五年级奥数火车过桥问题练习题含答案图文稿
奥数-火车过桥问题
五年级应用题(火车过桥)姓名:例题1:一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如下图:习题1:一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?例题2:从北京开往广州的列车长350米,每秒走22米。
从广州开往北京的列车长280米,每秒走20米。
两车在中途相遇,问两车从车头相遇到车尾离开,一共要多少时间?分析:这是火车与火车之间的相遇问题.具体过程如下图:习题2:已知快车长200米,每秒行30米,慢车长1000米,每秒行10米.两车相向而行,问两车从车头相遇到车尾离开一共用了多少时间?例题3:某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,速度为8米每秒.求步行人每小时行多少千米?习题3:方方以每分钟60米的速度沿铁路边步行,一列长252米的货车从对面而来,从他身边通过用了12秒钟,求列车的速度。
例题4:301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒。
列车的速度和长度各是多少?习题4:一列火车经过一根信号灯用了9秒,通过一座长468米的桥用了35秒。
问这列火车长多少米?例题5:慢车车长为125米,车速每秒17米,快车车长140米,车速每秒22米。
慢车在前行驶,快车在后面追上并完全超过需多长时间?习题5:有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?例题6:一列火车长200米,通过一条长430米的隧道用了42秒,这列火车通过一个站台的时候用了25秒,问这个站台有多长?习题6:一列火车通过530米的桥需40秒钟,以同样的速度穿过某山洞需30秒钟.已知这列火车的速度是15米/秒,全长是70米.。
五年级奥数行程问题:火车过桥问题讲座及练习
五年级奥数讲座--------火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
例1 一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。
练习11、在有上、下行的轨道上,两列火车相对开来,甲列车的车身长235米,每秒行驶25米,乙列车的车身长215米,每秒行驶20米。
求这两列火车从车头相遇到车尾离开需要多少秒钟。
2、一列货车和一列客车在互相平行的双轨道上行驶,货车车身长180米,每秒行20米;客车车身长270米,每秒行25米。
两车相向而行,从车头相遇到车尾离开,需要多少时间?3、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米,慢车在前面行驶,快车从后面追上到完全超过需多少秒?例2 一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。
练习24、一列火车全长215米,每秒行驶25米,要经过长960米的大桥,求全车通过要多少秒?5、 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?6、 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?7、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?例3 一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
完整五年级奥数火车过桥问题.docx
第二十一讲:火车过桥、隧道问题公式宝典:1、火车过桥(或隧道)所用的时间=[桥(隧道)长+火车长 ] ÷火车的速度。
2、两列火车相向而行,从相遇到相离所用的时间=两列火车长度和÷两列火车速度和3、两车同向而行,快车从追上到超过慢车所用的时间=两列火车车身和÷两列火车速度差。
练习一:1、甲火车长 210 米,每秒行 18 米,乙火车长 140 米,每秒行 13 米。
乙火车在前,两火车在双轨车道上行驶。
求甲火车从后面追上到完全超过乙火车要用多少时间?2、一列快车长 150 米,每秒行 22 米,一列慢车长 100 米,每秒行 14 米。
快车从后面追上到完全超过慢车共需多少秒?3、小明以每秒 2 米的速度沿铁路旁的人行道跑步,身后开来一列长 188 米的火车,火车每秒行 18 米,问火车追上小明到完全超过小明共用了多少秒?4、甲火车长 180 米,每秒行 18 米,乙火车每秒行 15 米,两列火车同方向行驶,甲火车从追上乙火车到完全超过共用了 100 秒。
求乙火车长多少米?练习二:1、一列火车长 180 米,每秒行 25 米。
全车通过一条 120 米长的山洞,需要多少时间?2、一列火车长 360 米,每秒行 18 米。
全车通过一座长 90 米的大桥,需要多少时间?3、一座大桥长 2100 米,一列火车以每分钟 800 米的速度通过这座大桥,从车头上桥到车尾离桥共用了 3.1 分钟。
这列火车有多长?4、五年级 384 个同学排成两路纵队郊游,每两个同学相隔 0.5 米,队伍以每分钟 61 米的速度通过一座长 207 米的大桥。
一共需要多少时间?练习三:1、有两列火车,一列长130 米,每秒行 23 米,另一列长 250 米,每秒行15米,现在两车相向而行,问从相遇到相离需要几秒钟?2、有两列火车,一列长360 米,每秒行 18 米,另一列长 216 米,每秒行30米,现在两车相向而行,问从相遇到相离需要几秒钟?3、有两列火车,一列长 220 米,每秒行 22 米,另一列长 200 米迎面开来,两车从相遇到相离共用了 10 秒钟,求另一列火车的速度。
奥数:火车过桥(问题详解版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?+=(米),已知火车的速度,那么火车穿越隧道所需时间为【分析】火车穿越隧道经过的路程为300150450÷=(秒).4501825【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】 8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A 领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】 8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).快车慢车慢车快车快车慢车慢车快车【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米?⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
奥数-火车过桥(规范标准答案版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).2秒间隔距离甲乙练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
五年级奥数火车过桥问题练习题含答案
五年级奥数火车过桥问题练习题含答案The pony was revised in January 2021火车过桥问题(A卷:填空题)填空题1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需举2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为28. 8千米,求步行人每小时走______ 千米?3.一人麻每分钟60米的速度沿根路步行,一列长144米的客车对面开来,从他身边通过用了 8秒钟,列车的速度是_________ 米/秒.4.马路上辆车身为15栗W公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上省甲、乙两名年颜,正在练长跑,甲由东向西跑,乙由西向东跑.某一时亥%汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;乂过了2秒钟,汽车离开了乙.问再过秒后,甲、乙两人相遇.5.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要分钟.6.一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行米.7.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是__________ 米/秒,全长是______ 米.8.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是__________ 秒.9.一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是____________ 米.10.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行千米.答案1.火车过隧道,就是从车头进隧道到车尾离开隧道止.如图所示,火车通过隧道时所行的总距离为:隧道长+车长.(200+200)+10 = 40(秒)答:从车头进入隧道到车尾离开共需40秒.2.根据题意,火车和人在同向前进,这是一个火车追人的“追及问题”.由图示可知:人步行15秒钟走的距离二车15秒钟走的距离一车身长.所以,步行人速度 X 15=28.8X10004- (60 X 60) X 15-105步行人速度二[28. 8 X 10004- (60X 60)-105] 4-5=1 (米/秒)=3. 6(千米/小时)答:步行人每小时行3. 6千米.3.客车与人是相向行程问题,可以把人看作是有速度而无长度的火车,利用火车相遇问题: 两车身长+两车速之和二时间,可知,两车速之和二两车身长小时间= (144+0)4-8=18.人的速度二60米/分=1米/秒.车的速度二18-1=17(米/秒).答:客车速度是每秒17米.4. (1)先把车速换算成每秒钟行多少米?18X1000 + 3600=5(米).(2)求甲的速度.汽车与甲同向而行,是追及问题.中行6秒钟的距离二车行6秒钟的距离一车身长.所以,甲速X6WX6-15,中速二(5 X 6-15) 4-6=2. 5 (米/每秒).(3)求乙的速度.汽车与乙相向而行,是相向行程问题.乙行2秒的距离二车身长-车行2 秒钟的距离.乙速 X 2=15-5X2,乙速二(15-5X2) +2=2. 5(米/每秒).(4)汽车从离开甲到离开乙之间的时间是多少?0. 5X60+2=32 秒.(5)汽车离开乙时,中、乙两人之间的距离是多少?(5-2. 5) X (0. 5X60+2) =80(米).(6)中、乙两人相遇时间是多少?804-(2. 5+2. 5) =16(秒).答:再过16秒钟以后,甲、乙两人相遇.5.从车头上桥到车尾离桥要4分钟.6.队伍6分钟向前进80X6=480米,队伍长1200米,6分钟前进了 480米,所以联络员6 分钟走的路程是:1200-480=720(米)720 + 6=120(米/分)答:联络员每分钟行120米.7.火车的速度是每秒15米,车长70米.8. 1034+(20T8) =517(秒)9.火车速度是:12004-60=20 (米/秒)火车全长是:20 X 15=300 (米)10. 40X (51-1) +2X60 +1000=60(千米/小时)火车过桥问题(B卷:解答题)解答题1.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度(得数保留整数)2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28. 8千米.求步行人每小时行多少千米?3.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了 8秒钟,求列车的速度.4.一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从4g两站相对开此从A站开出的每小时行60千米,从5站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?sr答案1.火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(13604-340=)4秒.可见火车行1360米用了(57+4二)61秒,将距离除以时间可求出火车的速度.13604- (57+13604-340)=13604-61^22(米)2. 火车二28. 8X10004- 3600=8 (米/秒)人步行15秒的距离二车行15秒的距离一车身长.(8X15-105)+15=1(米/秒)1X60X60=3600(米/小时)=3. 6(千米/小时)答:人步行每小时3. 6千米.3.人8秒走的距离二车身长一车8秒走的距离(144-60 4-60X8)4-8=17 (米/秒)答:列车速度是每秒17米.4.两列火车同时从A, E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE的距离是:225+25+15+230=495(千米)两车相遇所用的时间是:495 + (60+50) =4. 5 (小时)相遇处距A站的距离是:60 X4. 5=270 (千米)而A, D两站的距离为:225+25+15=265(千米)由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少需要等待:5 + 60 + 5+50 = □(小时)60U小时二11分钟60此题还有别的解法,同学们自己去想一想.。
五年级数学(上)奥数思维拓展《列车过桥问题》测试题(含答案)
五年级数学(上)奥数思维拓展《列车过桥问题》测试题(含答案)一.选择题(共7小题)1.一列火车长160米,每秒行20米,全车通过440米的大桥,需要()秒。
A.8B.22C.30D.无法确定2.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.853.一列火车长360米,每秒行15米,火车全部通过长1560米的隧道要用()秒.A.200B.128C.1294.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200B.1200×2﹣200C.(1200+200)×2D.(1200﹣200)×25.两列火车长度分别为200米和180米,相向而行,它们在双轨铁路上从车头相遇到车尾离开的时间为10秒,已知一列火车的速度为16米/秒,则另一列火车的速度是()米/秒.A.16B.18C.20D.226.育才小学有1828人,排成4路纵队,每横排之间相距0.5米,队伍每分钟走60米,走过一座桥,从队头上桥到队尾离开桥共8分钟。
这座桥长()米。
A.250.5B.251.5C.251D.2527.一列火车全长215米,以每秒15.5米的速度通过长544.5米的大桥,求从车头上桥到车尾离开大桥共需时多少秒?算式是()A.215+544.5÷15.5B.215÷15.5+544.5C.(215+544.5)÷15.5二.填空题(共6小题)8.2021年底将建成的杭绍台高铁,全线最长的隧道——东茗隧道长达18226米,是我国华东地区最长的高铁隧道。
如果一列动车以5270米/分的速度通过隧道,从车头开进隧道到车尾离开隧道共需3.5分钟,这列动车的长度是米。
(提示:如果你觉得有困难,可以画图试试)9.一列火车通过196米的桥需要80秒,用同样的速度通过172米的隧道需要76秒,这列火车的车长是米。
奥数-火车过桥
奥数-⽕车过桥⽕车在⾏驶中,经常发⽣过桥与通过隧道,两车对开错车与快车超越慢车等情况.⽕车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”.如下图:列车过桥的总路程是楸加车长.遠是解决过桥间题的关键*过桥向题也要⽤到⼀般⾏程m题的基嶽辱乎" ”r 过桥的路程⼆桥长才车长A车遠=(桥长+车长)号过桥时间通过桥的时司.C 桥长+车长)+车遠桥长=车速><0桥时间-车长车长=车速耐间-桥长⼃后三个都是根据第⼆个关系式逆推出的.对于⽕车过桥、⽕车和⼈相遇、⽕车追及⼈以及⽕车和⽕车之间的相遇、追及等等这⼏种类型的题⽬,在分析题⽬的时候⼀定得结合着图来进⾏.两列⽕车的”追及”情况,请看下图⽕车F ⼘》*率対.两列⽕车』与乩图中⑴表⽰⽉已经追上E,图中(⽯川已经超过⽡从"追上'到"起过"就是⼀个"追及”过程,⽐较两个⽕车头]雀上"时必落后⽉的车⾝长,"ffl过”时』领先F的车⾝长,也就是说AV'追上"⾄[T驗3⽉的车头⽐启的车头参⾛ffi路程是£的车⾝长W的车⾝长因此所耐间淘C卫的车⾝长+E的车⾝长).(应的车5ft-B的车逵)=从车头追上到车尾离开的时ra .两列⽕车的件⽬遇"惰紀倩看下圖⑴⑵a中⑴喪⽰"碰上3图中⑵表⽰⽸簪迂.类似于前⾯的分析,“遇上”时两列⽕车车头相遇「错过”时两列⽕丰车尾离开.从"遇上e到嗥迫"所需要的时间为:J的车⾝畏戒的车⾝长)."的车速45的车遠)=两车从车头相遇⾄阵尾离开的时司⽕车过桥问题的例题讲解1rasjn以相同51度⾏驶的⽕车,经过⼀根有信号灯的电缕杆了S)秒,通过⼀^腔,t⽶恰的彌⽤了芳秒,这列⽕车长多少⽶?".h A Jc^l由题意,律SIT⾉有信号灯的电线杆⽤了9秒巴可知丸车⾏驶⼀亍车⾝长的路程⽤时7秒,那么⾏驶唸⽶长的路程⽤时为:35-9 = 36 (秒),所以⽕车丧轴2壬36迂9 = 1Q 味】.⽕车过桥问题的例题讲解2E腿】⼀列⽕车长20CI氷通过⼀条长顷⽶时淹S⽤了电秒,这列⽕车以同样的a度通过某站台⽤了¥秒钟,那么这个站台长多少⽶■?【曲】⽕车速度知〔迦才4如942F (⽶於),通过茱鲂台⾏进的路程为"2%和(⽶⼈S知⽕⾟扶,所ly站台檢为邙-300=1巧(粕.⽕车过桥问题的例题讲解3r殛】柯南以3⽶/秒的谨?沿着铁路跑歩皴开来⼀列长⑷⽶的⽕车,它的⾏驶逋度是侶⽶妙,间.⽕车疑过柯南為旁的时间是多少?【时】la可南看作⾉ms度⽽没有车孔(长度是蓼)的⽕车.扌鵜相遇问题的数券系式,(:厘的车⾝长咽的车⾝长)+ (A的车速+£的车速)=两车从车決相遇到车尾藍开的时间,所獗车?3柯蕭S旁册时间是:147叭1&⼗3⼗(秒)?⽕车过桥问题的例题讲解4【剛S】-€铁道⼯⼈以酚钟10茱的速度沿道也H路⾏⾛,⾝后⼀輛⽕车以斑册申100 ⽶的谨Sffi过他,从车头追上铁道⼯⼈5悻尾离开垄⽤时4秒.那么车长野少⽶?t^ici)so⼀Hfi击过程,把铁道⼯A看作⾙有速匿⽽没肓车⾝长〔长度是零)的⽕车很据前⾯分祚过的追及m题的基本关系式J M的车⾝检⼗序的车⾝输.站的车遠话的车速〕"?尿车头追_国车屋离开的时间逾⾥’ Hffl车⾝长车檢(也就是铁道⼯A)対0,所以车长为t <100-10 X 4*360⽕车过桥问题的例题讲解5im从北京开往⼚州的列车长珈⽾,垣秒^怖驶竝⽶从⼴州开往北京的列车长却⽶毎秒钟⾏驶30⽶,两车在途中相圖从车头相遇到车尾离开需要多少秒钟?【时】从两车车头相遇5悴尾离开时,两车⾏驶的全路程就是这两列吠车车⾝长度之和解答;施是:R的车⾝长话m车舄绘K站的车逋我的车逾-两车从车头+冃遇⾄岸尾离开的时间也可以这样想把两列⽕车的车尾看件两⽜葩物体,从相距颈⽶W列⽕车本⾝长度之和0W地相向⽽⾏,顽各⾃的德匪求相iS时间两车车弟冃遇时,两车车尾相距的距离* 3^0+230 = 630闲两车的速度和为:3J + 3O-43陈,秒)W =从车头相遇⾄悴尾商开需S的时间为JM「4A15眇]综笛1」式1 350 + 280]^ (22+2D)=1J .⽕车过桥问题的例题讲解6【轉S】農车车⾝长135⽶车速11⽶秒;快车车砒M0⽶,车SIR来砂;慢车在前⾯换瞬炯553±5<證融解是0W 「【吋】这是两辆⽕车的追及问駆根据前⾯分析过的追及间题的基本关系甕(占的车⾝长⽃⽉的车⾝K).(』丽车逮』的车遠)=从车头追Jji车尾离开的时⾵所说快车尿后⽽追上到完全超过需要(⼼⼗140” (22-10 = 3』(秒)?1、⼀列客车经过南京长江⼤桥,⼤桥长6700⽶,这列客车长1 00⽶,⽕车每分钟⾏400⽶,这列客车经过长江⼤桥需要多少分钟?2、⼀列⽕车长160⽶,全车通过440⽶的桥需要30秒钟,这列⽕车每秒⾏多少⽶?3、某列⽕车通过360⽶的第⼀个隧道⽤了24秒钟,接着通过第⼆个长216⽶的隧道⽤了16秒钟,求这列⽕车的长度?4、某列⽕车通过342⽶的隧道⽤了23秒,接着通过234⽶的隧道⽤了17秒,这列⽕车与另⼀列长88⽶,速度为每秒22⽶的列车错车⽽过,问需要⼏秒钟?5、⼀列⽕车全长265⽶,每秒⾏驶25⽶,全车要通过⼀座985⽶长的⼤桥,问需要多少秒钟?1、⼀列长50⽶的⽕车,穿过200⽶长的⼭洞⽤了25秒钟,这列⽕车每秒⾏多少⽶?2、⼀列长240⽶的⽕车以每秒30⽶的速度过⼀座桥,从车头上桥到车尾离桥⽤了1分钟,求这座桥长多少⽶?3、⼀列货车全长240⽶,每秒⾏驶15⽶,全车连续通过⼀条隧道和⼀座桥,共⽤40秒钟,桥长150⽶,问这条隧道长多少⽶?4、⼀列⽕车开过⼀座长1200⽶的⼤桥,需要75秒钟,⽕车以同样的速度开过路旁的电线杆只需15秒钟,求⽕车长多少⽶?5、在上下⾏轨道上,两列⽕车相对开来,⼀列⽕车长182⽶, 每秒⾏18⽶,另⼀列⽕车每秒⾏17⽶,两列⽕车错车⽽过⽤了10秒钟,求另⼀列⽕车长多少⽶?1、⼀列⽕车经过南京长江⼤桥,⼤桥长6700⽶,这列⽕车长140⽶, ⽕车每分钟⾏400⽶,这列⽕车通过长江⼤桥需要多少分钟?2、⼀列⽕车长200⽶,全车通过长700⽶的桥需要30秒钟,这列⽕车每秒⾏多少⽶?3、⼀列⽕车长240⽶,这列⽕车每秒⾏15⽶,从车头进⼭洞到全车出⼭洞共⽤20秒,⼭洞长多少⽶?4、⼀列⽕车,通过300⽶长的隧道,已知由车头开始进⼊洞⼝到车尾进⼊洞⼝共⽤9秒钟,⼜过了10秒钟,⽕车刚好全部通过隧道。
应用题板块-行程问题之火车过桥(小学五年级奥数题)
应用题板块-行程问题之火车过桥(小学五年级奥数题)【一、题型要领】1. 行程问题【基本概念】行程问题源自于研究物体运动,他研究的是物体运动速度、运动时间和经过路程三者之间的关系。
【基本公式】经过路程= 运动速度* 运动时间2. 火车过桥【基本概念】火车过桥是行程问题的一个经典问题,也有路程、速度和时间之间的数量关系。
他的特殊之处在于,经过路程是从车头上桥算起到车尾离桥为止的总路程,如下图所示,也就是列车车长和桥长之和。
【基本公式】列车车长+ 桥长= 火车速度* 运动时间【解题关键】列车车长不可忽略,如果只行进了桥的长度则不能算“过桥”,因此总路程需要加上列车的车长。
【举一反三】一是火车过隧道,过山洞等与火车过桥是相似的;二是由人或者车组成的队列过桥,则队伍本身的长度是不能忽略的。
【二、重点例题】例题1【题目】一列长90米的火车以30米/秒的速度匀速通过一座长1200米的桥,需要多长时间?【分析】这是最基本的火车过桥问题,需注意火车通过大桥所走的距离为桥长加上车身长度【解】(90 + 1200)÷ 30 = 43(秒)【答】火车过桥需要43秒例题2【题目】一列火车通过180米长的桥用时40秒,用同样的速度穿过300米长的隧道用时48秒,求这列火车的长度和速度。
【分析】火车过桥,可以理解为40秒的行程为桥长加上车身长;火车过隧道,可以理解为48秒的行程为隧道长加上车身长,两者相减,相当于火车8秒行驶了120米,由此可以计算出火车的速度,进而计算出火车的长度【解】火车的速度= (300 - 180) ÷ (48 - 40) = 15(米/秒)火车的长度= 15 * 40 - 180 = 420 (米)【答】火车的速度是15米/秒,车长是420米例题3【题目】某小学三、四年级学生共528人,排成四路纵队去看电影,队伍行经的速度是25米/分,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥用时16分,这座桥的长度有多少米?【分析】由人组成的队伍过桥,需要计算队伍本身的长度。
小学数学奥数火车过桥问题(含答案)
过车过桥问题基本公式:速度×时间=车长+桥长过桥时间=(桥长+列车长)÷速度;速度=(桥长+列车长)÷过桥时间;错车公式:错车时间=两辆车长之和÷两辆车车速之和基础例题:例题1:一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?分析列车过桥,就是从车头上桥到车尾离桥止。
车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。
练习:1.一列火车长240米,每秒行15米,这列火车从车头进入山洞到车尾离开山洞共用20秒,山洞长多少米?2.一列火车长200米,通过一条长430米的隧道用了42秒,这列火车通过一个站台的时候用了25秒,求这个站台有多长?3.一列火车通过长530米的桥需40秒,以同样的速度穿过某山洞需30秒。
已知这列火车全长70米,求这个山洞长多少米?例题二:1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?思考创新:1. 301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒。
列车的速度和长度各是多少?2.某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。
求火车的长度和速度。
错车类型:1.甲火车长290米,每秒行20米;乙火车车长250米,每秒行25米,两火车的车头刚好同时在长900米铁桥的两端相对开出,几秒后两车的车尾相错而过?2.甲火车长500米,每秒行20米;乙火车车长400米,每秒行25米,当两火车首相遇尾相离时,需要多少秒?巩固练习:1.已知甲车长106米,慢车长74米,辆车同向行驶,快车追上慢车时,又过了一分钟才超过慢车,如果相向而行的话,车头相接后经过12秒辆车才完全离开,求两辆列车的速度。
答案:例题1:分析列车过桥,就是从车头上桥到车尾离桥止。
最新奥数:火车过桥(答案版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度, (1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间; (2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以÷=(米).火车车长为6603220例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).⨯+⨯+⨯+⨯=(米),那么桥长为9043045649149249352304【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:-÷-=(米/秒),车身长是:173554055(846540)(5335)17⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米? 【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米? 【分析】 390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米). 法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度. 【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x-分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x+=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11ab=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟? 【分析】 8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟? 【分析】【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米? 【分析】【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米); 列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可2秒间隔距离甲乙知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米? 【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
五年级奥数试题及解析:火车过桥问题
五年级奥数试题及解析:火车过桥问题例1:火车长180米,每秒行15米,经过120米长的大桥,需要多少秒?①一列火车车长190米,每秒行10米,要通过720米的大桥,需要多少秒?②一列火车长160米,以每秒20米的速度穿过一条长400米的隧道,问火车穿过隧道需要多少秒?③一列火车经过一个路标要5秒,通过一座300米的山洞要20秒。
经过800米的大桥要多少秒?例2:小明站在铁路边,一列火车从他身边开过用了3分钟,已知火车长480米,用同样的速度通过一座大桥用了8分钟,这座大桥的长度是多少?①一列火车长800米从路边一棵大树旁通过用了1.6分钟,以同样的速度通过一座大桥,共用了5分钟,求大桥长多少米?②一列火车经过一根电线杆用了15秒,通过一座长300米的大桥用45秒,求这列火车的长度?例3:一列火车通过一条长1400米的大桥用了55秒,火车穿过2100米的隧道用了80秒,问这列火车的速度是多少?车长是多少?①一列火车以同样的速度通过第一座长600米的大桥用40秒,通过第二座长900米的大桥用了50秒,这列火车的长度?②铁路桥长1000米,一列火车从桥上通过测得火车从开始上桥到完全下桥用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度和长度?例4:有两列客车,车长分别为206米和284米,两列火车分别以每秒24米和每秒25米的速度相向而行在双轨铁路上,交会时以车头相遇到车尾相离共需多少时间?①一列慢车车长120米,车速每秒15米,一列快车车长160米,车速每秒20米,两车相向而行从车头相遇到车尾相离共需多少时间?②一列慢车车长125米,车速每秒17米,一列快车车长140米,车速每秒22米,慢车在前面行驶,快车在后面追上到完全超过需要多少秒?例5:小明有一天沿铁路边的便道步行,这时一列火车从身旁通过的时间是18秒,货车的长为270米,如果小明的速度是每秒2米,求火车的速度?①小强以每分60米的速度沿铁路边散步,一列长144米的客车从后面追上他,并超过他用了8秒,求火车的速度?②师范附小五年级1222名同学排队春游,他们排成二路纵队通过公路大桥,前后两名同学间相距1米,他们通过大桥共用去20分钟,如果队伍的前进速度是每分钟50米,求桥长是多少米?③一列客车长120米,每秒行30米,一列货车长200米,每秒行20米。
奥数:火车过桥(标准答案版)
火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;长度速度方向二、火车过桥四类问题图示长度 速度 火车 车长车速 队伍队伍长(间隔,植树问题) 队速例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?树 无 无 无 桥 桥长 无 无 人 无 人速 同向 反向 车 车长 车速同向反向【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷=⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷=⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x−1)×22或(x−3)×26,由此不难列出方程.法一:设这列火车的速度是x米/秒,依题意列方程,得(x−1)×22=(x−3)×26.解得x=14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x,那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1,这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V车−1):(V车−3)=13:11,可得V车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米 【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒). 【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒). 例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒). 【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米. 【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒 例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),快车慢车慢车快车快车慢车慢车快车两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米). 【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒). 【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题乙走2秒甲走32秒车走6秒车走30秒甲走6秒甲乙二人的间隔距离甲乙火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米). 练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米). 练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒). 练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。
小学五年级奥数 思维训练 火车过桥 火车与人的相遇和追及应用题 练习题
火车过桥问题一、过车过桥(从车头上桥到车尾下桥)火车在平路上行驶的路程,火车的路程要固定一点看(头着头、尾看尾)。
题型一:求过桥时间火车过桥:路程=桥长+车长1.一列长200米的火车通过一座长400米的大桥,车速是15米/秒,那么火车通过这座桥用了多长时间?2.一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?3.一列火车车长180米,每秒行20米。
请问:这列火车通过320米的大桥,需要多长时间?4.一列火车经过南京长江大桥,大桥长米,这列火车长米,火车每分钟行米,这列客车经过长江大桥需要多少分钟?5.一列火车长700米,以每分钟500米的速度通过一座长1300米的大桥。
从车头上桥到车尾离桥要多少分钟?6.长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?题型二求列车或桥长度(从车头上桥到车尾下桥)火车的路程=桥长十车长车长=路程-桥长车长=速度×时间一桥长1、一列火车通过一座长600米的大桥用了60秒,车速是15米/秒,那么这列火车的长度是多少米?2.一列火车长米,每秒钟行驶米,全车通过一条隧道需要秒钟,求这条隧道长多少米?3.一列火车经过一条350米的隧道用了20秒,又经过另一条420米的隧道用了22秒,这列火车有多长?4. 一列火车经过一座长130米的桥用了5秒,又经过另一座长250米的桥用了7秒,这列火车有多长?5.一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?6.一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.7.四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长多少米?题型三求车速(1)比较法解决火车行程(2)比较得出路程差与时间差;(3)计算车速,车速=路程差÷时间差;比较两段路程,路程差÷时间差=车速1.一列火车在通过一座长420米的大桥时花了60秒,通过另一座长220米的大桥时花了40秒,那么这列火车的速度是多少? 车长是多少呢?2.已知一列长200米火车,穿过一个隧道,测得火车从开始进入隧道到完全出来共用60秒,整列火车完全在隧道里面的时间为40秒,求火车的速度?3.一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?4.已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?知识点2 火车与人的相遇和追及题型一火车与人相遇(从车头遇见人到车尾离开人)火车与人从相遇到错开的时间=路程和(车长)÷速度和2.牛牛沿着铁路跑步,每秒跑2米,迎面开来一列长120米的火车,车速是18米/秒,请问从车头与她相遇到车尾离开她需要多少秒?3. 一行人沿着铁路散步,每秒走1米,迎面过来一列长600米的火车。
五年级奥数之《火车过桥问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快
五年级奥数
火车过桥问题
“火车过桥”问题是行程问题中的一种情况,火车是运动的,火车通过大桥,是指车头上桥到车尾离桥,如下图所示,假设某人站在火车头的A点处,当火车通过桥时,A点实际运动的路程就是火车运动的总路程,即车长与桥长的和。
A A
“火车过桥”的特点是动对静,有些题目由于比较物与被比较物的不同,可能不容易想出运动过程中的数量关系,同学们可利用身边的文具,如铅笔、文具盒、尺子等,根据题意进行动力操作,使问题具体化形象化,从而找出其中的数量关系。
解题中用到的基本数量关系仍然是:
速度×时间﹦路程
路程÷速度﹦时间
路程÷时间﹦速度
例1:
(1)长150米的火车以每秒18米的速度穿越一条300米的隧道,问:火车穿越隧道(进入隧道直至完全离开)要多少时间?
(2)一列火车长360米,每秒行15米,全车通过一个山洞需40秒,这个山洞长多少米?
例2:
(1)小芳站在铁路边,一列火车从她身边经过用了2分钟,已知这列火车长360米,以同样的速度通过一座大桥,用了6分钟,这座大桥长多少米?
(2)301次列车通过450米长的铁桥用了23秒,经过一位站在铁路边的扳道工人用了8秒,问:列车的速度和长度各是多少?。
小学五年级奥数火车过桥题练习题(二)
小学五年级奥数火车过桥题练习题(二)
1、火车长180米,每秒行15米,经过120米长的大桥,需要多少秒?
①一列火车车长190米,每秒行10米,要通过720米的大桥,需要多少秒?
②一列火车长160米,以每秒20米的速度穿过一条长400米的隧道,问火车穿过隧道需要多少秒?
③一列火车经过一个路标要5秒,通过一座300米的山洞要20秒。
经过800米的大桥要多少秒?
2、小明站在铁路边,一列火车从他身边开过用了3分钟,已知火车长480米,用同样的速度通过一座大桥用了8分钟,这座大桥的长度是多少?
①一列火车长800米从路边一棵大树旁通过用了1.6分钟,以同样的速度通过一座大桥,共用了5分钟,求大桥长多少米?
②一列火车经过一根电线杆用了15秒,通过一座长300米的大桥用45秒,求这列火车的长度?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数火车过桥问题练习题含答案
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
火车过桥问题(A 卷:填空题)
填空题
1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从
时间.
2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时
间是15秒,客车长105米,每小时速度为28.8千米,求步行人每小时走______千米?
,一列长144米的客车对面开
来
______米/秒.
4.
由东向西行驶,车速为每小
,甲由东
向西跑,,6秒钟后汽车离开了甲;半
分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过_____秒后,甲、乙两人相遇.
5.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要_____分钟.
6.一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行_____米.
7.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是______米/秒,全长是_____米. 隧道长200
8.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是_____秒.
9.一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是_______米.
10.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行______千米.答案
1. 火车过隧道,就是从车头进隧道到车尾离开隧道止.如图所示,火车通过隧道时所行的总距离为:隧道长+车长.
(200+200)÷10=40(秒)
答:从车头进入隧道到车尾离开共需40秒.
2. 根据题意,火车和人在同向前进,这是一个火车追人的“追及问题”.
由图示可知:
人步行15秒钟走的距离=车15秒钟走的距离-车身长.
所以,步行人速度×15=28.8×1000÷(60×60)×15-105
步行人速度=[28.8×1000÷ (60×60)-105]÷5=1(米/秒) =3.6(千米/小时)
答:步行人每小时行3.6千米.
3. 客车与人是相向行程问题,可以把人看作是有速度而无长度的火车,利用火车相遇问题:两车身长÷两车速之和=时间,可知,
两车速之和=两车身长÷时间
=(144+0)÷8
=18.
人的速度=60米/分
=1米/秒.
车的速度=18-1
=17(米/秒).
答:客车速度是每秒17米.
4. (1)先把车速换算成每秒钟行多少米?
18×1000÷3600=5(米).
(2)求甲的速度.汽车与甲同向而行,是追及问题.甲行6秒钟的距离=车行6秒钟的距离-车身长.
所以,甲速×6=5×6-15,
甲速=(5×6-15)÷6=2.5(米/每秒).
(3)求乙的速度.汽车与乙相向而行,是相向行程问题.乙行2秒的距离=车身长-车行2秒钟的距离.
乙速×2=15-5×2,
乙速=(15-5×2)÷2=2.5(米/每秒).
(4)汽车从离开甲到离开乙之间的时间是多少?
0.5×60+2=32秒.
(5)汽车离开乙时,甲、乙两人之间的距离是多少?
(5-2.5)×(0.5×60+2)=80(米).
(6)甲、乙两人相遇时间是多少?
80÷(2.5+2.5)=16(秒).
答:再过16秒钟以后,甲、乙两人相遇.
5. 从车头上桥到车尾离桥要4分钟.
6. 队伍6分钟向前进80×6=480米,队伍长1200米,6分钟前进了480米,所以联络员6分钟走的路程是:
1200-480=720(米)
720÷6=120(米/分)
答:联络员每分钟行120米.
7. 火车的速度是每秒15米,车长70米.
8. 1034÷(20-18)=517(秒)
9. 火车速度是:1200÷60=20(米/秒)
火车全长是:20×15=300(米)
10. 40×(51-1)÷2×60÷1000=60(千米/小时)
火车过桥问题(B卷:解答题)
解答题
1.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度(
得数保留整数)
2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?
3.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.
4.一条单线铁路上有A,B,C,D,E 5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?
225千25千15千230千
答案
A D
C
B E
1. 火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360÷340=)4秒.可见火车行1360米用了
(57+4=)61秒,将距离除以时间可求出火车的速度.
1360÷(57+1360÷340)=1360÷61≈22(米)
2. 火车=28.8×1000÷3600=8(米/秒)
人步行15秒的距离=车行15秒的距离-车身长.
(8×15-105)÷15=1(米/秒)
1×60×60=3600(米/小时)=3.6(千米/小时)
答:人步行每小时3.6千米.
3. 人8秒走的距离=车身长-车8秒走的距离
(144-60÷60×8)÷8=17(米/秒)
答:列车速度是每秒17米.
4. 两列火车同时从A,E 两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.
从图中可知,AE 的距离是:225+25+15+230=495(千米)
两车相遇所用的时间是:495÷(60+50)=4.5(小时)
相遇处距A 站的距离是:60×4.5=270(千米)
而A,D 两站的距离为:225+25+15=265(千米)
由于270千米>265千米,因此从A 站开出的火车应安排在D 站相遇,才能使停车等待的时间最短.
因为相遇处离D 站距离为270-265=5(千米),那么,先到达D 站的火车至少需要等待:60
11505605=÷+÷(小时)
60
11小时=11分钟 此题还有别的解法,同学们自己去想一想.。