【精选3份合集】江苏省名校2019-2020学年高考数学综合测试试题
江苏省2019-2020学年高三数学联考试题(含解析)

高三数学联考试题一、填空题:本大题共14小题,每小题5分,共计70分.把答案填写在答题卡相应位置........1.已知集合,,,则____.【答案】【解析】【分析】根据并集和补集的定义,直接计算得结果.【详解】由题意得:则本题正确结果:【点睛】本题考查集合的基本运算,属于基础题.2.已知复数(i为虚数单位),若为纯虚数,则实数a的值为__.【答案】2【解析】【分析】将化简的形式,为纯虚数要求实部为零,虚部不为零,由此可求得结果.【详解】为纯虚数本题正确结果:【点睛】本题考查复数的基本运算和纯虚数的定义,属于基础题.3.对某种电子元件使用寿命跟踪调查,抽取容量为1000的样本,其频率分布直方图如图所示.根据此图可知这批样本中寿命不低于300 h的电子元件的个数为____.【答案】800【解析】【分析】根据频率分布直方图求出的频率,利用得到不低于的概率,利用得到结果.【详解】使用寿命在的概率为:使用寿命在的概率为:使用寿命在的概率使用寿命不低于的概率使用寿命不低于的电子元件个数为:(个)本题正确结果:【点睛】本题考查利用频率分布直方图估计总体的问题,属于基础题.4.运行如图所示的流程图,若输入的,则输出的x的值为____.【答案】0【解析】【分析】按照程序框图依次运算,不满足判断框中条件时输出结果即可.【详解】由,得:,循环后:,由,得:,循环后:,由,得:,循环后:,由,得:,输出结果:本题正确结果:【点睛】本题考查程序框图中的条件结构和循环结构,属于基础题.5.将一颗质地均匀的正四面体骰子(四个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和为偶数的概率为____.【答案】【解析】【分析】所有可能的结果共种,通过两次数字之和为偶数说明两次均为奇数或者均为偶数,共种,由此得到概率为.【详解】骰子扔两次所有可能的结果有:种两次数字之和为偶数,说明两次均为奇数或均为偶数,则有:种两次数字之和为偶数的概率本题正确结果:【点睛】本题考查古典概型的应用,可通过排列组合来解决,由于此题基本事件个数较少,也可采用列举法来求解.6.已知双曲线的一个焦点到一条渐近线的距离为3a,则该双曲线的渐近线方程为____.【答案】【解析】【分析】由标准方程可得渐近线方程,利用点到直线的距离构造方程,求得的值,从而得到渐近线方程.【详解】渐近线方程为:由双曲线对称性可知,两焦点到两渐近线的距离均相等取渐近线,焦点渐近线方程为:本题正确结果:【点睛】本题考查双曲线的几何性质、点到直线距离公式,关键在于利用点到直线距离公式建立的等量关系,求解得到结果.7.已知正四棱柱中,AB=3,AA1=2,P,M分别为BD1,B1C1上的点.若,则三棱锥M PBC的体积为____.【答案】1【解析】【分析】三棱锥体积与三棱锥体积一样,为上动点,可知面积为侧面面积的一半;到面的距离等于到面的距离的,由此可根据三棱锥体积公式求得体积.【详解】由题意可知原图如下:又,即到面的距离等于到面的距离即本题正确结果:【点睛】本题考查三棱锥体积的求解,关键在于能够通过体积桥的方式将原三棱锥进行体积变换,找到易求解的底面积和高.8.已知函数是R上的奇函数,当x≥0时,f(x)=2x+m(m为常数),则的值为____.【答案】【解析】【分析】根据奇函数求得;将变成,代入,求得结果.【详解】为上的奇函数又本题正确结果:【点睛】本题考查利用函数奇偶性求解函数值的问题,属于基础题.9.已知角的终边经过点,函数图象的相邻两条对称轴之间的距离等于,则的值为____.【答案】【解析】【分析】根据对称轴之间距离求出最小正周期,从而求得;利用的终边所过点,得到、;将利用两角和差公式展开求得结果.【详解】角终边经过点,两条相邻对称轴之间距离为即本题正确结果:【点睛】本题考查利用三角函数图像特点求解解析式、三角函数定义、两角和差公式的应用,关键在于能够通过对称轴之间距离求出解析式,能够利用三角函数定义解出的正余弦值.10.如图,在平面直角坐标系中,点在以原点为圆心的圆上.已知圆O与y轴正半轴的交点为P,延长AP至点B,使得,则____.【答案】2【解析】【分析】根据点求出,从而得到直线;假设点坐标,利用可求得,由此可用坐标求解.【详解】圆半径则所在直线为:,即:设,则,解得:本题正确结果:【点睛】本题考查向量数量积的坐标运算,关键在于能够利用向量垂直求得点的坐标,从而得到所求向量的坐标,最终求得结果.11.已知函数的单调减区间为,则的值为____.【答案】e【解析】【分析】通过单调递减区间可确定,,利用韦达定理得到关于的方程,求解出结果.【详解】单调递减区间为且为方程的两根由韦达定理可知:当,即时,当,即时,,即此时,,即无解综上所述:本题正确结果:【点睛】本题考查利用单调区间求解参数值的问题,解题关键是要明确此函数单调区间的端点值恰为导函数值为零的点,通过构建方程求得结果.12.已知函数有三个不同的零点,则实数m的取值范围是____.【答案】【解析】【分析】通过时函数的单调性和值域,可判断出此时有且仅有一个零点,由此可知当时,有两个零点;通过求导运算,得到单调性,通过图像可知要想有两个零点,只需,求解得范围.【详解】当时,且在上单调递增有且仅有一个零点当时,需要有两个零点当时,当时,恒成立,即单调递增,不合题意;当时,令,解得:当时,,此时单调递增;当时,,此时单调递减,本题正确结果:【点睛】本题考查利用导数研究函数图像和零点个数的问题,关键在于能够通过导数得到图像情况,然后找到临界情况,从而列出关于的不等关系,求得范围.13.在平面直角坐标系中,已知圆O:和点M(1,0) .若在圆O上存在点A,在圆C:上存在点B,使得△MAB为等边三角形,则r的最大值为____.【答案】8【解析】【分析】通过分析图像可知:取最大值时,且在圆内部,由此可确定点的坐标,再利用方程组求解得到坐标为,由此可求得.【详解】圆由题意可知:,又且若最大,则需取最大值,且在圆内部可得,又与成角为设,则直线所在直线方程为:又解得:或(舍)时取最大值本题正确结果:【点睛】本题考查点与圆上点连线的最值、圆的最值类问题,关键在于能够通过图像分析出取得最值时点的位置,然后根据等量关系求解出坐标,进而求得结果.14.已知等差数列的前n项和S n>0,且,其中且.若(),则实数t的取值范围是____.【答案】【解析】【分析】首先根据可得恒成立,通过分析可求得;利用已知条件得到时,,根据等差数列通项公式和求和公式可化为,将右侧看做函数,即,通过的范围求得的范围,再结合变量和,分析求出的取值范围.【详解】设等差数列首项为,公差为由得:且即:对恒成立若,不恒成立,舍去若即,此时满足题意若即时,需时,,满足题意,又,所以由得:两式作商可得:,又整理可得:设,①当时,即当时,当时,此时,即,无法取得②当时,即当时,当时,综上所述:【点睛】本题考查数列的综合应用问题,在求解过程中结合了函数、不等式、恒成立等问题的求解方法和思路,整体难度较大.关键在于能够将范围的求解转化为函数值域的求解,在求解最值过程中,因为变量较多,需要不断进行变量迁移,从而能够在最值集合中找到满足题意的临界值,对学生的综合分析和应用能力要求较高.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,在三棱柱中,,.求证:(1)平面;(2)平面平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)通过,证得结论;(2)通过四边形为菱形,得到,又,可得到平面,从而证得结论.【详解】(1)在三棱柱中,又平面,平面所以平面(2)在三棱柱中,四边形为平行四边形因为,所以四边形为菱形,所以又,,平面,平面所以平面而平面所以平面平面【点睛】本题考查线面平行、面面垂直的证明,题目中的位置关系较为简单,属于基础题.16.在中,角所对的边分别为.向量,,且(1)若,求角的值;(2)求角的最大值.【答案】(1);(2).【解析】【分析】(1)利用向量平行得到,再利用正弦定理化简,可求得,从而求得;(2)方法一:利用正弦定理将边都化成角的关系,化简求得,再利用,结合基本不等式求得的最值,从而得到的最大值;方法二:利用余弦定理将角化成边的关系,再利用和基本不等式得到的最小值,从而得到的最大值.【详解】(1)因为,,且所以,即由正弦定理,得……①所以整理,得……②将代入上式得又,所以(2)方法一:由①式,因为,,所以②式两边同时除以,得又当且仅当,即时取等号又,所以的最大值为方法二:由(1)知,由余弦定理代入上式并化简得所以又当且仅当,即时取等号又,所以的最大值为【点睛】本题主要考查解三角形边角关系式的化简,以及通过边角关系式求解角的范围的问题.解决边角关系式的关键是能够通过正余弦定理将边化成角或者将角化成边,然后再进行处理.17.如图,在平面直角坐标系中,已知椭圆:的离心率为,且左焦点F1到左准线的距离为4.(1)求椭圆的方程;(2)若与原点距离为1的直线l1:与椭圆相交于A,B两点,直线l2与l1平行,且与椭圆相切于点M(O,M位于直线l1的两侧).记△MAB,△OAB的面积分别为S1,S2,若,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据椭圆的几何性质得到关系,求解得到标准方程;(2)设,根据可知,,又与原点距离为,即,可把化简为:,根据与椭圆相切,联立可得,由此代入化简可得的范围,再进一步求解出的范围.【详解】(1)因为椭圆的离心率为,所以又椭圆的左焦点到左准线的距离为所以所以,,所以椭圆的方程为(2)因为原点与直线的距离为所以,即设直线由得因为直线与椭圆相切所以整理得因为直线与直线之间的距离所以,所以又因为,所以又位于直线的两侧,所以同号,所以所以故实数的取值范围为【点睛】本题考查椭圆几何性质、直线与椭圆中的参数范围问题求解.求解参数范围问题,关键是构造出满足题意的函数关系式,然后通过函数求值域的方法,求解出函数的范围,从而可以推导出参数的范围.18.某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B 分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.(1)求水渠MN长度的最小值;(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).【答案】(1)百米;(2)平方米.【解析】【分析】(1)设,可表示出直线的方程,从而求得两点坐标,进而将表示为关于的函数,利用导数求得最值;(2)方法一:将表示为,利用将面积表示出来,利用进行换元,从而化简得:,再根据的范围求得面积最大值;方法二:利用三角形面积公式,直接用表示出,再利用换元,也可得到,从而与方法一采用相同的求最大值方法求值. 【详解】【解】(1)以圆心为原点,建立平面直角坐标系,则圆的方程为设点,直线的方程为,令,得直线的方程为,令,得所以令,即,则令,得当时,,则单调递减;当时,,则单调递增;所以当时,所以水渠长度的最小值为百米(2)由(1)可知,,,且则设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米另法:(2)因为,所以由所以设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米【点睛】本题考查函数导数的实际应用问题,属于中档题.解题关键在于能够将所求量表示为某一变量的函数关系,然后利用函数最值的求解方式求得对应的结果.19.已知数列的各项均不为0,其前n项和为.若,,,.(1)求的值;(2)求数列的通项公式;(3)若数列满足,,求证:数列是等差数列.【答案】(1)81;(2);(3)详见解析.【解析】【分析】(1)将代入,可求得;(2)由可求得,进而,两式作差可得,进而推得,可得数列及数列均为等差数列,进而求得通项;(3)由与关系可得:,即,两式作差可得:,进而推得,即,则证明结束.【详解】(1)时,由得解得 (2)时,由,得则 因为,所以……① 所以……②②①得所以,两式相减得即数列及数列都成公差为的等差数列由,得,可求得 所以数列的通项公式为(3)由,,得所以因为,所以所以两式相减得,即所以两式相减得所以因为,可得所以所以数列是等差数列【点睛】本题考查由数列递推关系式求解通项公式以及证明类问题.关键在于能够适当代入和,从而得到数列前后项之间的关系,灵活运用递推关系式.证明数列为等差数列问题,基本思路为说明或,符合定义式即可证得结论.20.已知函数,,其中且,.(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;(2)当m>0,k = 0时,求证:函数有两个不同的零点;(3)若,记函数,若,使,求k的取值范围.【答案】(1)0;(2)详见解析;(3)或.【解析】【分析】(1)分别求得与的极值点,利用极值点相同构造方程,求得;(2)首先求得在上单调递减,在上单调递增;再通过零点存在定理,分别在两段区间找到零点所在大致区间,根据单调性可知仅有这两个不同零点;(3)根据已知关系,将问题变为:,又,则可分别在,,三个范围内去求解最值,从而求解出的范围.【详解】(1)因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,所以函数的极值点为因为函数与有相同的极值点,所以所以(2)由题意,所以因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,又在上连续且单调所以在上有唯一零点取满足且则因为且,所以所以,又在上连续且单调所以在上有唯一零点综上,函数有两个不同的零点(3)时,由,使,则有由于①当时,,在上单调递减所以即,得②当时,,在上单调递增所以即,得③当时,在上,,在上单调递减;在上,,在上单调递增;所以即(*)易知在上单调递减故,而,所以不等式(*)无解综上,实数的取值范围为或【点睛】本题考查导数在研究函数中的综合应用问题,包括了单调性的求解、极值和极值点、最值问题,综合性较强.证明零点个数问题重点在于能够通过单调性将零点个数的最大值确定,进而再通过零点存在定理来确定零点个数;而能够将存在性问题转化为恒成立问题,通过最值来求解参数范围,也是解决此题的关键.数学Ⅱ(附加题)第21、22、23题,每小题10分,共计30分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.21.已知二阶矩阵有特征值,其对应的一个特征向量为,并且矩阵对应的变换将点(1,2)变换成点(8,4),求矩阵.【答案】【解析】【分析】设二阶矩阵为,根据特征值、特征向量可列出关于的方程组,求解即可得到结果.【详解】设所求二阶矩阵因为有特征值,其对应的一个特征向量为所以,且所以,解得所以【点睛】本题考查二阶矩阵以及特征值与特征向量的计算问题,属于基础题.22.如图,四棱锥P ABCD中,底面四边形ABCD为矩形,PA⊥底面ABCD,,F为BC的中点,.(1)若,求异面直线PD与EF所成角的余弦值;(2)若,求二面角E AF C的余弦值.【答案】(1);(2).【解析】【分析】(1)根据求得点坐标,从而表示出,通过夹角公式求得结果;(2)通过求得得点坐标,再进一步求出平面法向量,又面的一个法向量为,求出即可求得所求余弦值.【详解】以为原点,为正交基底建立如图所示的空间直角坐标系则,,,,,(1)当时,由得所以,又所以所以异面直线与所成角的余弦值为(2)当时,由,得设平面的一个法向量为,又,则,得又平面的一个法向量为所以所以二面角的余弦值为【点睛】本题考查利用空间向量法求解异面直线所成角和二面角的问题,关键在于能够准确地建立坐标系,并用坐标表示点、求解法向量;需要注意的问题是:平面法向量有无数条,方向不同会造成的符号不同,要判断好所求二面角与法向量夹角是等角关系还是补角关系,从而准确求得结果. 23.设整数数列{a n }共有2n ()项,满足,,且().(1)当时,写出满足条件的数列的个数;(2)当时,求满足条件的数列的个数.【答案】(1)8;(2).【解析】 【分析】(1)当确定时,可确定,再逆推可知有种取法;再依据可知各有种取法;由于与有关,当确定时,必然随之确定,故根据分步乘法计数原理,可得数列个数为;(2)设,且,可推得:;又,可推得:;用表示中值为的项数可知的取法数为,再任意指定的值,有种,可知数列有个;再化简,可得最终结果. 【详解】(1)时,,且则确定时,有唯一确定解又,可知有种取法若,则,则有种取法此时,也有种取法又,当确定时,随之确定故所有满足条件的数列共有:个满足条件的所有的数列的个数为(2)设,则由得①由得,则:即②用表示中值为的项数由②可知也是中值为的项数,其中所以的取法数为确定后,任意指定的值,有种由①式可知,应取,使得为偶数这样的的取法是唯一的,且确定了的值从而数列唯一地对应着一个满足条件的所以满足条件的数列共有个下面化简设两展开式右边乘积中的常数项恰好为因为,又中的系数为所以所以满足条件的数列共有个【点睛】本题考查新定义、排列组合、二项式定理问题,对学生分析解决问题能力要求较高;如何正确理解定义,同时找到定义式的切入点是解决问题的关键;题目对于排列组合、二项式定理知识的应用能力要求比较高,难度较大.。
【数学】2019年江苏卷数学高考试题及答案

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线+y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中>0.若在区间(0,9]上,关于的方程()()f x g x =有8个不同的实数根,则的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,bcos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系Oy 中,椭圆C 22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作轴的垂线l ,在轴的上方,l 与圆F 2222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f ()的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f ()和()f 'x 的零点均在集合{3,1,3}-中,求f ()的极小值;(3)若0,01,1a b c =<=…,且f ()的极大值为M ,求证M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数,当≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.y =8.16 9.10 10.411.(e, 1)13.1014.1,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC -A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥轴,所以点A 的横坐标为1. 将=1代入圆F 2的方程(-1) 2+y 2=16,解得y =±4. 因为点A 在轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥轴,所以EF 1⊥轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b =,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c ≤b ≤c +1,所以1k k q k q -≤≤,其中=1,2,3,…,m .当=1时,有q ≥1; 当=2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f ()=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得=e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q ==1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系Oy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N L令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量表示它们之间的距离. (1)当n =1时,求的概率分布;(2)对给定的正整数n (n ≥3),求概率P (≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当<0时,原不等式可化为122x x -+->,解得<-13; 当0≤≤12时,原不等式可化为+1–2>2,即<–1,无解; 当>12时,原不等式可化为+2–1>2,解得>1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥L ,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB ≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
江苏省苏州市2019-2020学年高考第四次大联考数学试卷含解析

江苏省苏州市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数321()(0)3f x ax x a =+>.若存在实数0(1,0)x∈-,且012x ≠-,使得01()()2f x f =-,则实数a 的取值范围为( ) A .2(,5)3B .2(,3)(3,5)3⋃ C .18(,6)7D .18(,4)(4,6)7⋃ 【答案】D 【解析】 【分析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果. 【详解】()22f x ax x '=+,令()0f x '=,得10x =,22x a=-.其单调性及极值情况如下:x2,a ⎛⎫-∞- ⎪⎝⎭ 2a - 2,0a ⎛⎫- ⎪⎝⎭0 ()0,∞+()f x ' +_0 +()f xZ极大值]极小值Z若存在0111,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭,使得()012f x f ⎛⎫=- ⎪⎝⎭, 则()21221112a a f f ⎧-<-⎪⎪⎪->-⎨⎪⎪⎛⎫-<-⎪ ⎪⎝⎭⎩(如图1)或3122a a -<-<-(如图2).(图1)(图2) 于是可得()18,44,67a ⎛⎫∈⋃ ⎪⎝⎭, 故选:D. 【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目. 2.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( ) A .2019πB .22019π C .42019πD .4038π【答案】B 【解析】 【分析】根据三角函数的两角和差公式得到()f x =2sin(2019)4x π+,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果. 【详解】 函数()sin 2019cos 201944f x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭)2sin 2019cos 2019cos 2019sin 20192x x x x +++)2sin 2019cos 20192sin(2019)4x x x π=+=+则函数的最大值为2,2M m n m n ⋅-=-存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则区间(m,n)长度要大于等于半个周期,即min 2220192019m n m n ππ-≥∴-=故答案为:B. 【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.3.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324 B .522C .535D .578【答案】D 【解析】 【分析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,L ,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,L ,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.4.P 是正四面体ABCD 的面ABC 内一动点,E 为棱AD 中点,记DP 与平面BCE 成角为定值θ,若点P 的轨迹为一段抛物线,则tan θ=( ) A 2 B .22C .24D .2【答案】B 【解析】 【分析】设正四面体的棱长为2,建立空间直角坐标系,求出各点的坐标,求出面BCE 的法向量,设P 的坐标,求出向量DP u u u r,求出线面所成角的正弦值,再由角θ的范围0,2π⎡⎤⎢⎥⎣⎦,结合θ为定值,得出sin θ为定值,且P 的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值. 【详解】由题意设四面体ABCD 的棱长为2,设O 为BC 的中点,以O 为坐标原点,以OA 为x 轴,以OB 为y 轴,过O 垂直于面ABC 的直线为z 轴,建立如图所示的空间直角坐标系O xyz -,则可得1OB OC ==,323OA ==OA 的三等分点G 、F 如图, 则133OG OA ==2233AG OF OA ===2226DG AD AG =-=,162EF DG ==,所以()0,1,0B 、()0,1,0C -、()3,0,0A、32633D ⎛ ⎝⎭、236,0,33E ⎛⎫⎪ ⎪⎝⎭, 由题意设(),,0P x y ,326,33DP x y ⎛=-- ⎝⎭u u u r , QV ABD 和ACD V 都是等边三角形,E 为AD 的中点,BE AD ∴⊥,CE AD ⊥,BE CE E =Q I ,AD ∴⊥平面BCE ,2326AD ⎛∴= ⎝⎭u u u r 为平面BCE 的一个法向量, 因为DP 与平面BCE 所成角为定值θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由题意可得222223326333sin cos ,326233x AD DP AD DP AD DPx y θ⎛⎫⎛⎫-⨯-- ⎪ ⎪⋅⎝⎭⎝⎭=<>==⋅⎛⎫⎛⎫⨯-++- ⎪ ⎪⎝⎭⎝⎭u u u r u u u ru u u r u u u ru u u r u u u r ()()222222223323333239332393138x x x x x y x x y x x y ++++===+-++-+-++ 因为P 的轨迹为一段抛物线且tan θ为定值,则sin θ也为定值,22223339323x x x y x ==-,可得233y x =,此时3sin 3θ=,则6cos 3θ=,sin 2tan cos 2θθθ==. 故选:B. 【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题. 5.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( ) A .43i + B .43i -C .43i -+D .43i --【答案】A 【解析】 【分析】利用复数的乘法、除法运算求出z ,再根据共轭复数的概念即可求解. 【详解】由34zi i =+,则3434431i i z i i +-===--, 所以z =43i +. 故选:A 【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.6.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A .2728倍 B .4735倍 C .4835倍 D .75倍 【答案】B 【解析】 【分析】设贫困户总数为a ,利用表中数据可得脱贫率000000002409521090P =⨯⨯+⨯⨯,进而可求解. 【详解】设贫困户总数为a ,脱贫率0000000000240952109094a aP a⨯⨯+⨯⨯==,所以000094477035=.故2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的4735倍. 故选:B 【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题. 7.已知向量a r ,b r ,b r =(1),且a r 在b r方向上的投影为12,则a b ⋅r r 等于( ) A .2 B .1C .12D .0【答案】B 【解析】 【分析】先求出b r ,再利用投影公式a bb⋅r rr 求解即可.【详解】解:由已知得2b ==r,由a r 在b r 方向上的投影为12,得12a b b ⋅=r r r ,则112a b b ⋅==r r r.故答案为:B. 【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的取值范围是( )A .[]5,3-B .[]2,3C .[)2,+∞D .(],3-∞【答案】C 【解析】 【分析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中z 的取值范围. 【详解】由题知x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,可行域如下图所示,可知目标函数在点()2,0A 处取得最小值, 故目标函数的最小值为2z x y =+=, 故z x y =+的取值范围是[)2,+∞. 故选:D. 【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题. 9.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R⌝∀∈都有210x ->,是错误的; (2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确; (4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为12F F 、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2 B. C.⎤⎦D .[]1,4【答案】D 【解析】 【分析】先求出椭圆方程,再利用椭圆的定义得到124PF PF +=,利用二次函数的性质可求1214PF PF ≤≤,从而可得1211PF PF +的取值范围. 【详解】由题设有1,b c ==2a =,故椭圆22:14x C y +=,因为点P 为C 上的任意一点,故124PF PF +=.又()12121212111144=4PF PF PF PF PF PF PF PF PF PF ++==-,因为122PF ≤≤,故()11144PF PF ≤-≤,所以121114PF PF ≤+≤. 故选:D. 【点睛】本题考查椭圆的几何性质,一般地,如果椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是12F F 、,点P 为C 上的任意一点,则有122PF PF a +=,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.11.若集合{}A=|2x x x R ≤∈,,{}2B=|y y x x R =-∈,,则A B ⋂=( ) A .{}|02x x ≤≤ B .{}2|x x ≤ C .{}2|0x x -≤≤ D .∅【答案】C 【解析】试题分析:化简集合故选C .考点:集合的运算.12.直三棱柱111ABC A B C -中,12CA CC CB ==,AC BC ⊥,则直线1BC 与1AB 所成的角的余弦值为( ) A 5B .5C 25D .35【答案】A 【解析】 【分析】设122CA CC CB ===,延长11A B 至D ,使得111A B B D =,连1,BD C D ,可证1//AB BD ,得到1C BD ∠(或补角)为所求的角,分别求出111,,BC AB C D ,解1C BD V 即可. 【详解】设122CA CC CB ===,延长11A B 至D ,使得111A B B D =,连1,BD C D ,在直三棱柱111ABC A B C -中,1111//,AB A B AB A B =,11//,AB B D AB B D ∴=,四边形1ABDB 为平行四边形,1//AB BD ∴,1C BD ∴∠(或补角)为直线1BC 与1AB 所成的角,在1Rt BCC △中,22115BC CC BC =+=, 在111Rt A B C △中,2211111111125,cos 5A B AC B C B AC =+=∠=, 在11AC D V 中,22211111111112cos 420168C D A C A D A C A D B A C =+-⋅∠=+-=,在11Rt AA B △中,22111113,3AB AA A B BD AB =+=∴==,在1BC D V 中,22211115985cos 2565BC BD C D C BD BC BD +-+-∠===⋅. 故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
2019年高考江苏卷数学高考试题及答案解析(word打印版)

2019年高考江苏卷数学高考试题及答案解析(word打印版)2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:1.本试卷共4页,共20题,均为非选择题。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.请在答题前认真阅读本注意事项及各题答题要求,并将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,请用2B铅笔绘、写清楚,线条、符号等请加黑、加粗。
参考公式:1.样本数据x1,x2,…,xn的方差s=∑(xi-x)²,其中x=∑xi/n。
2.柱体的体积V=Sh,其中S是柱体的底面积,h是柱体的高。
3.锥体的体积V=1/3Sh,其中S是锥体的底面积,h是锥体的高。
一、填空题:本大题共14小题,每小题5分,共计70分。
请将答案填写在答题卡相应位置上。
1.已知集合A={-1,0,1,6},B={x|x>0,x∈R},则AB= {1,6}。
2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是-2.3.下图是一个算法流程图,则输出的S的值是10.4.函数y=7+6x-x²的定义域是(-∞。
+∞)。
5.已知一组数据6,7,8,8,9,10,则该组数据的方差是2.5.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是0.6.7.在平面直角坐标系xOy中,若双曲线x²/4-y²/9=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=3x/2-5/2.8.已知数列{an}(n∈N)是等差数列,Sn是其前n项和。
若a2+a5+a8=0,S9=27,则S8的值是12.9.如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是80.10.在平面直角坐标系xOy中,P是曲线y=x+1/x的图像上的点,且x>0,则P的最小值是2.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是多少?解析:设点A的横坐标为a,则其纵坐标为lna。
江苏省苏州市2019-2020学年高考数学联考试题

2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,矩形ABCD中,1AB=,2BC=,E是AD的中点,将ABE△沿BE折起至A BE',记二面角A BE D'--的平面角为α,直线A E'与平面BCDE所成的角为β,A E'与BC所成的角为γ,有如下两个命题:①对满足题意的任意的A'的位置,αβπ+≤;②对满足题意的任意的A'的位置,αγπ+≤,则( )A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立2.著名的斐波那契数列{}n a:1,1,2,3,5,8,…,满足121a a==,21n n na a a++=+,*Nn∈,若2020211nnka a-==∑,则k=( )A.2020 B.4038 C.4039 D.40403.已知函数f(x)=223,1ln,1x x xx x⎧--+≤⎨>⎩,若关于x的方程f(x)=kx-12恰有4个不相等的实数根,则实数k 的取值范围是()A.1e2⎛⎝B .12e⎡⎢⎣C .1,2ee⎛⎝⎦D .12ee⎛⎝⎭4.下列函数中,值域为R且为奇函数的是()A.2y x=+B.y sinx=C.3y x x=-D.2xy=5.已知平面向量a,b,c满足:0,1a b c⋅==,5a cb c-=-=,则a b-的最小值为( ) A.5 B.6 C.7 D.86.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r,大圆柱底面半径为2r,如图1放置容器时,液面以上空余部分的高为1h,如图2放置容器时,液面以上空余部分的高为2h,则12hh=()A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D 21r r 7.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦8.函数()sin()f x x π=-223的图象为C ,以下结论中正确的是( )①图象C 关于直线512x π=对称; ②图象C 关于点(,0)3π-对称;③由y =2sin2x 的图象向右平移3π个单位长度可以得到图象C. A .①B .①②C .②③D .①②③9.已知点P 在椭圆τ:2222x y a b+=1(a>b>0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设34PD PQ =,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e=( ) A .12B 2C 3D 310.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10°C 的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势11.如图所示,已知某几何体的三视图及其尺寸(单位:cm ),则该几何体的表面积为( )A .15π2cmB .21π2cmC .24π2cmD .33π2cm12.已知复数552iz i i=+-,则||z =( ) A .5B .52C .32D .25二、填空题:本题共4小题,每小题5分,共20分。
2019年全国高考试题数学江苏卷附答案详解

2019年全国高考试题数学江苏卷I 卷一、填空题1.已知集合{1,0,1,6}A =-,{|0,}B x x x R =>∈,则A B = .答案:{1,6}2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 答案:23.右图是一个算法流程图,则输出的S 的值是 . 答案:54.函数y =的定义域是 . 答案:{1,7}-5.已知一组数据6,7,8,9,10,则该组数据的方差是 . 答案:536.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 答案:7107.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .答案:y = 解析:由题知0,11692>=-b b,所以2=b,所以渐近线方程为y = 8.已知*{|()}n a n N ∈是等差数列,n S 是其前n 项和,若2340a a a +=,427S =,则n S 的值是 . 答案:169.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 . 答案:10解析:因为121212131313111=⨯⨯===∆∆-C C EC S S C C S ECS VV ABCD BCD ABCD BCD BCDE10120121121=⨯==-V V BCD E10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线0x y +=的距离的最小值是 .答案:4解析:由题设)4,(xx x P +,0>x 所以424222422|4|=⋅≥+=++=x x x x x x x d11.在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(,1)e --(e 为自然对数的底数),则点A 的坐标是 . 答案:(,1)e12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O ,若6AB AC AO EC ⋅=⋅,则ABAC的值是 .13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 .答案:10解析: 法一32tan 1)tan 1(tan )4tan(tan -=+-=+αααπαα,解得2tan =α或31-ααααααααπα2222cos sin sin cos cos sin 22)2cos 2(sin 22)42sin(+-+=+=+102tan 1tan 1tan 2222=+-+=ααα 法二 令y x =+=4,παα,则y tan 2tan 3-=α,22)sin(=-x y 则,cos sin 2cos sin 3x y y x -=22sin cos cos sin =-x y x y解得1023sin cos ,52cos sin =-=y x y x 则102sin cos cos sin )42sin(=+=+y x y x πα 14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数,当(0,2]x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >,若在区间(0,9]上,关于x 的方程()()f x g x =有8不同的实数根,则k 的取值范围是 .答案:1[3解析:当]2,0(∈x 时,2)1(1)(--==x x f y 等价于)0(1)1(22≥=+-y y x又)(x f 是周期为4的奇函数,可作出)(x f 在(0.9]上的图象 因为当]2,1(∈x 时,21)(-=x g 且)(x g 的周期为2由图可知:当]8,7(]6,5(]4,3(]2,1(⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有2个交点 由已知, )(x f 与)(x g 的图象在区间(0,9]上有8个交点所以当]9,8(]7,6(]5,4(]3,2(]1,0(⋃⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 又当]1,0(∈x 时,)2()(+==x k x g y 表示的直线恒过定点)0,2(-A ,且斜率0>k又)(x g 的周期为2及)(x f 的图象可知:当]7,6(]3,2((⋃∈x 时, )(x f 与)(x g 的图象无交点 所以当]9,8(]5,4(]1,0(⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 由)(x f 与)(x g 的周期性可知]1,0(∈x 时, )(x f 与)(x g 的图象有2个交点如图,当线段)10)(2(≤<+=x x k y 与圆弧)10,0(1)1(22≤<≥=+-x y y x 相切时8111|3|22=⇒=+=k k k d 又0>k .所以42=k (此时恰有1个交点) 当线段)10)(2(≤<+=x x k y 过点B(1、1)时,31==AB k k (此时恰有2个交点) 结合图形分析可知:k 的取值范围是)42,31[ 二、解答题15.在ABC D 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =2cos 3B =,求c 的值; (2)若sin cos 2A B a b =,求sin()2B p+的值. 解答:(1)22222222cos 292363b ac ac B c c c c c c=+-?+-创??(2)sin cos cos sin 22A B BB a b ===,sin()cos 2B B p +==16.如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =.求证:(1)11//A B 平面1DEC ; (2)1BE C E ^. 解答:(1)证明:“直三棱柱111ABC A B C -,∴四边形11ABB A 是平行四边形,∴11//A B AB又∵D 、E 分别是BC 、AC 的中点,//DE AB ,∴11//A B DE , 又DE Ì平面1DEC ,111A B DEC Ë, ∴11//A B 平面DEC .(2)证明:∵直三棱柱111ABC A B C -,.∴1AA ^平面ABC ,又∵BE Ì平面ABC ,∴1AA BE ^,又∵AB BC =,E 是AC 的中点,∴AC BE ^,∵1AC AA A =I ,AC Ì平面11ACC A ,1AA Ì平面11ACC A , ∴BE ^平面11ACC A ,又1EC Ì平面11ACC A ,∴1BE C E ^.17.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,l 与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结AG ,并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.解:(1)设椭圆C 的焦距为2c因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=25,AF 2⊥x 轴,所以23221212=-=F F DF DF 因此2a=DF 1+DF 2=4,从而a=2;由b 2=a 2-c 2,得b 2=3因此,椭圆C 的标准方程为13422=+y x (2)解法一 由(1)知,椭圆13422=+y x ,a=2 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4因为点A 在x 轴上方,所以A(1,4);又F 1(-1,0),所以直线AF 1:y=2x+2由⎩⎨⎧=+-+=16)1(2222y x x y 得5x 2+6x-11=0,解得x=1或511-=x 将511-=x 代入22+=x y ,得 512-=y ,因此)512,511(--B 又F 2(1,0),所以直线BF 2:)1(43--=x y由()⎪⎪⎩⎪⎪⎨⎧=+-=13414322y x x y ,得013672=--x x ,解得1-=x 或713=x ,又因为E 是线段2BF 与椭圆的交点,所以1-=x ,将1-=x 代入)1(43-=x y ,得23-=y ,因此,⎪⎭⎫ ⎝⎛--23,1E解法二 由(1)知,椭圆13422=+y x ,如图,连接1EF 因为a BF 22=,a EF EF 221=+ ,所以EB EF =1,从而.1B E BF ∠=∠因为B F A F 22=,所以B A ∠=∠,所以E BF A 1∠=∠,从而A F EF 21// , 因为x AF ⊥2轴,所以x EF ⊥1轴;因为()0,11-F ,由⎪⎩⎪⎨⎧=+-=134122y x x ,得23±=y ,又因为E 是线段2BF 与椭圆的交点,所以.23-=y 因此得又因为E 是线段BF2与椭圆的交点,所以3因此E(-1,-),由⎪⎭⎫ ⎝⎛--23,1E 18.如图、一个湖的边界是圆心为O 的绩、湖的一侧有一条直线型公路l 、湖上有桥AB (AB 是湖O 的直径)、规划在公路l 上选两个点P 、Q 、并修建两段直线的道路PB 、QA 、规划要求:线段PB 、QA 上的所有点O 的距离不小于圆O 的半径,已知点A ,8到直线l 的距离分为AC 和BD (C ,D 为垂足)(单位:百米)(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明雅由: (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点简的距离. 解答:解法一 (1)过A 作AE⊥B D,垂足为E.由已知条件得,四边形ACDE 为矩形,DE=BE=AC=6,AE=CD=8 因为PB⊥AB,所以os∠PBD=sin∠ABE=54108==,所以15cos =∠=PBDBD PB 因此道路PB 的长为15(百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B.E)到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求若Q 在D 处,连结AD,由(1)知1022=+=ED AE AD ,从而0257AB 2AD cos 222>=⋅-+=∠ BD AB AD BAD所以∠BAD 为锐角所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F,OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求 设1P 为l 上一点,且P 1B⊥AB由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 解法二 (1)如图,过O 作OH⊥l ,垂足为H以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系因为BD=12,AC=6,所以OH=9,直线l 的方程为9=y ,点A.B 的纵坐标分别为3,-3 因为AB 为圆O 的直径,AB=10.所以圆O 的方程为25y x 22=+ 从而A(4,3),B(-4,-3),直线AB 的斜率为43 因为PB⊥AB,所以直线PB 的斜率为34-直线PB 的方程为32534--=x y所以P(-13,9),153)(94)(-1322=+++=PB因此道路PB 的长为15(百米)(2)①若P 在D 处,取线段BD 点一点)0,4(-E ,则EO=4<5,故P 选在D 处不满足规划要求 ②若Q 在D 处,连结AD,由(1)知D(-4,9) A(4,3),所以线段AD:)44(643≤≤-+-=x x y 在线段AD 上取点)415,3(M ,因为543)415(32322=+<+=OM所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F 、OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求设1P 为l 上一点,且P 1B⊥AB ,由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 19.设函数))()(()(c x b x a x x f ---=,)('x f 为()f x 的导函数. (1)若a b c ==,(4)8f =,求a 的值;(2)若a b ¹,b c =,且()f x 和()f x ¢的零点均在集合{3,1,3}-中,求()f x 的极小值; (3)若0a =,01b <?,1c =,且()f x 的极大值为M ,求证:427M <. 解答:(1)易知3()()f x x a =-,由8)4(=f 解得4=a . (2)易知2()()()f x x a x b =--, )32)((3)('ba xb x x f +--= 令0)('=x f 得32,ba xb x +== 由}3,1,3{32,,-∈+b a b a 易知213a b+=,则3a =,3b =-, 则2()(3)(3)f x x x =-+,=)('x f 3(3)(1)f x x x ¢=+-,0)('=x f 得1,3-=x所以()f x 的极小值为(1)32f =-(3)可知()(1)()f x x x x b =--,b x b x x f ++-=)1(23)('2因为10≤<b ,所以03)12(2>+-=∆b所以)('x f 有两个不同的零点,设为)(,,2121x x x x <311,3112221+-++=+--+=b b b x b b b x所以)(x f 的极大值)(1x f M = 法一:121311)1()(bx x b x x f M ++-==9)1(9)1(2)913)()1(23(121121+++-+-++-=-b b x b b b x b x b x322)1(2729)1(27)1)(1(2++++++-=--b b b b b b b322)1(27227)1()1(227)1(+++-++=-b b b b b b27427227)1(≤++≤b b 法二:因为10≤<b ,所以)1,0(1∈x当)1,0(1∈x 时,2)1()1)(()(-≤--=x x x b x x x f 令2)1()(-=x x x g ,)1,0(1∈x ,)1)(31(3)('--=x x x g 由0)('=x g 得31=x所以31=x 时,)(x g 的极大值即最大值274)31()(max ==g x g所以)1,0(∈x 时,274)()(≤≤x g x f ,因此274≤M 法三:①当1b =时,2()(1)f x x x =-, =)('(31)(1)f x x x ¢=--,此时易知14()327M f ==,成立; ②当01b <<时;32()(1)f x x b x bx =-++,=)('x f 2()32(1)f x x b x b ¢=-++,由于(0)0f b ->,031)31('<-=b f ,01)1('>-=b f (1)10f b ¢=->, 则存在121013x x <<<<,0)(')('21==x f x f ,且易知1()M f x =, 由=)('x f 221111132()32(1)021x x f x x b x b x -¢=-++=?-, 则223232111121111111113232()(1)(1)2121x x x x M f x x b x bx x x x x x --==-++=-++--22111(1)12x x x -=-, 令1112(,1)3t x =-?,则22422111(1)12111(2)121616x x t t t t x t t--+==-+-.令211()(2)16g t t t t =-+,1(,1)3t Î,)('t g 2221(31)(1)()(0)16t t g t t --¢=<, 则14()()327g t f <=,则427M <; 综上可知427M <成立,证毕. 20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N Î满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M 一数列”;(2)已知数列*{}()n b a N Î满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式:②设m 为正整数,若存在“M -数列”*{}()n c n N Î、对任意正整数k 、当k m £时,都有1k kk c b c +#成立,求m 的最大值.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力解:(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24n n n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-. 23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤因为当3n ≥n ≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
2019年江苏省高考数学试卷及解析(20200802201550).pdf

2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.19.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若?=6?,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字2说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cosB=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.318.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零6点均在集合{﹣3,1,3}中,求f(x)的极小值;4(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;5(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},?n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪?n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).62019年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B={1,6}.【考点】1E:交集及其运算.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【点评】本题考查交集及其运算,是基础题.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是2.【考点】A5:复数的运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.73.(5分)如图是一个算法流程图,则输出的S的值是5.【考点】EF:程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.84.(5分)函数y=的定义域是[﹣1,7].【考点】33:函数的定义域及其求法.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.【考点】BC:极差、方差与标准差.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.96.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.【考点】CB:古典概型及其概率计算公式.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=.【考点】KB:双曲线的标准方程.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.10【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.【考点】85:等差数列的前n项和.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是10.11【考点】LF:棱柱、棱锥、棱台的体积.【分析】推导出=AB×BC×DD1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.12【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是4.【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是(e,1).【考点】6H:利用导数研究曲线上某点切线方程.13【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若?=6?,则的值是.【考点】9O:平面向量数量积的性质及其运算.【分析】首先算出=,然后用、表示出、,结合?=6?得=,进一步可得结果.14实用文档用心整理【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6?=6×()×(﹣+)=(++)=++,∵?=++,∴=,∴=3,∴=.故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.1513.(5分)已知=﹣,则sin(2α+)的值是.【考点】GF:三角函数的恒等变换及化简求值.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.1614.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是[,).【考点】5B:分段函数的应用.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),17∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cosB=,求c的值;(2)若=,求sin(B+)的值.【考点】GF:三角函数的恒等变换及化简求值;HR:余弦定理.【分析】(1)由余弦定理得:cosB===,由此能求出c的值.(2)由=,利用正弦定理得2sinB=cosB,再由sin2B+cos2B=1,能求出sinB =,cosB=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.18a=3c,b=,cosB=,∴由余弦定理得:cosB===,解得c=.(2)∵=,∴由正弦定理得:,∴2sinB=cos B,∵sin2B+cos2B=1,∴sinB=,cosB=,∴sin(B+)=cosB=.【点评】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.19【考点】L2:棱柱的结构特征;LS:直线与平面平行.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE?平面DEC1,A1B1?平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E?平面ACC1A1,∴BE⊥C1E.20【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C 于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.【考点】K4:椭圆的性质.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.(2)由(1)知,D(1,),F1(﹣1,0),21∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明DF1∥BF2是解答该题的关键,是中档题.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;22(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【考点】JE:直线和圆的方程的应用.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,23则k BP?k AB=﹣1,即?=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA?k AB=﹣1,即?=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【点评】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为﹣1,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.24(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.【考点】6D:利用导数研究函数的极值.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x =.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.25f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣?A,舍去.a=1,b=﹣3,则==﹣?A,舍去.a=﹣3,b=3,则==﹣1?A,舍去..a=3,b=1,则==?A,舍去.a=1,b=3,则=?A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.26△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2]==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.2720.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【考点】8K:数列与不等式的综合.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,28∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,29存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,?'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,30化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【点评】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.【考点】O1:二阶矩阵;OV:特征值与特征向量的计算.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=31∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【点评】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.【考点】Q6:极坐标刻画点的位置.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得32实用文档用心整理33AB 2=OA 2+OB 2﹣2OA,∴AB ==;(2)由直线1的方程ρsin (θ+)=3,知直线l 过(3,),倾斜角为,又B (,),∴点B 到直线l 的距离为.【点评】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题.C.[选修4-5:不等式选讲](本小题满分0分)23.设x ∈R ,解不等式|x|+|2x ﹣1|>2.【考点】R5:绝对值不等式的解法.【分析】对|x|+|2x ﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x ﹣1|=,∵|x|+|2x ﹣1|>2,∴或或,∴x>1或x∈?或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【点评】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.【考点】DA:二项式定理.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2??,解得n=5;34(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5?(1﹣)5=(1﹣3)5=﹣32.【点评】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},?n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n∪?n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).【考点】CB:古典概型及其概率计算公式.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结35合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,36且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【点评】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.37。
(精校版)2019年江苏卷数学高考试题文档版(含答案)_最新修正版

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.2y x =±8.16 9.10 10.4 11.(e, 1) 12.313.21014.12,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC -A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分. 解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分. 解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径. 综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =,当k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A(1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(13)3na b +=+,其中*,a b ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=+0122334455555555C C 3C (3)C (3)C (3)C (3)=+++++ 3a b =+.解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)-=+-+-+-+-+- 0122334455555555C C C (3)C (3)C (3)(3C 3)=-+-+-.因为*,a b ∈N ,所以5(13)3a b -=-.因此225553(3)(3)(13)(13)(2)32a b a b a b -=+-=+⨯-=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X 的所有可能取值是1225,,,.X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则22()44AB a c n =-+≤+,因为当3n ≥时,2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 的所有可能取值是21n +和24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.。
2019年江苏卷数学高考试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数276y x x =+-的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.【答案】{1,6}.【解析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.本题主要考查交集的运算,属于基础题. 2.【答案】2【解析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值. 【详解】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++,令20a -=得2a =.本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力. 3. 【答案】5【解析】结合所给的流程图运行程序确定输出的值即可. 【详解】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 4.【答案】[-1,7]【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤解得17x -≤≤,故函数的定义域为[-1,7].求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可. 5.【答案】53【解析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 本题主要考查方差的计算公式,属于基础题. 6.【答案】710【解析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况. 若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 7.【答案】2y x =±【解析】根据条件求b ,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431b-=,解得2b =或2b =-,因为0b >,所以2b =.因为1a =,所以双曲线的渐近线方程为2y x =±.双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 8.【答案】16【解析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=.等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 9.【答案】10【解析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题. 10.【答案】4【解析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小.由2411y x'=-=-,得2(2)x =-舍,32y =, 即切点(2,32)Q ,则切点Q 到直线22gR r的距离为22232411+=+,故答案为:4.本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 11.【答案】(e,1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上切线为0001()y y x x x -=-,即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 12.【答案】3【解析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3AB AC=. 本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【答案】210【解析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭ 2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+- ⎪+⎝⎭; 当1tan 3α=-时,上式=2211212233=210113⎛⎫⎛⎫⎛⎫⨯-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.综上,2sin 2.410πα⎛⎫+= ⎪⎝⎭ 本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.【答案】12,34⎡⎫⎪⎢⎪⎣⎭【解析】分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可. 【详解】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f xg x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,即2211k kk +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(0,9]上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围. 二、解答题 15.【答案】(1)33c =;(2)255. 【解析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c+-=⨯⨯,即213c =.所以33c =.(2)因为sin cos 2A Ba b=, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【答案】(1)见解析;(2)见解析.【解析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【详解】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 18.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 【详解】解法一:(1)过A 作AE BD ⊥,垂足为E . 由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115P B =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-≤≤. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置. 当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115P B =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求. 当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径. 综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 19.【答案】(1)2a =;(2)见解析;(3)见解析. 【解析】(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式; 解法二:由题意构造函数,求得函数在定义域内的最大值, 因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x1(0,)3131(,1)3()g'x+–()g x↗ 极大值 ↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【详解】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x =b 或23a b x +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(-∞,-3) -3 (-3,1) 1 (1,+∞)+ 0 – 0 + ()f x↗极大值↘极小值↗所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x1(,)x -∞1x()12,x x2x2(,)x +∞+–+()f x↗ 极大值 ↘ 极小值 ↗所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x1(0,)3131(,1)3()g'x+–()g x↗ 极大值 ↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值. 【详解】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-.设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下: x(1,e ) e (e ,+∞) ()f 'x+ 0 – f (x ) ↗极大值↘因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =,当k =1,2,3,4,5时,ln ln kq k≤,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)21.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==. 【解析】(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可. 【详解】(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力. 22.【答案】(1)5;(2)2.【解析】(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可; (2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. 本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力. 23.【答案】1{|1}3x x x <->或.【解析】由题意结合不等式的性质零点分段即可求得不等式的解集. 【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】24.【答案】(1)5n =;(2)-32.【解析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值; (2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到()513-的展开式,最后结合平方差公式即可确定223a b -的值.【详解】(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(13)(13)n +=+0122334455555555C C 3C (3)C (3)C (3)C (3)=+++++ 3a b =+.解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(13)C C (3)C (3)C (3)C (3)C (3)-=+-+-+-+-+- 0122334455555555C C C (3)C (3)C (3)(3C 3)=-+-+-. 因为*,a b ∈N ,所以5(13)3a b -=-.因此225553(3)(3)(13)(13)(2)32a b a b a b -=+-=+⨯-=-=-.本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.【答案】(1)见解析;(2)见解析.【解析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列; (2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X 的所有可能取值是1225,,,. X 的概率分布为22667744(1),(2)C 15C 15P X P X ======, 22662222(2),(5)C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则22()44AB a c n =-+≤+,因为当3n ≥时,2(1)4n n -+≤,所以X n >当且仅当24AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则22()11AB a c n =-+≤+,所以X n >当且仅当21AB n =+,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X 的所有可能取值是21n +和24n +,且2222242442(1),(4)C C n n P X n P X n ++=+==+=.因此,222246()1(1)(4)1C n P X n P X n P X n +≤=-=+-=+=-.本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。
2019年江苏省高考数学试卷-高考真卷(带解析)

相似题 纠错 收藏 详情
7 . 在平面直角坐标系 中,若双曲线
经过点(3,4),则该双曲线的渐近线方程是_____.
【知识点】已知方程求双曲线的渐近线
难度:0.65 组卷:2181 题型:填空题 更新:2019/12/4
8 . 已知数列
是等差数列, 是其前n项和.若
【知识点】等差数列通项公式的基本量计算 求等差数列前n项和
相似题 纠错 收藏 详情
10 . 在平面直角坐标系 中,P是曲线
上的一个动点,则点P到直线x+y=0的距离的最小值是_____.
【知识点】求在曲线上一点处的切线方程(斜率) 求点到直线的距离
难度:0.4 组卷:3603 题型:填空题 更新:2020/2/28
相似题 纠错 收藏 详情
15 . 在△ABC中,角A,B,C的对边分别为a,b,c. (1)若a=3c,b= ,cosB= ,求c的值;
(2)若
,求
的值.
【知识点】正弦定理解三角形 余弦定理解三角形
相似题 纠错 收藏 详情
难度:0.65 组卷:3712 题型:解答题 更新:2019/6/10
相似题 纠错 收藏 详情
难度:0.4 组卷:2350 题型:解答题 更新:2019/6/10
相似题 纠错 收藏 详情
18 . 如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、 Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分 别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
(1)若道路PB与桥AB垂直,求道路PB的长; (2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由; (3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离. 【知识点】利用给定函数模型解决实际问题 求平面两点间的距离 求点到直线的距离
2019年高考真题数学(江苏卷含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x …的方差2211nii sx xn,其中11ni i xx n.柱体的体积V Sh ,其中S 是柱体的底面积,h 是柱体的高.锥体的体积13V Sh ,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{1,0,1,6}A ,{|0,}B x x x R ,则A B▲.2.已知复数(2i)(1i)a的实部为0,其中i 为虚数单位,则实数a 的值是▲.3.下图是一个算法流程图,则输出的S 的值是▲.4.函数276y x x 的定义域是▲.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.7.在平面直角坐标系xOy 中,若双曲线2221(0)y xb b经过点(3,4),则该双曲线的渐近线方程是▲.8.已知数列*{}()n a nN 是等差数列,n S 是其前n 项和.若25890,27a a a S ,则8S 的值是▲.9.如图,长方体1111ABCDA B C D 的体积是120,E 为1CC 的中点,则三棱锥E-BCD 的体积是▲.10.在平面直角坐标系xOy 中,P 是曲线4(0)yxx x上的一个动点,则点P 到直线x+y=0的距离的最小值是▲.11.在平面直角坐标系xOy 中,点A 在曲线y=lnx 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O .若6AB ACAO EC ,则AB AC的值是▲.13.已知tan 2π3tan4,则πsin 24的值是▲.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x 时,2()1(1)f x x ,(2),01()1,122k x x g x x,其中k>0.若在区间(0,9]上,关于x 的方程()()f x g x 有8个不同的实数根,则k 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a=3c ,b=2,cosB=23,求c 的值;(2)若sin cos 2ABab,求sin()2B 的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB=BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C:22221(0)x y a b ab的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x ya 交于点A ,与椭圆C 交于点 D.连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC=6,BD=12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,R f x x a x b x c a b c 、()f 'x 为f (x )的导函数.(1)若a=b=c ,f (4)=8,求a 的值;(2)若a ≠b ,b=c ,且f (x )和()f 'x 的零点均在集合{3,1,3}中,求f (x )的极小值;(3)若0,01,1ab c ,,且f (x )的极大值为M ,求证:M ≤427.20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()nN 满足:245324,440a a a a a a ,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,nnnb S b b ,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()nN ,对任意正整数k ,当k ≤m 时,都有1k kk c b c 剟成立,求m 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵3122A(1)求A 2;(2)求矩阵A 的特征值. B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,2,42A B ,直线l 的方程为sin34.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.C.[选修4-5:不等式选讲](本小题满分10分)设xR ,解不等式||+|2 1|>2x x.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,nnn x a a x a xa x n nN ….已知23242aa a . (1)求n 的值;(2)设(13)3nab ,其中*,a bN ,求223ab 的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}nA n ,(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.nnB nC n n N 令n nnn M A B C .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n=1时,求X 的概率分布;2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]5.536.7107.2y x 8.16 9.10 10.411.(e, 1)12.313.21014.12,34二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分. 解:(1)因为23,2,cos 3ac b B ,由余弦定理222cos 2acbBac,得2222(3)(2)323c cc c,即213c.所以33c.(2)因为sin cos 2A B ab ,由正弦定理sin sin a bAB,得cos sin 2B B bb,所以cos 2sin B B .从而22cos (2sin )BB ,即22cos 41cos BB ,故24cos 5B.因为sin 0B ,所以cos 2sin 0B B ,从而25cos 5B.因此π25sin cos 25B B. 16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB.在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED.又因为ED?平面DEC 1,A 1B 1平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB=BC ,E 为AC 的中点,所以BE ⊥AC. 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC.又因为BE ?平面ABC ,所以CC 1⊥BE.因为C 1C ?平面A 1ACC 1,AC ?平面A 1ACC 1,C 1C ∩AC=C ,所以BE ⊥平面A 1ACC 1.因为C 1E ?平面A 1ACC 1,所以BE ⊥C 1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C 的焦距为2c.因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=52,AF 2⊥x 轴,所以DF 2=222211253()222DFF F,因此2a=DF 1+DF 2=4,从而a=2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143xy.(2)解法一:由(1)知,椭圆C :22143xy,a=2,因为AF 2⊥x 轴,所以点A 的横坐标为 1.将x=1代入圆F 2的方程(x-1) 2+y 2=16,解得y=±4. 因为点A 在x 轴上方,所以A(1,4).又F 1(-1,0),所以直线AF 1:y=2x+2.由22()22116y xx y,得256110x x ,解得1x 或115x.将115x代入22yx,得125y,因此1112(,)55B .又F 2(1,0),所以直线BF 2:3(1)4yx .由221433(1)4xyx y,得276130xx ,解得1x 或137x.又因为E 是线段BF 2与椭圆的交点,所以1x .将1x 代入3(1)4yx ,得32y.因此3(1,)2E .解法二:由(1)知,椭圆C :22143xy.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E=∠B.因为F 2A=F 2B ,所以∠A=∠B ,所以∠A=∠BF 1E ,从而EF 1∥F 2A. 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431xx y ,得32y.又因为E 是线段BF 2与椭圆的交点,所以32y.因此3(1,)2E .18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A 作AEBD ,垂足为E.由已知条件得,四边形ACDE 为矩形,6,8DEBE AC AE CD .'因为PB ⊥AB ,所以84cossin 105PBD ABE.所以12154cos 5BD PBPBD.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210ADAE ED,从而2227cos 0225ADABBDBADAD AB,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求. 设1P 为l 上一点,且1PB AB ,由(1)知,1P B=15,此时11113sin cos 1595PD PB PBD PB EBA ;当∠OBP>90°时,在1PPB △中,115PB PB .由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA=15时,2222156321CQ QAAC.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+321.因此,d最小时,P,Q两点间的距离为17+321(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43,直线PB的方程为42533 y x.所以P(-13,9),22(134)(93)15PB.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(-4,9),又A(4,3),所以线段AD:36(44)4y x x剟.在线段AD上取点M(3,154),因为22221533454OM,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P 的位置.当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求. 设1P 为l 上一点,且1PB AB ,由(1)知,1P B=15,此时1P (-13,9);当∠OBP>90°时,在1PPB △中,115PB PB .由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA=15时,设Q (a ,9),由22(4)(93)15(4)AQa a ,得a=4321,所以Q (4321,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (-13,9),Q (4321,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ .因此,d 最小时,P ,Q 两点间的距离为17321(百米).19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ,所以3()()()()()f x x a x b x c x a .因为(4)8f ,所以3(4)8a ,解得2a .(2)因为b c ,所以2322()()()(2)(2)f x xa xb xa b xb a b x ab ,从而2()3()3a bf 'x x b x.令()0f 'x ,得xb 或23a bx.因为2,,3a b a b ,都在集合{3,1,3}中,且a b ,所以21,3,33a ba b.此时2()(3)(3)f x xx,()3(3)(1)f 'x xx .令()0f 'x ,得3x或1x .列表如下:x (,3)3(3,1)1 (1,)()f 'x +0 –0 +()f x 极大值极小值所以()f x 的极小值为2(1)(13)(13)32f .(3)因为0,1ac ,所以32()()(1)(1)f x x x b x xb xbx ,2()32(1)f 'x xb xb .因为01b ,所以224(1)12(21)30b b b ,则()f 'x 有2个不同的零点,设为1212,x x x x .由()0f 'x ,得22121111,33b b b b b b x x .列表如下:x 1(,)x 1x 12,x x 2x 2(,)x ()f 'x +0 –0 +()f x 极大值极小值所以()f x 的极大值1Mf x .解法一:321111(1)Mf x xb xbx 221111211(1)32(1)3999bb x b b b xb x bx 23221(1)(1)2127927bb b b b bb 23(1)2(1)(1)2((1)1)272727b b b b b b(1)24272727b b .因此427M.解法二:因为01b ,所以1(0,1)x .当(0,1)x时,2()()(1)(1)f x x xb x x x .令2()(1),(0,1)g x x x x,则1()3(1)3g'x x x .令()0g'x ,得13x .列表如下:x1(0,)3131(,1)3()g'x +0 –()g x 极大值所以当13x 时,()g x 取得极大值,且是最大值,故max 14()327g x g.所以当(0,1)x 时,4()()27f xg x ,因此427M.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0. 由245321440a a a a a a ,得244112111440a q a qa qa q a ,解得112a q.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b ,所以0nb .由1111,b S b 得212211b ,则22b .由1122nnnS b b ,得112()n n nnn b b S b b ,当2n时,由1nn n b S S ,得111122n n n n nnnnnb b b b b b b b b ,整理得112nnn b b b .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n *n N.②由①知,b k =k ,*kN .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以1k kq k q ,其中k=1,2,3,…,m.当k=1时,有q ≥1;当k=2,3,…,m 时,有ln ln ln 1k k qkk .设f (x )=ln (1)x x x,则21ln ()x f 'x x.令()0f 'x ,得x=e.列表如下:x (1,e)e (e ,+∞) ()f 'x +0 –f (x )极大值因为ln 2ln8ln 9ln 32663,所以max ln 3()(3)3f k f .取33q ,当k=1,2,3,4,5时,ln ln k q k,,即kkq ,经检验知1k q k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于 6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122A,所以231312222A=3312311223222122=115106.(2)矩阵A 的特征多项式为231()5422f .令()0f ,解得A 的特征值121,4.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O.在△OAB 中,A (3,4),B (2,2),由余弦定理,得AB =223(2)232cos()524.(2)因为直线l 的方程为sin()34,则直线l 过点(32,)2,倾斜角为34.又(2,)2B ,所以点B 到直线l 的距离为3(322)sin()242.C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x<0时,原不等式可化为122x x ,解得x<–13:当0≤x ≤12时,原不等式可化为x+1–2x>2,即x<–1,无解;当x>12时,原不等式可化为x+2x –1>2,解得x>1.综上,原不等式的解集为1{|1}3x xx 或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)CC C C 4nn nnn nnx x x x n ,,所以2323(1)(1)(2)C,C 26nnn n n n n a a ,44(1)(2)(3)C24nn n nn a .因为23242a a a ,所以2(1)(2)(1)(1)(2)(3)[]26224n n nn n n n nn ,解得5n .(2)由(1)知,5n .5(13)(13)n0122334455555555CC3C (3)C (3)C (3)C (3)3ab .解法一:因为*,a b N ,所以024135555555C3C9C76,C3C9C44a b ,从而222237634432a b.解法二:50122334455555555(13)CC (3)C (3)C (3)C (3)C (3)0122334455555555CC C (3)C (3)C (3)(3C 3).因为*,a b N ,所以5(13)3a b .因此225553(3)(3)(13)(13)(2)32aba b a b .23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n 时,X 的所有可能取值是1225,,,.X 的概率分布为22667744(1),(2)C15C15P XP X ,22662222(2),(5)C15C15P X P X .(2)设()A a b ,和()B c d ,是从n M 中取出的两个点.因为()1()P X n P X n ,所以仅需考虑X n 的情况.①若b d ,则ABn ,不存在Xn 的取法;②若01b d ,,则22()11AB a c n,所以Xn 当且仅当21ABn,此时0ac n ,或0an c,,有2种取法;③若02bd ,,则22()44AB ac n,因为当3n时,2(1)4n n ,所以Xn 当且仅当24ABn,此时0acn ,或0an c ,,有2种取法;④若12b d ,,则22()11AB a c n,所以Xn 当且仅当21ABn,此时0a cn ,或0an c,,有2种取法.综上,当Xn 时,X 的所有可能取值是21n和24n,且2222242442(1),(4)CCn n P X nP X n.因此,222246()1(1)(4)1Cn P Xn P X nP X n.。
2019年江苏卷数学高考试题文档版有答案-新

nnn一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置上.2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。
本卷满分为 160 分,考试时间为 120 分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据 x , x ,…, x 的方差 s 2 = 1 2 n 1 ∑ (x - x )2,其中 x = i i =11 ∑ n i =1x .i柱体的体积 V = Sh ,其中 S 是柱体的底面积, h 是柱体的高. 锥体的体积V = 1Sh ,其中 S 是锥体的底面积, h 是锥体的高.3........ 1.已知集合 A = {-1,0,1,6} , B = {x | x > 0, x ∈ R } ,则 A I B =▲ .2.已知复数 (a + 2i)(1 + i) 的实部为 0,其中 i 为虚数单位,则实数 a 的值是 ▲.3.下图是一个算法流程图,则输出的 S 的值是▲ .4.函数 y = 7 + 6 x - x 2 的定义域是 ▲.5.已知一组数据 6,7,8,8,9,10,则该组数据的方差是▲.6.从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的 2 名同学中至少有 1 名女同学的概率是 ▲.7.在平面直角坐标系 xOy 中,若双曲线 x 2 - y 2 b 2= 1(b > 0) 经过点(3,4),则该双曲线的渐近线uuur uuur uuur uuurAB⋅AC=6A O⋅EC,则的值是▲.=-,则sin 2α+⎪的值是▲.⎛αtan +⎪奇函数.当x∈(0,2]时,f(x)=1-(x-1)2,g(x)=⎨1,其中k>0.若在区⎪⎩2二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、方程是▲.8.已知数列{a}(n∈N*)是等差数列,S是其前n项和.若a a+a=0,S=27,则S的值是n n25898▲.9.如图,长方体ABCD-A B C D的体积是120,E为CC的中点,则三棱锥E-BCD的体积是11111▲.10.在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是▲.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e 为自然对数的底数),则点A的坐标是▲.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若ABAC13.已知tanα2⎛π⎫π⎫3⎝4⎭⎝4⎭14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是⎧k(x+2),0<x≤1⎪-,1<x≤2间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是▲........证明过程或演算步骤.15.(本小题满分14分)(2)若sin A在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=2,cosB=23,求c的值;cos Bπ=,求sin(B+)的值.a2b216.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段 PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到直线 l 的距离分别 = - ,其中 S n 为数列{b n }的前 n 项和.k +1成立,求 m 的最大值.....为 AC 和 BD (C 、D 为垂足),测得 AB =10,AC =6,BD =12(单位:百米).(1)若道路 PB 与桥 AB 垂直,求道路 PB 的长;(2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由;(3)在规划要求下,若道路 PB 和 QA 的长度均为 d (单位:百米).求当 d 最小时,P 、Q 两点间的距离.19.(本小题满分 16 分)设函数 f ( x ) = ( x - a)( x - b )( x - c), a, b , c ∈ R 、 f ' (x) 为 f (x )的导函数.(1)若 a =b =c ,f (4)=8,求 a 的值;(2)若 a ≠b ,b =c ,且 f (x )和 f ' (x) 的零点均在集合{ - 3,1,3}中,求 f (x )的极小值;(3)若 a = 0,0 < b 1,c = 1 ,且 f (x )的极大值为 M ,求证:M ≤4 27.20.(本小满分 16 分)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n } (n ∈ N * ) 满足: a 2a 4 = a 5 , a 3 - 4a 2 + 4a 4 = 0 ,求证:数列{a n }为“M-数列”;(2)已知数列{b n } (n ∈ N * ) 满足: b 1 = 1, 1 2 2 S b bn n n +1①求数列{b n }的通项公式;②设 m 为正整数,若存在“M -数列”{c n } (n ∈ N * ) ,对任意正整数 k ,当 k ≤m 时,都有c 剟b kkc= , x = 1 ≥ 4 不成立,继续循环, x = x + 1 = 2 ;= , x = 2 ≥ 4 不成立,继续循环, x = x + 1 = 3 ;执行第三次, S = S + = 3, x = 3 ≥ 4 不成立,继续循环, x = x + 1 = 4 ;执行第四次, S = S + = 5, x = 4 ≥ 4 成立,输出 S = 5.2019 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.【答案】{1,6}.【解析】由题意利用交集的定义求解交集即可. 【详解】由题知, A I B = {1,6} .【点睛】本题主要考查交集的运算,属于基础题. 2.【答案】2【解析】本题根据复数的乘法运算法则先求得 z ,然后根据复数的概念,令实部为 0 即得 a 的值. 【详解】Q (a + 2i)(1+ i) = a + ai + 2i + 2i 2 = a - 2 + (a + 2)i ,令 a - 2 = 0 得 a = 2 .【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解 能力.3. 【答案】5【解析】结合所给的流程图运行程序确定输出的值即可.【详解】执行第一次, S = S + x 12 2执行第二次, S = S + x 32 2 x2 x2【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 4.【答案】[-1,7]【解析】由题意得到关于 x 的不等式,解不等式可得函数的定义域. 【详解】由已知得 7 + 6 x - x 2 ≥ 0 , 即 x 2 - 6 x - 7 ≤ 0 解得 -1 ≤ x ≤ 7 ,故函数的定义域为[-1,7].【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后 求出它们的解集即可. 5.【答案】53【解析】由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为 6 + 7 + 8 + 8 + 9 + 106= 8 ,. ⎪ 2 5S = 9a + d = 272 ⎩⎪ ⎩ d = 22 思想,灵活应用通项公式、求和公式等,构建方程(组) 如本题,从已知出发,构建a 1,d 的方程2 . 所以该组数据的方差是 1 [(6 - 8)2 + (7 - 8)2 + (8 - 8)2 + (8 - 8)2 + (9 - 8)2 + (10 - 8)2 ] = 653 .【点睛】本题主要考查方差的计算公式,属于基础题. 6.【答案】710【解析】先求事件的总数,再求选出的2 名同学中至少有 1 名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从 3 名男同学和 2 名女同学中任选 2 名同学参加志愿服务,共有 C 2 = 10 种情况. 5若选出的 2 名学生恰有 1 名女生,有 C 1C 1 = 6 种情况, 3 2若选出的 2 名学生都是女生,有 C 2 = 1 种情况,26 + 1 7所以所求的概率为 = .10 10【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结 合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环在 处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 7.【答案】 y = ± 2 x【解析】根据条件求 b ,再代入双曲线的渐近线方程得出答案.【详解】由已知得 32 - 42 b 2= 1,解得 b = 2 或 b = - 2 , 因为 b > 0 ,所以 b = 2 .因为 a = 1 ,所以双曲线的渐近线方程为 y = ± 2 x .【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分 题.双曲线渐近线与双曲线标准方程中的 a , b 密切相关,事实上,标准方程中化 1 为 0,即得渐近线 方程.8.【答案】16【解析】由题意首先求得首项和公差,然后求解前 8 项和即可.⎧a a + a = (a + d )(a + 4d )+ (a + 7d ) = 081 1 1 【详解】由题意可得: ⎨ 9 ⨯ 89 1,⎧a = -5 8 ⨯ 7解得: ⎨ 1 ,则 S = 8a +8 1d = -40 + 28 ⨯ 2 = 16 .【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程, 组.9.【答案】10【解析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积 【详解】因为长方体 ABCD - A B C D 的体积为 120, 1 1 1 1所以 AB ⋅ BC ⋅ CC 1 = 120 , 因为 E 为 CC 的中点,11所以 CE = CC ,1由长方体的性质知 CC 1 ⊥ 底面 ABCD ,所以 CE 是三棱锥 E - BCD 的底面 BCD 上的高,3 2 3 2 2 124 . . A (x , y ) ,则 y = ln x .又 y ' = , x当 x = x 0 时, y ' = x点 A 在曲线 y = ln x 上 切线为 y - y 0 = ( x - x ) ,x即 y - ln x= x - 1 , 代入点 (-e , -1),得 -1 - ln x 0= - 1,.1 1 1 1 1 1所以三棱锥 E - BCD 的体积V = ⨯ AB ⋅ BC ⋅ C E = = ⨯ AB ⋅ BC ⋅ CC = 1 ⨯120 = 10 .【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题. 10.【答案】4【解析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线 小.gR 2 gR 2 平移到与曲线 y = x + 相切位置时,切点 Q 即为点 P 到直线 r 2 x r 2的距离最由 y ' = 1 -4 x 2= -1,得 x = 2( - 2舍) , y = 3 2 ,即切点 Q( 2,3 2) ,则切点 Q 到直线gR 2 r 2的距离为 2 + 3 2 12 + 12 = 4 ,故答案为:4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养采取 导数法和公式法,利用数形结合和转化与化归思想解题. 11.【答案】(e,1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标【详解】设点0 0 0 011,1 00 x 的 0-e x即 x 0 ln x 0 = e ,考查函数 H (x ) = x ln x ,当 x ∈ (0,1)时, H (x ) < 0 ,当 x ∈(1,+∞)时, H (x ) > 0 , 且 H ' (x ) = ln x + 1 ,当 x > 1 时, H ' (x ) > 0, H (x )单调递增, 注意到 H (e ) = e ,故 x 0 ln x 0 = e 存在唯一的实数根 x 0 = e ,此时 y 0 = 1 ,故点 A 的坐标为 A (e ,1).【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的 切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 12.【答案】 3【解析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值 【详解】如图,过点 D 作 DF //CE ,交 AB 于点 F ,由 BE =2EA ,D 为 BC 中点,知 BF =FE =EA,AO =OD .3 uuur uuur ( ) ( )()3 (uuu uuur )⎛ uuur 1 uuur ⎫ 3 ⎛ uuur uuur 1 uuur 2 uuur 1 uuur uuur ⎫AB + AC g AC - AB ⎪ = AB g AC - AB + AC - AB g AC ⎪ =3 ⎛ 2 uuu uuur 1 uuur 2 uuur ⎫ uuur uuur 1 uuur 3 uuur 2 uuur uuur AB g AC - AB + AC ⎪ = AB g AC - AB + AC = AB g AC , = 1 uuur 2 3 uuur 2 AB 3 3 3 π ⎫tan α + 1 tan α + 1 3 , tan α + ⎪sin 2α + ⎪ = sin 2α cos + cos 2α sintan α (1 - tan α ) 2(sin 2α + cos 2α )= 2 2 ⎝ sin 2 α + cos 2 α ⎭2 ⎝ tan 2 α + 1 ⎭=; 2 ⨯ - ⎪ + 1 - - ⎪ ⎪ - ⎪ + 1 ⎪ 2 时,上式= 2 ⎝ 3 ⎭ π ⎫ 2 = .4 ⎭ 10⎛.uuur uuur uuur uuur uuur uuur uuur 6 A O g EC = 3 A D g AC - AE = AB + AC g AC - AE 2 2 2 ⎝ ⎭ 2 ⎝ ⎭ 2 22 ⎝3 3 ⎭2 2 uuuruuur 得 AB = AC , 即 AB = 3 AC , 故= 3 . 2 2 AC【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养. 采取几何法,利用数形结合和方程思想解题.13.【答案】210【解析】由题意首先求得 tan α 的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为 齐次式求值的问题,最后切化弦求得三角函数式的值即可.tan αtan α 2= = =- 【详解】由 ⎛ ⎝4 ⎭ 1 - tan α 得 3tan 2α - 5tan α - 2 = 0 ,1解得 tan α = 2 ,或 tan α = - .3⎛ π ⎫ π π⎝4 ⎭ 4 4 ==2 ⎛ 2sin α cos α + cos 2 α - sin 2 α ⎫ ⎪2 ⎛ 2 tan α + 1 - tan 2 α ⎫ ⎪ ,2 ⎛ 2 ⨯ 2 + 1 - 22 ⎫ 2当 tan α = 2 时,上式 = ⎪ 2 ⎝ 22 + 1 ⎭ 10⎛ ⎛ 1 ⎫ ⎛ 1 ⎫2 ⎫ 当 tan α = - 1 ⎝ 3 ⎭ ⎝ 3 ⎭ ⎪= 2 . 3 ⎛ 1 ⎫2⎪ 10⎝ ⎭综上, sin 2α + ⎝⎪【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养 采取转化法,利用分类 讨论和转化与化归思想解题.3 4 ⎭⎪ 0)g ( x ) 的图象有 6 个交点,此时1 = 3k ,得 k = .f ( x) =g ( x) 在(0,9]上有 8 个实根的 k 的取值范围为 ⎢ , ⎪⎪ . . 15.【答案】(1) c =3sin( B + ) 的值.=⎡ 1 2 ⎫14.【答案】 ⎢ , ⎪⎣【解析】分别考查函数 f (x )和函数 g (x )图像的性质,考查临界条件确定 k 的取值范围即可. 【详解】当 x ∈ ( 0,2 ] 时, f ( x ) = 1 - (x -1)2, 即 (x - 1)2 + y 2 = 1, y ≥ 0.又 f ( x ) 为奇函数,其图象关于原点对称,其周期为 4,如图,函数 f ( x ) 与 g ( x ) 的图象,要使f ( x ) =g ( x ) 在(0,9]上有 8 个实根,只需二者图象有 8 个交点即可.当 g( x) = - 12时,函数 f ( x ) 与 g ( x ) 的图象有 2 个交点;当 g( x ) = k ( x + 2) 时, g ( x ) 的图象为恒过点(-2,0)的直线,只需函数 f ( x ) 与 g ( x ) 的图象有 6 个交点.当 f ( x ) 与 g ( x ) 图象相切时,圆心(1, 到直线 kx - y + 2k = 0 的距离为 1,即 k + 2k1 + k2 = 1 , 得 k =2 4,函数 f ( x ) 与 g ( x ) 的图象有 3 个交点;当g( x ) = k ( x + 2) 过点(1,1)时,函数 f ( x ) 与1 3综上可知,满足⎡ 1 2 ⎫ ⎣ 3 4 ⎭【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大 不能正确画出函数图 象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从 而确定参数的取值范围. 二、解答题2 5;(2) 3 5.【解析】(1)由题意结合余弦定理得到关于 c 的方程,解方程可得边长 c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得π2【详解】(1)因为 a = 3c, b =2,cos B = 2 3,a 2 + c 2 -b 2 2 (3c)2 +c 2 - ( 2) 21 由余弦定理 cos B = ,得 = ,即 c2 = .2ac 3 2 ⨯ 3c ⨯ c3 所以 c = 3 3.sin A cos B(2)因为 , a 2b=()从而cos2B=(2sin B)2,即cos2B=41-cos2B,故cos2B=.因此sin B+⎪=cos B=⎫.(又因为DF1=5,AF2⊥x轴,所以DF2=DF2-F F2=()2-22=,222由正弦定理a b cos B sin B=,得,所以cos B=2sin B.sin A sin B2b b45因为sin B>0,所以cos B=2sin B>0,从而cos B=⎛π25.⎝2⎭525 5.【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【答案】(1)见解析;(2)见解析.【解析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可【详解】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【答案】(1)x2y23+=1;2)E(-1,-). 432【解析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线AF的方程,联立直线方程与圆的方程,确定点B的坐标,联立1直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.53112因此2a=DF1+DF2=4,从而a=2由b2=a2-c2,得b2=3.⎪⎩ (x - 1)2+ y 2 = 16 ,得 5 x 2 + 6 x - 11 = 0 ,将 x =- 代入 y = 2 x + 2 ,得 y = - ,因此 B(- , - ) .又 F 2(1,0),所以直线 BF 2: y = ( x - 1) . ⎪⎪ 4 13 x 2 y 2 7 + = 1 由(1)知,椭圆 C : + = 1 .如图,连结 EF 1.⎩ 2x 2 y 2因此,椭圆 C 的标准方程为 + = 1 .4 3(2)解法一:x 2 y 2 由(1)知,椭圆 C :+= 1 ,a =2,43因为 AF 2⊥x 轴,所以点 A 的横坐标为 1.将 x =1 代入圆 F 2 的方程(x-1) 2+y 2=16,解得 y =±4.因为点 A 在 x 轴上方,所以 A(1,4). 又 F 1(-1,0),所以直线 AF 1:y =2x+2.⎧⎪ y = 2 x + 2由 ⎨11解得 x = 1 或 x = - .511 125 511 12 3 5 5 4 ⎧3 y = ( x - 1)由 ⎨ ,得 7 x 2 - 6 x - 13 = 0 ,解得 x = -1 或 x = ⎪ ⎪ 43 又因为 E 是线段 BF 2 与椭圆的交点,所以 x = -1 .3 33 将 x = -1 代入 y = ( x - 1) ,得 y = - .因此 E (-1,- ) .4 2解法二:x 2 y 24 3.因为F1(-1,0),由⎨x2y2,得y=±.⎪+.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.⎧x=-1⎪3=12⎩43又因为E是线段BF2与椭圆的交点,所以y=-32.3因此E(-1,-).2【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力18.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解:解法一:(1)过A作AE⊥BD,垂足为E.利用几何关系即可求得道路PB的长;(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.解法二:(1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.【详解】解法一:(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以cos∠PBD=sin∠ABE=84=.105所以PB=BD12==15cos∠PBD4.5因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知AD=AE2+ED2=10,AD2+AB2-BD27从而cos∠BAD==>0,所以∠BAD为锐角.2A D⋅AB25所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.51⊥AB,由(1)知,P在线段AD上取点M(3,),因为OM=32+ ⎪<32+42=5,⎝4⎭当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且PB1B=15,3此时PD=PB sin∠PBD=PB cos∠EBA=15⨯=9;1111当∠OBP>90°时,在△PPB中,PB>PB=15.11由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ=QA2-AC2=152-62=321.此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+321.因此,d最小时,P,Q两点间的距离为17+321(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为34.因为PB⊥AB,所以直线PB的斜率为-425直线PB的方程为y=-x-.3343,所以P(−13,9),PB=(-13+4)2+(9+3)2=15.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),3所以线段AD:y=-x+6(-4≤x≤4).415⎛15⎫24所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.因为 0 < b ≤ 1 ,所以 x ∈ (0,1) .令 g ( x ) = x( x - 1)2, x ∈ (0,1) ,则 g' ( x) = 3 x - ⎪ ( x - 1) .1 11(0, +所以当 x = 时, g ( x ) 取得极大值,且是最大值,故 g ( x ) max = g ⎪= 当∠OBP ≥90°时,对线段 PB 上任意一点 F ,OF ≥OB ,即线段 PB 上所有点到点 O 的距离均不小于 圆 O 的半径,点 P 符合规划要求.设 P 1为 l 上一点,且 PB ⊥ AB ,由(1)知, P B = 15 ,此时 P (-13,9); 当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .11由上可知,d ≥15. 再讨论点 Q 的位置.由(2)知,要使得 QA≥15,点 Q 只有位于点 C 的右侧,才能符合规划要求.当 QA =15 时,设 Q (a ,9),由 AQ =(a - 4)2 + (9 - 3)2 = 15(a > 4) ,得 a = 4 + 3 21 ,所以 Q ( 4 + 3 21 ,9),此时,线段 QA 上所有点到点 O 的距离均不小于圆 O 的半径.综上,当 P (−13,9),Q ( 4 + 3 21 ,9)时,d 最小,此时 P ,Q 两点间的距离PQ = 4 + 3 21 - (-13) = 17 + 3 21 .因此,d 最小时,P ,Q 两点间的距离为17 + 3 21 (百米).【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模 及运用数学知识分析和解决实际问题的能力. 19.【答案】(1) a = 2 ;(2)见解析;(3)见解析. 【解析】(1)由题意得到关于 a 的方程,解方程即可确定 a 的值;(2)由题意首先确定 a,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函 数的极小值.(3)由题意首先确定函数的极大值 M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式; 解法二:由题意构造函数,求得函数在定义域内的最大值,1当 x ∈ (0,1) 时, f ( x ) = x( x - b )( x - 1) ≤ x( x - 1)2 .⎛ 1 ⎫ ⎝3 ⎭令 g' ( x ) = 0 ,得 x = 1.列表如下:3x1) 31 3( 1 ,1) 3g' ( x )–g ( x )↗ 极大值↘1 ⎛ 1 ⎫4 3⎝ 3 ⎭274 4 所以当 x ∈ (0,1) 时, f ( x ) ≤ g ( x ) ≤ ,因此 M ≤ .27 27【详解】(1)因为 a = b = c ,所以 f ( x ) = ( x - a)( x - b )( x - c) = ( x - a)3 . 因为 f (4) = 8 ,所以 (4 - a)3 = 8 ,解得 a = 2 . (2)因为 b = c ,.从而 f ' ( x) = 3(x - b ) x - ⎪ .令 f ' (x) = 0 ,得 x =b 或 x =3 3 b + 1 ⎫ 2 b 2 - b + 1) ( = (3x 2 - 2(b + 1)x + b ) 1 - ⎛ x b (b + 1) - x +⎝ 39 ⎭ 9 9 ⎪3 所以 f ( x ) = ( x - a)( x - b )2 = x 3 - (a + 2b ) x 2 + b (2a + b ) x - ab 2 ,⎛ ⎝2a + b ⎫ 2a + b3 ⎭ 3 . 因为 a, b ,2a + b 3,都在集合{-3,1,3}中,且 a ≠ b , 所以2a + b 3= 1,a = 3, b = -3 .此时 f ( x ) = ( x - 3)(x + 3)2 , f ' ( x ) = 3( x + 3)( x - 1) . 令 f ' (x) = 0 ,得 x = -3 或 x = 1 .列表如下:xf ( x )(-∞,-3)+↗-3极大值(-3,1)–↘1极小值(1,+∞)+↗所以 f ( x ) 的极小值为 f (1) = (1- 3)(1+ 3)2 = -32 .(3)因为 a = 0, c = 1,所以 f ( x ) = x( x - b )( x - 1) = x 3 - (b + 1)x 2 + bx ,f ' ( x ) = 3x 2 - 2(b + 1)x + b .因为 0 < b ≤ 1 ,所以 ∆ = 4(b + 1)2 - 12b = (2b - 1)2 + 3 > 0 ,则有 2 个不同的零点,设为 x 1 , x 2 (x 1 < x 2 ) .由 f ' (x) = 0 ,得 x = 1列表如下:b + 1 - b2 - b + 1 b + 1 + b 2 - b + 1 , x =2.xf ( x )(-∞, x )1+↗x1极大值(x , x )1 2–↘x2极小值( x , +∞ )2+↗所以 f ( x ) 的极大值 M = f (x ). 1解法一:M = f (x ) = x 3 - (b + 1)x 2 + bx11111 1 1 -2 (b 2 - b + 1)(b + 1) b (b + 1) 2 ()= + + b 2 - b + 127 9 27b (b + 1) 2(b - 1)2 (b + 1) 2 = - + ( b (b - 1) + 1)327 27 27 b (b + 1) 2 4 4 ≤ + ≤ .因此 M ≤ .27 27 27 27解法二:因为 0 < b ≤ 1 ,所以 x ∈ (0,1) .令 g ( x ) = x( x - 1)2, x ∈ (0,1) ,则 g' ( x) = 3 x - ⎪ ( x - 1) .(0, +所以当 x = 时, g ( x ) 取得极大值,且是最大值,故 g ( x )= g ⎪= .3⎝ 3 ⎭ 27所以当 x ∈ (0,1) 时, f ( x ) ≤ g ( x ) ≤ ,因此 M ≤ .,解得 ⎨ 1 由 ⎨ ,得 ⎨ .⎩ q = 2⎩ 3 ⎩ 1 (2)①因为 ,所以 b ≠ 0 .由 1 b = 1, S = b 得 = - ,则 b = 2 .由,得n,当 n ≥ 2 时,由 b n = S n - S n -1 ,得 n 2 (b - b ) 2 (b n --1 b n ) ,( )n n +11当 x ∈ (0,1) 时, f ( x ) = x( x - b )( x - 1) ≤ x( x - 1)2 .⎛1 ⎫ ⎝3 ⎭令 g' ( x ) = 0 ,得 x = 1.列表如下:3x1) 31 3( 1 ,1) 3g' ( x )–g ( x )↗ 极大值↘1 ⎛ 1 ⎫ 4 max4 4 27 27【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.【答案】(1)见解析;(2)①b n =n (n ∈ N *);②5. 【解析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定 b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得 m 的最大值. 【详解】(1)设等比数列{a n }的公比为 q ,所以 a 1≠0,q ≠0.⎧a a = a ⎧a 2q 4 = a q 4 ⎧a = 1 2 4 51 1 a - 4a + 4a = 0 a q2 - 4a q + 4a = 02 1 1 1因此数列{a n } 为“M —数列”.1 22 = -S b bn n n n +11 2 2 1 1 1 1 b2 21 22 b b = - S =n n +1 S b b 2(b - b )n n n +1 n +1 n b b b b b = -n +1 n n n -1整理得 b n +1 + b n -1 = 2b n .所以数列{b n }是首项和公差均为 1 的等差数列. 因此,数列{b n }的通项公式为 b n =n n ∈ N * .②由①知,b k =k , k ∈ N * .因为数列{c n }为“M –数列”,设公比为 q ,所以 c 1=1,q >0.因为 c k ≤b k ≤c k +1,所以 q k -1 ≤ k ≤ q k ,其中 k =1,2,3,…,m . 当 k =1 时,有 q ≥1;(x>1),则f'(x)=max=f(3)=21.【答案】(1)⎢⎥;(2)λ1=1,λ2=4.【详解】(1)因为A=⎢⎥,.A2=⎢⎣⎦⎣2⨯3+2⨯22⨯1+2⨯2⎥⎦⎢⎣106⎥⎦f(λ)=λ-3【详解】(1)设极点为O在△.OAB中,A(3,π当k=2,3,…,m时,有ln k ln k≤ln q≤.k k-1ln x1-ln x设f(x)=.x x2令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞)f'(x) f(x)+↗极大值–↘因为ln2ln8ln9ln3ln3 =<=,所以f(k)26633.取q=33,当k=1,2,3,4,5时,ln kk≤ln q,即k≤q k,经检验知q k-1≤k也成立.因此所求m的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)⎡115⎤⎣106⎦【解析】(1)利用矩阵的乘法运算法则计算A2的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可⎡31⎤⎣22⎦所以⎡3⎣21⎤⎡31⎤2⎥⎦⎢22⎥⎡3⨯3+1⨯2 =⎢3⨯1+1⨯2⎤⎡115⎤=.(2)矩阵A的特征多项式为-1-2λ-2=λ2-5λ+4.令f(λ)=0,解得A的特征值λ1=1,λ2=4.【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.【答案】(1)5;(2)2.【解析】(1)由题意,在△OAB中,利用余弦定理求解AB的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B的坐标结合几何性质可得点B 到直线l的距离.π),B(2,),42- ) = 5 .23.【答案】{x | x < - 或x > 1} ..综上,原不等式的解集为 {x | x < - 或x > 1} .()52 624 ]2 = 2 ⨯ ⨯由余弦定理,得 AB = 32+ ( 2) 2- 2 ⨯ 3 ⨯ 2 ⨯ cos( π π2 4(2)因为直线 l 的方程为 ρ sin(θ + π4) = 3 ,π 3π则直线 l 过点 (3 2, ) ,倾斜角为 .2 4π 3π π又 B( 2, ) ,所以点 B 到直线 l 的距离为 (3 2 - 2) ⨯ sin( - ) = 2 .2 4 2【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.13【解析】由题意结合不等式的性质零点分段即可求得不等式的解集 1【详解】当 x <0 时,原不等式可化为 - x + 1 - 2 x > 2 ,解得 x <– :3 当 0≤x ≤ 1 2时,原不等式可化为 x +1–2x >2,即 x <–1,无解;当 x > 1 2时,原不等式可化为 x +2x –1>2,解得 x>1.13【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】24.【答案】(1) n = 5 ;(2)-32.【解析】(1)首先由二项式展开式的通项公式确定 a 2 , a 3 , a 4 的值,然后求解关于 n 的方程可得 n 的值; (2)解法一:利用(1)中求得的 n 的值确定有理项和无理项从而可得 a,b 的值,然后计算 a 2 - 3b 2 的值 即可;解法二:利用(1)中求得的 n 的值,由题意得到 1 - 3的展开式,最后结合平方差公式即可确定a 2 - 3b 2 的值.【详解】(1)因为 (1+ x)n = C 0 + C 1 x + C 2 x 2 + L + C n x n ,n ≥ 4 ,nnnnn (n - 1) n (n - 1)(n - 2)所以 a = C 2 = , a = C 3 = ,2 n3 n n (n - 1)(n - 2)(n - 3)a = C 4 = . 4 n因为 a 2 = 2a a ,3 2 4n (n - 1)(n - 2) n (n - 1) n (n - 1)(n - 2)(n - 3)所以 [ ,6 2 24解得 n = 5 .(2)由(1)知, n = 5 . (1+ 3) n = (1+ 3) 5= C 0 + C 1 3 + C 2 ( 3)2 + C 3 ( 3)3 + C 4 ( 3)4 + C 5 ( 3)5 555555= a + b 3 .解法一:因为 a, b ∈ N *,所以 a = C 0 + 3C 2 + 9C 4 = 76, b = C 1 + 3C 3 + 9C 5 = 44 , 555555从而 a 2 - 3b 2 = 762 - 3 ⨯ 442 = -32 .X 的概率分布为 P( X = 1) = = , P( X = 2) = = ,. 2 b d d d因此, P( X ≤ n) = 1 - P( X = n 2+ 1) - P( X = n 2+ 4) = 1 - 6.解法二:(1- 3)5 = C 0 + C 1 (- 3) + C 2 (- 3) 2 + C 3 (- 3)3 + C 4 (- 3) 4 + C 5 (- 3)5 5 5 5 555= C 0 - C 1 3 + C 2 ( 3)2 - C 3 ( 3)3 + C 4 ( 3) 4 - C 5 ( 3)5 .5 5 5 5 5 5因为 a, b ∈ N *,所以 (1- 3) 5 = a - b 3 .因此 a 2 - 3b 2 = (a + b 3)( a - b 3) = (1+ 3) 5 ⨯ (1- 3) 5 = (-2) 5 = -32 .【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力 25.【答案】(1)见解析;(2)见解析.【解析】(1)由题意首先确定 X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确 定分布列;(2)将原问题转化为对立事件的问题求解 P ( X > n )的值,据此分类讨论①. b = d ,②. b = 0, d = 1 , ③. b = 0, d = 2 ,④. b = 1,d = 2 四种情况确定 X 满足 X > n 的所有可能的取值,然后求解相应的概率值即可确定 P ( X ≤ n ) 的值.【详解】(1)当 n = 1 时,X 的所有可能取值是1, 2 , , 5 .7 7 4 4C 2 15 C 2 15 662 2 2 2P( X = 2) = = , P( X = 5) = = .C 2 15 C 2 15 6 6 (2)设 A(a ,) 和 B (c ,d ) 是从 M n 中取出的两个点.因为 P( X ≤ n) = 1 - P( X > n) ,所以仅需考虑 X > n 的情况.①若 b = d ,则 AB ≤ n ,不存在 X > n 的取法;②若 b = 0 , = 1 ,则 AB = (a - c)2 + 1 ≤ n 2 + 1 ,所以 X > n 当且仅当 AB = n 2 + 1 ,此时a = 0 ,c = n 或 a = n ,c = 0 ,有 2 种取法;③若 b = 0 , = 2 ,则 AB = (a - c)2 + 4 ≤ n 2 + 4 ,因为当 n ≥ 3 时, (n - 1)2 + 4 ≤ n ,所以X > n 当且仅当 AB = n 2 + 4 ,此时 a = 0 ,c = n 或 a = n ,c = 0 ,有 2 种取法;④若 b = 1,= 2 ,则 AB = (a - c)2 + 1 ≤ n 2 + 1 ,所以 X > n 当且仅当 AB = n 2 + 1 ,此时a = 0 ,c = n 或 a = n ,c = 0 ,有 2 种取法.综上,当 X > n 时,X 的所有可能取值是 n 2 +1 和 n 2 + 4 ,且P( X = n 2 + 1) = 4 , P( X = n 2 + 4) = 2 . C 2 C 22n +42n +4C 2 2n +4【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能 力和推理论证能力.。
2019年江苏卷数学高考真题文档版(含答案)

功
(2)若 a≠b,b=c,且 f(x)和 f '(x) 的零点均在集合{ 3,1,3} 中,求 f(x)的极小值;
成 (3)若 a 0,0 b„ 1, c 1 ,且 f(x)的极大值为 M,求证:M≤ 4 . 27
到 20.(本小满分 16 分)
y
3 4
(x
1)
.
由
y 3 (x 4
x2 y2 43
1) 1
,得
7x2
6x
13
0
,解得
x
1
或
x
13 7
.
又因为 E 是线段 BF2 与椭圆的交点,所以 x 1 .
将 x 1 代入 y 3 (x 1) ,得 y 3 .因此 E(1, 3) .
4
2
2
解法二:
由(1)知,椭圆 C: x2 y2 1.如图,连结 EF1. 43
! 功
由 b2=a2-c2,得 b2=3.
因此,椭圆 C 的标准方程为 x2 y2 1. 43
(2)解法一:
成 到
由(1)知,椭圆 C: x2 y2 1,a=2, 43
马
考 因为 AF2⊥x 轴,所以点 A 的横坐标为 1.
将 x=1 代入圆 F2 的方程(x-1) 2+y2=16,解得 y=±4. 因为点 A 在 x 轴上方,所以 A(1,4).
您 因为PB⊥AB,
所以 cos PBD sin ABE 8 4 .
祝 10
所以
PB
BD cos PBD
12 4
15
.
5
5
因此道路PB的长为15(百米).
江苏省2019-2020学年高三数学联考试题(含解析)

高三数学联考试题一、填空题:本大题共14小题,每小题5分,共计70分.把答案填写在答题卡相应位置........1.已知集合,,,则____.【答案】【解析】【分析】根据并集和补集的定义,直接计算得结果.【详解】由题意得:则本题正确结果:【点睛】本题考查集合的基本运算,属于基础题.2.已知复数(i为虚数单位),若为纯虚数,则实数a的值为__.【答案】2【解析】【分析】将化简的形式,为纯虚数要求实部为零,虚部不为零,由此可求得结果.【详解】为纯虚数本题正确结果:【点睛】本题考查复数的基本运算和纯虚数的定义,属于基础题.3.对某种电子元件使用寿命跟踪调查,抽取容量为1000的样本,其频率分布直方图如图所示.根据此图可知这批样本中寿命不低于300 h的电子元件的个数为____.【答案】800【解析】【分析】根据频率分布直方图求出的频率,利用得到不低于的概率,利用得到结果.【详解】使用寿命在的概率为:使用寿命在的概率为:使用寿命在的概率使用寿命不低于的概率使用寿命不低于的电子元件个数为:(个)本题正确结果:【点睛】本题考查利用频率分布直方图估计总体的问题,属于基础题.4.运行如图所示的流程图,若输入的,则输出的x的值为____.【答案】0【解析】【分析】按照程序框图依次运算,不满足判断框中条件时输出结果即可.【详解】由,得:,循环后:,由,得:,循环后:,由,得:,循环后:,由,得:,输出结果:本题正确结果:【点睛】本题考查程序框图中的条件结构和循环结构,属于基础题.5.将一颗质地均匀的正四面体骰子(四个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和为偶数的概率为____.【答案】【解析】【分析】所有可能的结果共种,通过两次数字之和为偶数说明两次均为奇数或者均为偶数,共种,由此得到概率为.【详解】骰子扔两次所有可能的结果有:种两次数字之和为偶数,说明两次均为奇数或均为偶数,则有:种两次数字之和为偶数的概率本题正确结果:【点睛】本题考查古典概型的应用,可通过排列组合来解决,由于此题基本事件个数较少,也可采用列举法来求解.6.已知双曲线的一个焦点到一条渐近线的距离为3a,则该双曲线的渐近线方程为____.【答案】【解析】【分析】由标准方程可得渐近线方程,利用点到直线的距离构造方程,求得的值,从而得到渐近线方程.【详解】渐近线方程为:由双曲线对称性可知,两焦点到两渐近线的距离均相等取渐近线,焦点渐近线方程为:本题正确结果:【点睛】本题考查双曲线的几何性质、点到直线距离公式,关键在于利用点到直线距离公式建立的等量关系,求解得到结果.7.已知正四棱柱中,AB=3,AA1=2,P,M分别为BD1,B1C1上的点.若,则三棱锥M PBC的体积为____.【答案】1【解析】【分析】三棱锥体积与三棱锥体积一样,为上动点,可知面积为侧面面积的一半;到面的距离等于到面的距离的,由此可根据三棱锥体积公式求得体积.【详解】由题意可知原图如下:又,即到面的距离等于到面的距离即本题正确结果:【点睛】本题考查三棱锥体积的求解,关键在于能够通过体积桥的方式将原三棱锥进行体积变换,找到易求解的底面积和高.8.已知函数是R上的奇函数,当x≥0时,f(x)=2x+m(m为常数),则的值为____.【答案】【解析】【分析】根据奇函数求得;将变成,代入,求得结果.【详解】为上的奇函数又本题正确结果:【点睛】本题考查利用函数奇偶性求解函数值的问题,属于基础题.9.已知角的终边经过点,函数图象的相邻两条对称轴之间的距离等于,则的值为____.【答案】【解析】【分析】根据对称轴之间距离求出最小正周期,从而求得;利用的终边所过点,得到、;将利用两角和差公式展开求得结果.【详解】角终边经过点,两条相邻对称轴之间距离为即本题正确结果:【点睛】本题考查利用三角函数图像特点求解解析式、三角函数定义、两角和差公式的应用,关键在于能够通过对称轴之间距离求出解析式,能够利用三角函数定义解出的正余弦值.10.如图,在平面直角坐标系中,点在以原点为圆心的圆上.已知圆O与y轴正半轴的交点为P,延长AP至点B,使得,则____.【答案】2【解析】【分析】根据点求出,从而得到直线;假设点坐标,利用可求得,由此可用坐标求解.【详解】圆半径则所在直线为:,即:设,则,解得:本题正确结果:【点睛】本题考查向量数量积的坐标运算,关键在于能够利用向量垂直求得点的坐标,从而得到所求向量的坐标,最终求得结果.11.已知函数的单调减区间为,则的值为____.【答案】e【解析】【分析】通过单调递减区间可确定,,利用韦达定理得到关于的方程,求解出结果.【详解】单调递减区间为且为方程的两根由韦达定理可知:当,即时,当,即时,,即此时,,即无解综上所述:本题正确结果:【点睛】本题考查利用单调区间求解参数值的问题,解题关键是要明确此函数单调区间的端点值恰为导函数值为零的点,通过构建方程求得结果.12.已知函数有三个不同的零点,则实数m的取值范围是____.【答案】【解析】【分析】通过时函数的单调性和值域,可判断出此时有且仅有一个零点,由此可知当时,有两个零点;通过求导运算,得到单调性,通过图像可知要想有两个零点,只需,求解得范围.【详解】当时,且在上单调递增有且仅有一个零点当时,需要有两个零点当时,当时,恒成立,即单调递增,不合题意;当时,令,解得:当时,,此时单调递增;当时,,此时单调递减,本题正确结果:【点睛】本题考查利用导数研究函数图像和零点个数的问题,关键在于能够通过导数得到图像情况,然后找到临界情况,从而列出关于的不等关系,求得范围.13.在平面直角坐标系中,已知圆O:和点M(1,0) .若在圆O上存在点A,在圆C:上存在点B,使得△MAB为等边三角形,则r的最大值为____.【答案】8【解析】【分析】通过分析图像可知:取最大值时,且在圆内部,由此可确定点的坐标,再利用方程组求解得到坐标为,由此可求得.【详解】圆由题意可知:,又且若最大,则需取最大值,且在圆内部可得,又与成角为设,则直线所在直线方程为:又解得:或(舍)时取最大值本题正确结果:【点睛】本题考查点与圆上点连线的最值、圆的最值类问题,关键在于能够通过图像分析出取得最值时点的位置,然后根据等量关系求解出坐标,进而求得结果.14.已知等差数列的前n项和S n>0,且,其中且.若(),则实数t的取值范围是____.【答案】【解析】【分析】首先根据可得恒成立,通过分析可求得;利用已知条件得到时,,根据等差数列通项公式和求和公式可化为,将右侧看做函数,即,通过的范围求得的范围,再结合变量和,分析求出的取值范围.【详解】设等差数列首项为,公差为由得:且即:对恒成立若,不恒成立,舍去若即,此时满足题意若即时,需时,,满足题意,又,所以由得:两式作商可得:,又整理可得:设,①当时,即当时,当时,此时,即,无法取得②当时,即当时,当时,综上所述:【点睛】本题考查数列的综合应用问题,在求解过程中结合了函数、不等式、恒成立等问题的求解方法和思路,整体难度较大.关键在于能够将范围的求解转化为函数值域的求解,在求解最值过程中,因为变量较多,需要不断进行变量迁移,从而能够在最值集合中找到满足题意的临界值,对学生的综合分析和应用能力要求较高.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,在三棱柱中,,.求证:(1)平面;(2)平面平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)通过,证得结论;(2)通过四边形为菱形,得到,又,可得到平面,从而证得结论.【详解】(1)在三棱柱中,又平面,平面所以平面(2)在三棱柱中,四边形为平行四边形因为,所以四边形为菱形,所以又,,平面,平面所以平面而平面所以平面平面【点睛】本题考查线面平行、面面垂直的证明,题目中的位置关系较为简单,属于基础题.16.在中,角所对的边分别为.向量,,且(1)若,求角的值;(2)求角的最大值.【答案】(1);(2).【解析】【分析】(1)利用向量平行得到,再利用正弦定理化简,可求得,从而求得;(2)方法一:利用正弦定理将边都化成角的关系,化简求得,再利用,结合基本不等式求得的最值,从而得到的最大值;方法二:利用余弦定理将角化成边的关系,再利用和基本不等式得到的最小值,从而得到的最大值.【详解】(1)因为,,且所以,即由正弦定理,得……①所以整理,得……②将代入上式得又,所以(2)方法一:由①式,因为,,所以②式两边同时除以,得又当且仅当,即时取等号又,所以的最大值为方法二:由(1)知,由余弦定理代入上式并化简得所以又当且仅当,即时取等号又,所以的最大值为【点睛】本题主要考查解三角形边角关系式的化简,以及通过边角关系式求解角的范围的问题.解决边角关系式的关键是能够通过正余弦定理将边化成角或者将角化成边,然后再进行处理.17.如图,在平面直角坐标系中,已知椭圆:的离心率为,且左焦点F1到左准线的距离为4.(1)求椭圆的方程;(2)若与原点距离为1的直线l1:与椭圆相交于A,B两点,直线l2与l1平行,且与椭圆相切于点M(O,M位于直线l1的两侧).记△MAB,△OAB的面积分别为S1,S2,若,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据椭圆的几何性质得到关系,求解得到标准方程;(2)设,根据可知,,又与原点距离为,即,可把化简为:,根据与椭圆相切,联立可得,由此代入化简可得的范围,再进一步求解出的范围.【详解】(1)因为椭圆的离心率为,所以又椭圆的左焦点到左准线的距离为所以所以,,所以椭圆的方程为(2)因为原点与直线的距离为所以,即设直线由得因为直线与椭圆相切所以整理得因为直线与直线之间的距离所以,所以又因为,所以又位于直线的两侧,所以同号,所以所以故实数的取值范围为【点睛】本题考查椭圆几何性质、直线与椭圆中的参数范围问题求解.求解参数范围问题,关键是构造出满足题意的函数关系式,然后通过函数求值域的方法,求解出函数的范围,从而可以推导出参数的范围.18.某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B 分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.(1)求水渠MN长度的最小值;(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).【答案】(1)百米;(2)平方米.【解析】【分析】(1)设,可表示出直线的方程,从而求得两点坐标,进而将表示为关于的函数,利用导数求得最值;(2)方法一:将表示为,利用将面积表示出来,利用进行换元,从而化简得:,再根据的范围求得面积最大值;方法二:利用三角形面积公式,直接用表示出,再利用换元,也可得到,从而与方法一采用相同的求最大值方法求值. 【详解】【解】(1)以圆心为原点,建立平面直角坐标系,则圆的方程为设点,直线的方程为,令,得直线的方程为,令,得所以令,即,则令,得当时,,则单调递减;当时,,则单调递增;所以当时,所以水渠长度的最小值为百米(2)由(1)可知,,,且则设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米另法:(2)因为,所以由所以设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米【点睛】本题考查函数导数的实际应用问题,属于中档题.解题关键在于能够将所求量表示为某一变量的函数关系,然后利用函数最值的求解方式求得对应的结果.19.已知数列的各项均不为0,其前n项和为.若,,,.(1)求的值;(2)求数列的通项公式;(3)若数列满足,,求证:数列是等差数列.【答案】(1)81;(2);(3)详见解析.【解析】【分析】(1)将代入,可求得;(2)由可求得,进而,两式作差可得,进而推得,可得数列及数列均为等差数列,进而求得通项;(3)由与关系可得:,即,两式作差可得:,进而推得,即,则证明结束.【详解】(1)时,由得解得 (2)时,由,得则 因为,所以……① 所以……②②①得所以,两式相减得即数列及数列都成公差为的等差数列由,得,可求得 所以数列的通项公式为(3)由,,得所以因为,所以所以两式相减得,即所以两式相减得所以因为,可得所以所以数列是等差数列【点睛】本题考查由数列递推关系式求解通项公式以及证明类问题.关键在于能够适当代入和,从而得到数列前后项之间的关系,灵活运用递推关系式.证明数列为等差数列问题,基本思路为说明或,符合定义式即可证得结论.20.已知函数,,其中且,.(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;(2)当m>0,k = 0时,求证:函数有两个不同的零点;(3)若,记函数,若,使,求k的取值范围.【答案】(1)0;(2)详见解析;(3)或.【解析】【分析】(1)分别求得与的极值点,利用极值点相同构造方程,求得;(2)首先求得在上单调递减,在上单调递增;再通过零点存在定理,分别在两段区间找到零点所在大致区间,根据单调性可知仅有这两个不同零点;(3)根据已知关系,将问题变为:,又,则可分别在,,三个范围内去求解最值,从而求解出的范围.【详解】(1)因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,所以函数的极值点为因为函数与有相同的极值点,所以所以(2)由题意,所以因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,又在上连续且单调所以在上有唯一零点取满足且则因为且,所以所以,又在上连续且单调所以在上有唯一零点综上,函数有两个不同的零点(3)时,由,使,则有由于①当时,,在上单调递减所以即,得②当时,,在上单调递增所以即,得③当时,在上,,在上单调递减;在上,,在上单调递增;所以即(*)易知在上单调递减故,而,所以不等式(*)无解综上,实数的取值范围为或【点睛】本题考查导数在研究函数中的综合应用问题,包括了单调性的求解、极值和极值点、最值问题,综合性较强.证明零点个数问题重点在于能够通过单调性将零点个数的最大值确定,进而再通过零点存在定理来确定零点个数;而能够将存在性问题转化为恒成立问题,通过最值来求解参数范围,也是解决此题的关键.数学Ⅱ(附加题)第21、22、23题,每小题10分,共计30分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.21.已知二阶矩阵有特征值,其对应的一个特征向量为,并且矩阵对应的变换将点(1,2)变换成点(8,4),求矩阵.【答案】【解析】【分析】设二阶矩阵为,根据特征值、特征向量可列出关于的方程组,求解即可得到结果.【详解】设所求二阶矩阵因为有特征值,其对应的一个特征向量为所以,且所以,解得所以【点睛】本题考查二阶矩阵以及特征值与特征向量的计算问题,属于基础题.22.如图,四棱锥P ABCD中,底面四边形ABCD为矩形,PA⊥底面ABCD,,F为BC的中点,.(1)若,求异面直线PD与EF所成角的余弦值;(2)若,求二面角E AF C的余弦值.【答案】(1);(2).【解析】【分析】(1)根据求得点坐标,从而表示出,通过夹角公式求得结果;(2)通过求得得点坐标,再进一步求出平面法向量,又面的一个法向量为,求出即可求得所求余弦值.【详解】以为原点,为正交基底建立如图所示的空间直角坐标系则,,,,,(1)当时,由得所以,又所以所以异面直线与所成角的余弦值为(2)当时,由,得设平面的一个法向量为,又,则,得又平面的一个法向量为所以所以二面角的余弦值为【点睛】本题考查利用空间向量法求解异面直线所成角和二面角的问题,关键在于能够准确地建立坐标系,并用坐标表示点、求解法向量;需要注意的问题是:平面法向量有无数条,方向不同会造成的符号不同,要判断好所求二面角与法向量夹角是等角关系还是补角关系,从而准确求得结果. 23.设整数数列{a n }共有2n ()项,满足,,且().(1)当时,写出满足条件的数列的个数;(2)当时,求满足条件的数列的个数.【答案】(1)8;(2).【解析】 【分析】(1)当确定时,可确定,再逆推可知有种取法;再依据可知各有种取法;由于与有关,当确定时,必然随之确定,故根据分步乘法计数原理,可得数列个数为;(2)设,且,可推得:;又,可推得:;用表示中值为的项数可知的取法数为,再任意指定的值,有种,可知数列有个;再化简,可得最终结果. 【详解】(1)时,,且则确定时,有唯一确定解又,可知有种取法若,则,则有种取法此时,也有种取法又,当确定时,随之确定故所有满足条件的数列共有:个满足条件的所有的数列的个数为(2)设,则由得①由得,则:即②用表示中值为的项数由②可知也是中值为的项数,其中所以的取法数为确定后,任意指定的值,有种由①式可知,应取,使得为偶数这样的的取法是唯一的,且确定了的值从而数列唯一地对应着一个满足条件的所以满足条件的数列共有个下面化简设两展开式右边乘积中的常数项恰好为因为,又中的系数为所以所以满足条件的数列共有个【点睛】本题考查新定义、排列组合、二项式定理问题,对学生分析解决问题能力要求较高;如何正确理解定义,同时找到定义式的切入点是解决问题的关键;题目对于排列组合、二项式定理知识的应用能力要求比较高,难度较大.。
【20套精选试卷合集】江苏省南京市2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷本试卷分试题卷和答题卡两部分。
试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页;答题卡共6页。
满分为150分,考试时间为120分钟。
考生作答时,请按要求把答案涂、写在答题卡规定的范围内,超出答题框或答在试题卷上的答案无效。
考试结束只交答题卡。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知R 为实数集,集合{}x x x A 332|<-=,{}2|≥=x x B ,则=B A Y(A ){}2|≥x x (B ){}3|->x x (C ){}32|<≤x x (D )R (2)已知22(1)a bi i+=+(,a b ∈R ,i 为虚数单位),则a b+=(A )7- (B )7 (C )4- (D )4(3)已知变量,x y 满足约束条件211,10x y x y y +≥⎧⎪-≤⎨⎪-≤⎩则2z x y =-的最大值为(A )3- (B )0 (C )1 (D )3(4)若xa ⎪⎭⎫ ⎝⎛=32,2x b =,x c 32log =,则当1x >时,,,a b c 的大小关系是(A )c a b << (B )c b a << (C )a b c << (D )a c b <<(5)在ABC ∆中,已知DC BC 3=,则AD =u u u r(A )AC AB 3132+ (B )AC AB 3132- (C )1233AB AC +u u u r u u u r (D )1233AB AC -u u ur u u u r(6)已知命题p :函数11x y a+=+(0a >且1a ≠)的图象恒过(1,2)-点;命题q :已知平面α∥平面β,则直线m ∥α是直线m ∥β的充要条件. 则下列命题为真命题的是(A )p q ∧ (B )p q ⌝∧⌝ (C )p q ⌝∧(D )p q ∧⌝(7)某程序框图如图所示,该程序运行后输出的k 的值是(A )3 (B )4 (C )5 (D )6(8)函数()cos 3f x x πω⎛⎫=+⎪⎝⎭(∈x R,0>ω)的最小正周期为π,为了得到()f x 的图象,只 , ,需将函数()sin 3g x x πω⎛⎫=+ ⎪⎝⎭的图象 (A )向左平移2π个单位长度 (B )向右平移2π个单位长度 (C )向左平移4π个单位长度 (D )向右平移4π个单位长度 (9)在△ABC 中,已知||4,||1AB AC ==u u u r u u u r,3ABC S ∆=,则AB AC ⋅u u u r u u u r 的值为(A )2- (B )2 (C )4± (D )2±(10)在递增的等比数列{}n a 中,已知134n a a +=,3264n a a -⋅=,且前n 项和为42n S =,则n =(A )3 (B )4 (C )5 (D )6(11)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积大小为(A )2a π (B )273a π (C )2113a π (D )25a π (12)已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为 (A )79 (B )13 (C )59 (D )23第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,集合 ,则 ()
A.{x|-1 <x<4}B.{x|-4<x<1}C.{x|-1≤x≤4}D.{x|-4≤x≤1}
2.如图,棱长为 的正方体 中, 为线段 的中点, 分别为线段 和棱 上任意一点,则 的最小值为()
②根据上表数据,求物理成绩 关于数学成绩 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程 ,
其中 , .
76
83
812
526
18.在平面直角坐标系 中,曲线 的参数方程为 ( 为参数),以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,直线 的极坐标方程为 ,直线 交曲线 于 两点, 为 中点.
A. B. C. D.
11.函数y= sin2x的图象可能是
A. B.
C. D.
12.已知数列 为等差数列, 为其前 项和, ,则 ()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若双曲线C: ( , )的顶点到渐近线的距离为 ,则 的最小值________.
14.若复数 ( 是虚数单位),则 ________
A. B.3C. D.
7.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为
7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号
1
2
3
4
5
6
7
数学成绩
60
65
70
75
85
87
90
物理成绩
70
77
80
85
90
86
93
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为 ,求 的分布列和数学期望;
A. B. C. D.
3.已知 , ,则 ()
A. B. C.3D.4
4.若复数 , ,其中 是虚数单位,则 的最大值为( )
A. B. C. D.
5.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=()
A.﹣21B.﹣24C.85D.﹣85
6.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )
(1)求椭圆E的方程;
(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当 时,求直线l的方程.
22.(8分)已知函数 .
(1)若 ,求不等式 的解集;
(2)已知 ,若 对于任意 恒成立,求 的取值范围.
23.(8分)已知数列 满足 .
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,证明: .
15.已知△ 的三个内角为 , , ,且 , , 成等差数列,则 的最小值为__________,最大值为___________.
16.如果复数 满足 ,那么 ______( 为虚数单位).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
在平面直角坐标系 ,已知曲线 ( 为参数),在以 原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线 的极坐标方程为 .
(1)求曲线 的普通方程和直线 的直角坐标方程;
(2)过点 且与直线 平行的直线 交 于 , 两点,求点 到 , 的距离之积.
21.(6分)如图,在平面直角坐标系 中,已知圆C: ,椭圆E: ( )的右顶点A在圆C上,右准线与圆C相切.
(1)求曲线 的直角坐标方程和点 的轨迹 的极坐标方程;
(2)若 ,求 的值.
19.(6分)如图,已知椭圆 经过点 ,且离心率 ,过右焦点 且不与坐标轴垂直的直线 与椭圆 相交于 两点.
(1)求椭圆 的标准方程;
(2)设椭圆 的右顶点为 ,线段 的中点为 ,记直线 的斜率分别为 ,求证: 为定值.
20.(6分)(选修4-4:坐标系与参数方程)
8200
3623
4869
6938
7481
A.08B.07C.02D.01
8.函数 的图像大致为().
A. B.
C. D.
9.函数 图像可能是()
A. B. C. D.
10.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如 的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数 构成乐音的是()
2.D
【解析】
【分析】
取 中点 ,过 作 面 ,可得 为等腰直角三角形,由 ,可得 ,当 时, 最小,由 ,故 ,即可求解.
【详解】
取 中点 ,过 作 面 ,如图:
则 ,故 ,
而对固定的点 ,当 时, 最小.
此时由 面 ,可知 为等腰直角三角形, ,
故 .
故选:D
【点睛】
本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.
3.A
【解析】
【分析】
根据复数相等的特征,求出 和 ,再利用复数的模公式,即可得出结果.
【详解】
因为 ,所以 ,
解得
则 .
故选:A.
【点睛】
本题考查相等复数的特征和复数的模,属于基础题.
4.C
【解Байду номын сангаас】
【分析】
由复数的几何意义可得 表示复数 , 对应的两点间的距离,由两点间距离公式即可求解.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
【分析】
解一元二次不等式求得集合 ,由此求得
【详解】
由 ,解得 或 .
因为 或 ,所以 .
故选:C
【点睛】
本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.