a 的范围.【详解】∵x+a >ax+1,∴(1﹣a )x >1﹣a .∵不等式x+a >ax+1的解集为x >1,∴1﹣a >0,解得:a <1.故选A .【点睛】本题考查了不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.5.点A 在x 轴上,且到坐标原点的距离为2,则点A 的坐标为( )A .(-2,0)B .(2,0)C .(2,0)或(-2,0)D .(0,-2)或(O,2)【答案】C【解析】分析:根据x 轴上的点的坐标的特征即可得到结果.详解:∵点A 在x 轴上,且与原点的距离为2,∴点A 的坐标是(2,0)或(-2,0).故选:C.点睛:本题考查的是坐标轴上的点的坐标问题,关键是明确到原点的距离相等的点有两个.6.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对【答案】B【解析】根据平方根的定义和基本性质判定,选出答案.【详解】A 、任何一个非负数的平方根都有2个,它们互为相反数,故错误;B 、负数没有平方根,故正确;C 、任何数都有算术平方根;负数没有,所以错误;故答案选B.【点睛】本题主要考查了平方根的定义和基本性质,解本题的要点在于熟知平方根的各种知识点.7.下列从左到右的变形,属于因式分解的是( )A .()()2111a a a +-=-B .()2212x x x x --=-- C .()233a a a a -=- D .2x y x x y =⋅⋅【解析】根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩【答案】D【解析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.9.如图,下列条件中能得到AB∥CD的是( )A .12∠∠=B .23∠∠=C .14∠∠=D .34∠∠=【答案】C 【解析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、因为∠1=∠2,不能得出AB ∥CD ,错误;B 、∵∠2=∠3,∴AD ∥BC ,错误;C 、∵∠1=∠4,∴AB ∥CD ,正确;D 、因为∠3=∠4,不能得出AB ∥CD ,错误;故选C .【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A .110AOB ∠=︒B .AOB AOC ∠=∠C .90AOB AOC ∠+∠=︒D .180AOB AOC ∠+∠=︒【答案】D【解析】先根据量角器读出∠AOB 和∠AOC 的度数,再结合选项,得出正确答案.【详解】由图可知70AOB ∠=︒,110AOC ∠=︒,故A 项错误,B 项错误;因为180AOB AOC ∠+∠=︒,所以C 项错误,D 项正确.【点睛】本题考查量角器的度数,解题的关键是会根据量角器读出度数.二、填空题题11.从某服装厂即将出售的一批休闲装中抽检200件,其中不合格休闲装有15件.那么3000件这种休闲装,合格的休闲装的件数约为__________.【答案】2775件【解析】根据题意先求出合格产品的数量,然后用合格产品的数量÷总数量=合格的频率,再利用合格的频率乘3000,即可求解.【详解】抽检200件,其中不合格的有15件,则抽检中合格的有200−15=185件,故抽检合格的频率是185÷200=0.925.0.925×3000=2775.故答案为:2775件.【点睛】此题考查频数与频率,解题关键在于掌握计算公式.12.点P(5,﹣3)关于x轴对称的点P′的坐标为____________.【答案】 (5,3)【解析】试题分析:熟悉:平面直角坐标系中任意一点P′(x,y),关于x轴的对称点的坐标是(x,﹣y).解:根据轴对称的性质,得点P(5,﹣3)关于x轴对称的点的坐标为(5,3).考点:关于x轴、y轴对称的点的坐标.13.若x>y,则﹣x﹣2_____﹣y﹣2(填“<”、“>”或“=”)【答案】<【解析】首先利用不等式的性质在不等式的两边同时乘以-1改变不等号方向,然后再在不等式的两边同时减去2即可确定答案.【详解】∵x>y,∴−x<−y,∴−x−2<−y−2,故答案为<.【点睛】本题考查的知识点是不等式组的性质,解题的关键是熟练的掌握不等式组的性质.14.命题:如果a=b,那么|a|=|b|,其逆命题是______.【答案】如果|a|=|b|那么a=b【解析】根据逆命题的定义回答,题设和结论与原命题要调换位置.【详解】解:命题:如果a=b,那么|a|=|b|,其逆命题是如果|a|=|b|那么a=b.故答案为:如果|a|=|b|那么a=b.【点睛】本题考查了互逆命题的定义,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题叫做互逆命题,其中一个命题叫做另一个命题的逆命题.15.要使分式11xx-+有意义,x的取值应满足__________.【答案】1x≠-【解析】根据分式有意义的条件可得x+1≠0,再解即可.【详解】由题意得:x+1≠0,解得:x≠−1,故答案为:x≠−1.【点睛】本题考查分式有意义的条件,解题的关键是知道分式的分母不为0.16.下列有四个结论:①若()111x x +-=,则0x =;②若223a b +=,1a b -=,则()()22a b --的值为5-;③若()()211x x ax +-+的运算结果中不含x 项,则1a =; ④若4x a =,8yb =,则243x y -可表示为2a b . 其中正确的是(填序号)是:______.【答案】③④【解析】根据多项式乘法的法则,幂的乘方和积的乘方,同底数幂的除法,零指数进行计算即可得到结论.【详解】解:①若(1-x )x+1=1,则x 可以为-1,此时20=1,故①选项错误;②∵(a-b )2=a 2+b 2-2ab=3-2ab=1,∴ab=1,∴(a+b )2=(a-b )2+4ab=1+4=5,∴a+b=∴(2-a )(2-b )=4-2(a+b )+ab=5±③∵(x+1)(x 2-ax+1)=x 3-(1-a )x 2-(a-1)x+1,∵(x+1)(x 2-ax+1)的运算结果中不含x 项,∴a-1=0,∴a=1,故③选项正确;④∵4x =a ,8y =b ,∴a=22x ,b=23y , ∴2432x y a b-=,故④选项正确. 故答案为:③④.【点睛】本题综合考查了零次幂、多项式乘法、完全平方公式等基本内容,熟练掌握幂的运算性质是解题的关键. 17.如图,AC =BC ,∠ACB =90°,AE 平分∠BAC ,BF ⊥AE ,交AC 延长线于F ,且垂足为E ,则下列结论:①AD =BF ;②∠BAE =∠FBC ;③S △ADB =S △ADC ;④AC +CD =AB ;⑤AD =2BE.其中正确的结论有______(填写序号)【答案】:①②④⑤.【解析】证△ACD ≌△BCF ,推出AD=BF ,CD=CF ,证△AEB ≌△AEF 推出AB=AF ,BE=EF ,推出AD=BF=2BE ,求出BD >CD ,根据三角形面积求出△ACD 的面积小于△ADB 面积,由CD=CF ,AB=AF ,即可求出AC+CD=AB .【详解】解:∵∠ACB=90°,BF ⊥AE ,∴∠BCF=∠ACD=∠BEA=∠AEF=90°,∵∠BDE=∠ADC ,∴由三角形内角和定理得:∠CAD=∠CBF ,在△ACD 和△BCF 中,ACD BCF AC BCCAD CBF ∠∠∠⎧⎪⎪⎩∠⎨=== , ∴△ACD ≌△BCF (ASA ),∴AD=BF ,∴①正确;∵AE 平分∠BAC ,∴∠BAE=∠FAE ,∵∠CBF=∠FAE ,∴∠BAE=∠FBC ,∴②正确;过D 作DQ ⊥AB 于Q ,则BD >DQ ,∵AE 平分∠BAC ,BC ⊥AC ,DQ ⊥AB ,∴DC=DQ ,∴BD >CD ,∵△ADB 的边BD 上的高和△ABD 的面积大于△ACD 的面积,∴③错误;∵BF ⊥AE ,∴∠AEB=∠AEF=90°,在△AEB 和△AEF 中,AEB AEF AE AEBAE FAE ∠∠∠⎧⎪⎪⎩∠⎨===,∴△AEB≌△AEF(ASA),∴BE=EF,∴BF=2BE,∵AD=BF,∴AD=2BE,∴⑤正确;∵△ACD≌△BCF,△AEB≌△AEF∴CD=CF,AB=AF,∴AB=AF=AC+CF=AC+CD,∴④正确;故答案为:①②④⑤.【点睛】本题考查对三角形的内角和定理,全等三角形的性质和判定,角平分线的定义,垂线,综合运用这些性质进行证明是解题的关键.三、解答题18.9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车(高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机(普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x,y的值;(2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?【答案】(1);(2)标准间房价每日每间不能超过450元.【解析】(1)结合旅游总共开支了13668元,以及他们四个人在北京的住宿费刚好等于表中所示其他三项费用之和分别得出等式,列出方程组,解得答案即可;(2)结合他们往返都坐飞机(成人票五五折),求出总费用,进而求出答案.【详解】(1)往返高铁费:(524×3+524÷2)×2=3668元依题意列方程组:解得:;(2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;设预定的房间房价每天a元则4500+2000+1080+1920+10a≤14000,解得a≤450,答:标准间房价每日每间不能超过450元.点睛:本题主要考查了二元一次方程组的应用、一元一次不等式的应用,能正确地根据题意找出等量关系、不等关系,从而列出方程组、不等式是解题的关键.19.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑米,乌龟每分钟爬米.(3)乌龟用了分钟追上了正在睡觉的兔子.(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?【答案】(1)兔子、乌龟、1511;(2)711,51;(3)14;(4)2.5【解析】试题分析:此题要数形结合,根据兔子与乌龟的奔跑路程和时间的图象来求解.试题解析:(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC表示赛跑过程中兔子的路程与时间的关系;线段OD表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1511米;(2)结合图象得出:兔子在起初每分钟跑711米.1511÷31=51(米)乌龟每分钟爬51米.(3)711÷51=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)∵48千米=48111米∴48111÷61=811(米/分)(1511-711)÷811=1(分钟)31+1.5-1×2=2.5(分钟)兔子中间停下睡觉用了2.5分钟.考点:函数的图象.20.某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了_____名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占_____%,选择小组合作学习的占_____%.(4)根据调查结果,估算该校1800名学生中大约有_____人选择小组合作学习模式.【答案】(1)500;(2)10;(3)30;(4)1.【解析】(1)根据个人自学后老师点拨的人数和所占的百分比求出总人数即可;(2)用总人数减去个人自学后老师点拨的人数以及小组合作学习的人数求出教师传授的人数,从而可以将条形统计图补充完整;(3)用教师传授的人数除以总人数,求出教师传授的人数所占的百分比,用小组合作学习的人数除以总人数得出小组合作学习所占的百分比;(4)用该校的总人数乘以选择小组合作学习所占的百分比即可得出答案.。

2017—2018学年末七年级数学测试卷(含答案)

2017—2018学年末七年级数学测试卷(含答案)

2017—2018学年末学业水平评价七年级数学试卷(满分:120分;考试用时:120分钟)一、选择题(每小题3分,共30分) 1. 在下列实数3.1415926……,10049,0.12,π1,7,11131,38中,无理数有( )A. 2个B. 3个C. 4个D. 5个2. 下列各式中,正确的是( )A. 16=±4B. ±16=4C. 327-=-3D. 2(4)-=-43. 为了解我县中学生中14岁女生的身高状况,随机抽查了10所学校的200名14岁女生的身高, 则下列表述正确的是( )A .总体指我县全体14岁的女中学生B .个体是10所学校的女生C .个体是200名女生的身高D .抽查的200名女生的身高是总体的一个样本 4.若点P (x ,y )的坐标满足xy >0,且x+y<0,则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 如图1,下列条件中,不能判断直线a//b 的是( )A. ∠1=∠3B. ∠2=∠3C. ∠4=∠5D. ∠2+∠4=180°6. 下列四个命题: ①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等. 其中真命题的个数是( )A .1个B .2个C .3个D .4个7. 如图2,是蓉蓉画的一张脸的示意图,如果用(0,3)表示左眼,用(2,3)表示右眼,那么嘴的位 置可以表示成( )A .(1,0)B .(-1,0)C .(-1,1)D .(1,1) 8.已知|a ﹣1|+b +7=0,则a+b=( )A .﹣6B .﹣8C . 6D . 8 9. 若甲数为x ,乙数为y ,则“甲数的3倍比乙数的一半少2”,则 列成方程就是( ) A. 2213=+y x B . 2213=-y x C . 2321=-x y D . x y 3221=+ 10. 下列不等式变形中,一定正确的是( )A. 若ac 2>bc 2,则a>b B. 若a>b,则ac 2>bc 2C. 若 ac>bc,则a>bD. 若a>0 ,b>0,且b a 11>,则a>bc b a 5 43 2 1图1图281421二、填空题(每小题3分,共24分)11. 的平方根是 ,2﹣ 的相反数是 .12. 2015年我县玉米产量约3780000吨,将3780000用科学记数法表示应是 . 13. 一件衣服按原价的八折销售,现价为a 元,则原价为 元. 14. 线段AB 两端点的坐标分别为A (3,4),B (5,2),若将线段AB 平移,使得点B 的对应点为 点C (2,-1),则平移后点A 的对应点的坐标为 .15. 如图3,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么 ∠2的度数是 .16. 如图4,a ∥b,∠1=70°,∠2=35°,则∠3=_________. 17. 请写出一个二元一次方程组 ,使它的解是.18. 用同样大小的黑色棋子按如图所示的规律摆放:则第n 个图形有 枚黑色棋子.三、解答题(共7个小题,共66分)19.(本题6分)解方程组 ⎪⎩⎪⎨⎧=+=2325y -4y x x20.(本题8分)解不等式组⎪⎩⎪⎨⎧>+≤-1-3214)23-x x x x (,并把解集在数轴上表示出来。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

七年级数学质量监测试题 1 (共4页)2017-2018学年第二学期期末七年级数学质量监测试题(考试时间:120分钟 满分:150分)一、单项选择题(每小题4分,共40分。

) 1.下列各点中,在第二象限的点是( )A .(﹣4,2)B .(﹣4,﹣2)C .(4,2)D .(4,﹣2) 2.下列各数属于无理数的是( ) A .722B .3.14159C .32D .363.下列调查中,适宜采用全面调查方式的是( )A .调查电视剧《人民的名义》的收视率B .调查重庆市民对皮影表演艺术的喜爱程度C .调查某市居民平均用水量D .调查你所在班级同学的身高情况 4. 下列方程组中,是二元一次方程组的是( )A. ⎩⎨⎧=-=+54y x y xB. ⎩⎨⎧=-=+64382c b b aC. ⎩⎨⎧==-nm n m 20162D. ⎪⎩⎪⎨⎧+=-=4236316y xy x5. 如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .140°B .40°C .50°D .60° 6.下列命题中,假命题是( ) A .垂线段最短 B .同位角相等 C .对顶角相等 D .邻补角一定互补 7.若方程组()⎩⎨⎧=-+=+611434y m mx y x 的解中x 与y 的值相等,则m 为(A. 4B. 3C. 28.把不等式组1010x x +≥⎧⎨-<⎩的解集表示在数轴上,正确的是( )七年级数学质量监测试题 2 (共4页)9.定义一种新的运算:对任意的有序数对(x ,y )和(m ,n )都有(x ,y )※(m ,n )=(x +m ,y +n )(x ,y ,m ,n 为任意实数),则下列说法错误的是( )A .若(x ,y )※(m ,n )=(0,0),则x 和m 互为相反数,y 和n 互为相反数.B .若(x ,y )※(m ,n )=(x ,y ),则(m ,n )=(0,0)C .存在有序数对(x ,y ),使得(x 2, y 2)※(1,-1)=(0,0)D .存在有序数对(x ,y ),使得(x 3, y 3)※(1,-1)=(0,0)10. 如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变 换成△OA 3B 3,……,则B 2018的横坐标为( )A. 22016B. 22017C. 22018D. 22019第10题图二、填空题(每小题4分,共24分)11.剧院里11排5号可以用(11,5)表示,则(9,8)表示 . 12.如图,D 、E 分别是AB 、AC 上的点,DE//BC ,若∠C =50°,则∠AED = °.13.一条船顺流航行每小时行40km ,逆流航行每小时行32km ,设该船在静水中的速度为每小时x km ,水流速度为每小时y km ,则可列方程组为 .14. 已知|x ﹣2y|+(y-2)2=0,则x +y = .15. 已知关于x 的不等式组⎪⎩⎪⎨⎧>-->-a x x 21125无解,则a 的取值范围是_______.16. 如果n 为正偶数且x n=(-2)n,y n =(-3)n ,那么x +y = .三、解答题(共86分)17. (8分)计算(1)25+38 (2)|2﹣3|-(3﹣1)18.(8分)解不等组⎪⎩⎪⎨⎧->--≥+13273)1(3x x x x ,并把解集表示在数轴上。

2017-2018学年度第二学期期末质量监测七年级数学试卷

2017-2018学年度第二学期期末质量监测七年级数学试卷

2017-2018学年度第二学期期末质量监测七年级数学试卷一、选择题(每题2分,共20分)1.下图是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.如图,AD,AE分别是△ABC的高和角平分线,∠B = 40°,∠C=60°,那么∠DAE的度数是()A.25°B.20°C.15°D、10°3.空气的密度是0.001293g/cm3,这个数用科学记数法可表示为()A.1.293×10-3B.-1.293x103C.-12.93×10-2D.0.1293×10-44.下列计算正确的是()A.a5+a5 = a10B.a6·a4 = a24C.a4 ÷a3 = aD.a4 –a4 =a05.下列事件中,是随机事件的是()A.同位角相等,两条直线平行B.三角形的三条高相交于一点C.平行于同一条直线的两条直线平行D.三角形三条角平分线交于一点6.已知:如下图,AB∥CD,∠AEF=80°,则∠DCF的度数为()A.120°B.110 °C.100°D.80°7.如图,已知∠1=∠2,则不一定保证△ABD≌△ACD的条件是()A.AB=ACB.∠B=∠CC.BD=CDD.∠BDA=∠CDA8.如图,向高为H的圆柱形水杯中注水,已知水杯底面圆半径为1,那么能够刻画注水量y与水深x关系的图象是()9.如图,为估计蒲河公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点0,测得0A=15m,OB=10m,则A、B间的距离可能是()A.5mB.15mC.25mD.30m10.如图,AD是△ABC中∠BAC的角平分线,DE⊥LAB于点E,DE = 2,AC=3,则△ADC的面积是A.3B.4C.5D.6二、填空圈(每题3分共30分)1.计第:(-2x3y n z)·(-4x n+1y n+3)=_______________.12.如图,兰兰用铅笔可以支起一张质地均匀的三角形卡片,则她支起的这个点应是三角形的_____________.13.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是____________.14.1-6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x,其中a是婴儿出生时体重,请在空格处填上适当的数值:15.三角形三个内角的度数比为1:2:3,则该三角形按角分应为_________________ 三角形。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年第二学期期末调研考试七年级试题及答案(含评分标准与解析)

2017-2018学年第二学期期末调研考试七年级试题及答案(含评分标准与解析)

2017—2018学年度第二学期期末调研考试七年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8答案题号9 10 11 12 13 14 15 16答案1.4的平方根是……………………………………………………………………….()A.2 B.±2 C.﹣2 D.42.在平面直角坐标系中,点A(5,﹣4)在………………………………………()A.第一象限B.第二象限C.第三象限D.第四象限3.下列命题中,是真命题的是…………………………………………………………()A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行4.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为………………()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个5.下列命题正确的是…………………………………………………………………()A.若a>b,b<c,则a>c B.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b6.下列调查中,最适合采用抽样调查的是……………………………………………()A.对某校初三年级(2)班学生体能测试达标情况的调查总分核分人B.对“神州十一号”运载火箭发射前零部件质量状况的调查C.对社区5名百岁以上老人的睡眠时间的调查D.对市场上一批LED节能灯使用寿命的调查7.已知23xy=⎧⎨=⎩是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的立方根为………………………()A.1 B.﹣1 C.2 D.﹣28.某校为了了解九年级学生的体能情况,随机抽取了30名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有300名学生,请据此估计,该校九年级1分钟仰卧起坐次数在30~35次之间的学生人数大约是…()A.40 B.50 C.100 D.1109.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为………………………………()A.20°B.30°C.40°D.70°10.小亮求得方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数和★,请你帮他找回这两个数,“”“★”表示的数分别为………()A.5,2 B.8,﹣2 C.8,2 D.5,411.如果实数11a=,且a在数轴上对应点的位置如图所示,其中正确的是……()A.B.C.D.12.2018年4月29日至5月1日,某省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是…()个人旅游年消费金额x/元x≤20002000<x≤40004000<x≤60006000<x≤80008000<x≤10000频数12 25 31 22 10A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额不超过4000元的共有37人13.实数a,b在数轴上的点的位置如图所示,则下列不等关系正确的是………()A .a+b >0B .a ﹣b <0C .0a b< D .a 2>b 214.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于………( ) A .50° B .55° C .60° D .65° 15.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组……………………( )A .25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩16.如图,如果不等式组4030x a x b -⎧⎨-⎩≥<的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有……………………………………………………( )A .12个B .9个C .16个D .6个二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,若∠1=∠2=∠3=48°,则∠4= °.18.定义新运算:对于任意实数a ,b 都有a △b=ab ﹣a ﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x 的值大于2而小于6,则x 的取值范围为 . 19.如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1)……则P 6的坐标是 ,P 2018的坐标是 .三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)计算:()201839127|23|116------. (2)解方程组:43624x y x y +=⎧⎨+=⎩.21.(本题共2小题,第(1)小题7分,第(2)小题2分,满分9分)(1)解不等式1132x x --≤,并把它的解集在数轴上表示出来; (2)若关于x 的一元一次不等式x+1≥a 只有3个负整数解,则a 的取值范围是 .22.(本题满分9分)(1)如图(1),在四边形ABCD 中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F . 求证:∠1=∠2.请你完成下面证明过程,在括号中填上推理依据. 证明:因为∠A=104°﹣∠2,∠ABC=76°+∠2,所以∠A+∠ABC=104°﹣∠2+76°+∠2,即∠A+∠ABC=180°所以AD∥BC,()所以∠1=∠DBC,()因为BD⊥DC,EF⊥DC,所以∠BDC=90°,∠EFC=90°,()所以∠BDC=∠EFC,所以BD∥EF,()所以∠2=∠DBC,()所以∠1=∠2().(2)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F,①求证:AD∥BC.②若∠1=36°,求∠2的度数.23.(本题满分9分)在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=,n=.24.(本题满分10分)某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和2所示的统计图.根据图中信息解答下列问题:(1)这天共销售了个粽子;(2)销售B品牌粽子多少个?并补全图1中的条形图;(3)求出A品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第 12题图)
(第 13题图)
(第 14题图)
14.如图,将一张长方形纸片沿 BE折叠,BA落在 BA′的位置,再将它沿着 BD折叠,BC落在 BC′的位置,且 C′在 BA′上,若∠ABE=18°,则∠DBC度数为 .
七年级数学期末试题 第 2页 共 6页
2017~2018学年度第二学期期末学习评价
七年级数学纸笔测试
注意事项: 1.本试卷共 6页,满分 100分,时间 100分钟,学生直接在试题上答卷; 2.答卷前将装订线内的项目填写清楚.
题 号



总 分 学业等级
得 分
得分 评卷人 一、选择题(共 10小题,每小题 3分,计 30分.每小题只有一个选项是符合 题意的)
(第 15题图)
(第 16题图)
(第 17题图)
17.如图,把一块含有 30°角(∠A=30°)的直角三角板 ABC的直角顶点放在长方形纸板 CDEF的一个顶点 C处,纸板的另一个顶点 F在三角板斜边 AB上,如果∠1=55°,那么 ∠AFE= .
18.如图,是一种圆环的平面图,它的外圆直径是 2厘米,环宽 0.3厘米.如果用 x个这样的 圆环相扣并拉紧,长度为 y厘米,则 y与 x之间的关系式是 .
(第 18题图)
得分 评卷人 三、解答题(共 6小题,计 46分.解答应写出过程)
19.(本小题 6分) 化简求值:[(a+b)2-(a-b)2-8a3b2]÷(-2ab),其中 a=-2,b=20180.
七年级数学期末试题 第 3页 共 6页
20.(本小题 8分) 尺规作图(保留作图痕迹,不写作法): 如图,已知∠α、∠β、线段 a. (1)作△ABC,使∠B=∠α,∠C=∠β,BC=a; (2)作△ABC的中线 AD.
(4)y与 x之间的关系式是:y=28-6x (8分)
七年级数学期末试题答案 第 1页 共 1页
D.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线
七年级数学期末试题 第 1页 共 6页
6.如图,已知方格纸中是 4个相同的正方形,则∠1+∠2的度数为
【 】
A.45°
B.60°
C.90°
D.100°
7.一个暗箱里放有 n个完全相同的白球,为了估计暗箱里球的个数,再
(第 6题图)
1.有 6张背面完全相同的扑克牌,其中三张数字为 2,一张数字为 3,两张数字为 4,现将它
们背面朝上,从中任意抽一张是数字 4的概率是 A.1 6 B.1 3 C.12 D.23 2.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是
【 】 【 】
理由:因为 AB∥CD(已知)
所以∠A=∠D,∠B=∠C(两直线平行,内错角相等) (3分)
在△AEB和△DEC中
{∠A=∠D ∠B=∠C AE=DE
所以△AEB≌△DEC(AAS) (6分)
所以 BE=CE(全等三角形对应边相等) (8分)
16.∠B=∠D(答案不唯一,或∠ACB=∠ACD或 AB=AD) 17.25° 18.y=1.4x+0.6
三、解答题(共 6小题,计 46分.解答应写出过程)
19.解:(1)原式 =(a2+2ab+b2-a2+2ab-b2-8a3b2)÷(-2ab) (2分)
=(4ab-8a3b2)÷(-2ab)
(第 20题图)
21.(本小题 8分) 如图,在△ABC中,AD是角平分线,DE⊥AC,∠B=52°,∠C=72°. (1)求∠EDC的度数; (2)求∠ADB的度数.
(第 21题图)
七年级数学期末试题 第 4页 共 6页
22.(本小题 8分) 某商场举行开业酬宾活动,设立了可以自由转动的转盘(如图 1),并规定:凡是到本商场购 物的顾客都可以转动转盘一次,转盘停止后,指针所指区域内容即为优惠方式,若指针所指区域 空白,则无优惠.在活动期间张大爷到该商场购物. (1)他此次购物打九折的概率为多少? (2)他此次购物获得优惠的概率是多少? (3)经过两天活动,商场老板想重新制作转盘(如图 2),以扩大优惠面(即增加优惠的概 率),要求打七折和打八折优惠的概率不变,但整个优惠的概率为 23,请帮老板计算该转盘打九 折所在扇形圆心角的度数.
15.如图,是由小等边三角形拼成的等边三角形区域,区域中每一个小三角形除颜色外完全 相同,某同学向区域扔沙包,假设沙包击中每一个小三角形是等可能的,扔沙包 1次击 中阴影区域的概率等于 .
16.如图,在四边形 ABCD中,已知∠1=∠2,要说明四边形 ABCD为轴对称图形,还需添加 一个条件可以是 .
=-2+4a2b (4分)
当 a=-2,b=20180=1时,
原式 =-2+4×(-2)2×1=14 (6分)
20.解:作出△ABC(略) (4分)
七年级数学纸笔测试参考答案及评分标准
一、选择题(共 10小题,每小题 3分,计 30分)
1.B 2.A 3.B 4.C 5.D 6.C 7.B 8.A 9.C 10.D
二、填空题(共 8小题,每小题 3分,计 24分)
11.9a8 12.34° 13.3 14.72° 15. 3 8
(第 22题图)
23.(本小题 8分) 如图,AB∥CD,AD、BC相交于点 E,AE=DE,那么 BE与 CE相等吗?说明你的理由.
(第 23题图)
七年级数学期末试题 第 5页 共 6页
24.(本小题 8分) 张老师告诉同学:“海拔高度越高,温度越低”.并给同学们出示了一次测量的数据:
海拔高度 /千米 0 1 2 3 4 5 温度 /摄氏度 28 22 16 10 4 -2
(3)顾客购物打七折优惠的概率为112
顾客购物打八折优惠的概率为122=16 (6分)
所以顾客购物打九折优惠的概率为
2 3
-112-16
=152
所以该转盘打九折所在扇形圆心角的度数为 360°×152=150° (8分)
23.,BC=EF,∠C=∠F;④ AB=DE,AC=DF,∠B=∠E.其 中 能 使 △ABC≌
△DEF的条件共有
【 】
A.1组
B.2组
C.3组
D.4组
5.下列说法正确的是
【 】
A.等腰三角形的一个角的平分线是它的对称轴
B.有一个内角是 60°的三角形是轴对称图形
C.等腰三角形有 3条对称轴
24.解:(1)两个变量为:海拔高度,温度
自变量是海拔高度,因变量是温度 (2分)
(2)海拔高度为 5千米,温度是 -2摄氏度 (3分)
(3)海拔高度为 6千米,温度大约是 -8摄氏度 (5分)
(2)在△ABC中,∠B=52°,∠C=72°
所以 BAC=180°-∠B-∠C=56°
因为 AD是角平分线
所以∠DAC=1 2∠BAC=28° (6分)
所以∠ADB=∠DAC+∠C=28°+72°=100° (8分)
作出中线(略) (8分)
21.解:(1)因为 DE⊥AC
所以∠DEC=90°
所以∠EDC+∠C=90° (2分)
因为∠C=72°
所以∠EDC=90°-∠C=90°-72°=18° (4分)
A.4a3 -a
B.4a3 +a
C.4a3-4a2+a D.4a3+4a2+a
9.如图,在 Rt△ABC中,∠ACB=90°,∠A=24°,D是 AB上一点,将 Rt△ABC沿 CD折叠,
使点 B落在 AC边上的点 B′处,则∠CDB′等于
【 】
A.79°
B.76°
C.69°
D.66°
22.解:(1)由于转盘被等分为 12个扇形区域,其中打九折有 3个区域
所以张大爷此次购物打九折的概率为132=14 (2分)
(2)由于转盘被等分为 12个扇形区域,其中打九折有 3个区域,打八折有 2个区域,打七折有 1个
区域
所以张大爷此次购物获得优惠的概率为3+122+1=1 2 (4分)
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
3.如图,是一个风筝的图案,它是以直线 AF为对称轴的轴对称图形,下
列结论中不一定成立的是
【 】
A.△ABD≌△ACD
B.∠C=∠G
C.DE=DG D.直线 BG与 CE的交点在 AF上
(第 3题图)
4.已知下列四组条件:① AB=DE,BC=EF,AC=DF;② AB=DE,∠B=∠E,BC=EF;
根据上表,回答下列问题. (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)海拔高度为 5千米,温度是多少? (3)请估计海拔高度为 6千米,温度是多少? (4)若海拔高度 x千米,温度为 y摄氏度,请求出 y与 x之间的关系式.
七年级数学期末试题 第 6页 共 6页
2017~2018学年度第二学期期末学习评价
(第 9题图)
(第 10题图)
10.如图,在边长为 1的小正方形组成的网格中,A、B两点都在格点上,若点 C也在格点上,
且△ABC为等腰三角形,则满足条件的点 C有
【 】
A.5个
B.7个
C.8个
D.9个
得分 评卷人 二、填空题(共 8小题,每小题 3分,计 24分)
11.计算:(3a4)2 = . 12.如图,在△ABC中,AB=AC,∠B=73°,则∠A的度数是 . 13.如图,在四边形 ABCD中,∠1=∠2,AB∥CD.若 AB=3,AD=4,则 CD= .
放入 5个红球,这两种球除颜色外其它均相同,将球搅拌均匀后任意摸出一个球,记下颜
色再放回暗箱,搅匀后重复摸球.通过大量重复摸球试验后发现,摸到红球的频率稳定在
25%左右,那么 n的值大约是
【 】
相关文档
最新文档