eviews实验5
Eviews 实验操作手册(部分)
Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。
②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。
相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。
个人感觉0.5左右的相关关系(趋势)就比较弱了。
eviews提供的相关计算是指序列之间的线性相关关系。
如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。
通常显著性是和建设检验关联的。
统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。
显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。
假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。
假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。
如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。
这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。
eviews实验报告
图二 点击“view/ Multiple Graphs/XY line”得到下图。
图三 Xy line图中,横坐标表示表示EX出口额,纵坐标表示GDP生产总 值,从图中曲线的形状分析,EX与GDP的线性关系较强,有继续分析 的意义。 5、描述性统计 (1)、打开对象“EX”,点击“view/Descriptive statistics/Histogram and stats”,可得到EX的描述性统计量。 EX的描述性统计。 均值(mean)为1134213。 中位数(median)为429843。 最大值(maximum)为4673393、最小值(minimum)为2368,可 知EX序列数据跨度大。 标准差(std.dev)为1463811,说明Y序列数据离散程度大。
9、最终确定模型 综上所述,最终确定的模型为 LnEX = -7.756501 + 1.438620 LnGDP +0.574091AR(1) 该模型不仅与样本的拟合程度高,而且不存在自相关问题,具有对 显示经济现象进行解释与预测的意义。 经济分析:InGDP的系数为正,说明经济发展水平的提高的确可以 增加出口额,而这与现实经济现象也是一致的。 统计分析:R2 =0.995071,说明模型很好地拟合了样本,所有参数 的Prob(t-statistic) <0.05,说明显著性检验通过,D.W.= 1.898759, du <1.898759<4-du,说明模型不存在自相关问题。
图四 (2)、打开对象“GDP”,点击“view/Descriptive statistics/Histogram and stats”,可得到GDP的描述性统计量。
eviews操作及案例-简版
■ 成本分析和预测
■ 蒙特卡罗模拟
■ 经济模型的估计和仿真 ■ 利率与外汇预测
EViews 引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分
析和统计分析,数据管理简单方便。其主要功能有:
(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;
(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生
实验七 ___________________________________________________________67
1
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
第一部分 EViews 基本操作
第一章 预 备 知识
一、什么是 EViews
EViews (Econometric Views)软件是 QMS(Quantitative Micro Software)公司开发的、基
于 Windows 平台下的应用软件,其前身是 DOS 操作系统下的 TSP 软件。EViews 具有现代
自 结合课程论文,自拟上机内容(不低于 定 10 学时上机)。
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
eviews实验报告总结(范本)
eviews实验报告总结eviews实验报告总结篇一:Evies实验报告实验报告一、实验数据:1994至201X年天津市城镇居民人均全年可支配收入数据 1994至201X年天津市城镇居民人均全年消费性支出数据 1994至201X年天津市居民消费价格总指数二、实验内容:对搜集的数据进行回归,研究天津市城镇居民人均消费和人均可支配收入的关系。
三、实验步骤:1、百度进入“中华人民共和国国家统计局”中的“统计数据”,找到相关数据并输入Exc el,统计结果如下表1:表11994年--201X年天津市城镇居民消费支出与人均可支配收入数据2、先定义不变价格(1994=1)的人均消费性支出(Yt)和人均可支配收入(Xt)令:Yt=cn sum/priceXt=ine/pri ce 得出Yt与Xt的散点图,如图1.很明显,Yt和X t服从线性相关。
图1 Yt和Xt散点图3、应用统计软件EVies完成线性回归解:根据经济理论和对实际情况的分析也都可以知道,城镇居民人均全年耐用消费品支出Yt依赖于人均全年可支配收入Xt的变化,因此设定回归模型为 Yt=β0+β?Xt﹢μt(1)打开E Vies软件,首先建立工作文件, Fil e rkfile ,然后通过bject建立 Y、X系列,并得到相应数据。
(2)在工作文件窗口输入命令:l s y c x,按E nter键,回归结果如表2 :表2 回归结果根据输出结果,得到如下回归方程:Y t=977.908+0.670Xt s=(172.3797) (0.0122) t=(5.673) (54.950) R2=0.995385 Adjust ed R2=0.995055 F-sta tistic=3019.551 残差平方和Sum sq uared resi d =1254108回归标准差S.E.f regressi n=299.2978(3)根据回归方程进行统计检验:拟合优度检验由上表2中的数分别为0.995385和0.995055,计算结果表明,估计的样本回归方程较好地拟合了样本观测值。
Eviews虚拟变量实验报告
实验四虚拟变量【实验目的】掌握虚拟变量的基本原理,对虚拟变量的设定和模型的估计与检验,以及相关的Eviews操作方法。
【实验内容】试根据1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数。
收入等级彩电拥有量Y(台/百户)人均收入X(元/年) iD困难户83.64 2198.88 0最低收入户87.01 2476.75 0低收入户96.75 3303.17 0中等偏下户100.9 4107.26 1中等收入户105.89 5118.99 1中等偏上户109.64 6370.59 1高收入户115.13 7877.69 1最高收入户122.54 10962.16 1【实验步骤】1、相关图分析根据表中数据建立人均收入X与彩电拥有量Y的相关图(SCAT X Y)。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:⎩⎨⎧=低收入家庭中、高收入家庭1D2、构造虚拟变量构造虚拟变量 1D (DATA D1),并生成新变量序列:GENR XD=X*D13、估计虚拟变量模型LS Y C X D1 XD得到估计结果:我国城镇居民彩电需求函数的估计结果为:XD D X Y 009.0873.31012.0611.571-++=∧(16.25) (9.03) (8.32) (-6.59)366,066.1..,9937.02===F e s R再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。
低收入家庭与中高收入家庭各自的需求函数为:低收入家庭:∧.57+=611XY012.0中高收入家庭:∧611.87331.57(+++-==012.0484)XX.Y003.0(.0009)89由此可见我国城镇居民家庭现阶段彩电消费需求的特点:对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。
eviews计量经济学实验报告
eviews计量经济学实验报告EViews计量经济学实验报告引言计量经济学是经济学领域中的一个重要分支,它运用数学、统计学和计量学的方法来分析经济现象。
EViews是一个常用的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于学术研究和实际经济分析中。
本实验报告将利用EViews软件进行计量经济学实验,以探讨经济现象并得出相关结论。
实验目的本实验旨在利用EViews软件对某一经济现象进行实证分析,通过建立相应的计量经济模型,对经济现象进行量化分析,并得出相关结论。
实验步骤1. 数据收集:首先,我们需要收集与所研究经济现象相关的数据,包括时间序列数据和横截面数据等。
这些数据可以来自于官方统计机构、学术研究机构或者自行收集整理。
2. 数据预处理:接下来,我们需要对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量和完整性。
3. 模型建立:在数据预处理完成后,我们可以利用EViews软件建立计量经济模型,包括回归分析、时间序列分析、面板数据分析等,以探讨经济现象的内在规律和影响因素。
4. 模型估计:建立模型后,我们需要对模型进行参数估计,得到模型的具体参数估计值,并进行显著性检验和模型拟合度检验,以验证模型的可靠性和有效性。
5. 结果分析:最后,我们将对模型估计结果进行分析,得出与经济现象相关的结论,并对实证分析结果进行解释和讨论。
实验结论通过以上实验步骤,我们得出了关于某一经济现象的实证分析结果,并得出了相关的结论。
这些结论对于理解经济现象的内在规律和制定经济政策具有重要的参考价值。
总结EViews计量经济学实验报告通过利用EViews软件进行实证分析,对经济现象进行了深入探讨,并得出了相关结论。
这些结论对于经济学研究和实际经济分析具有重要的理论和实践意义,为我们深入理解经济现象和推动经济发展提供了重要的参考依据。
EViews软件的应用为我们提供了一个强大的工具,帮助我们更好地理解和分析经济现象,为经济学领域的研究和实践提供了重要的支持和帮助。
计量经济学试验-Eviews
12
0.759316100176
27
13
24.0588008707
0.027744 -0.008265 38.94474 40950.71 -146.3152 1.698005
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
下:
序号
Y
X
序号
Y
X
1
2940
3547
16
1609
1963
2
2322
2769
17
2048
2450
3
1898
2334
18
2087
2688
4
1560
1957
19
3777
4632
5
1585189320源自230328956
1977
2314
21
2404
3072
7
1596
1953
22
2034
2421
8
1660
1960
0.133926 271.8586
7.278296 -1.056384
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
EVIEWS软件实验
表 3-1 (元)
2002 年 中 国 各 地 区 城 市 居 民 人 均 年 消 费 支 出 和 可 支 配 收 入
地
城市居民家庭平均每人每年消费支 城市居民人均年可支配收入
区
出
X
Y
北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南
571.70
4517.8
1228.83
106.0
1981
629.89
4862.4
1138.41
102.4
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Weekly ( 周数据 )
Quartrly (季度) 数据 )
Daily (5 day week ) ( 每周 5 天日
Semi Annual (半年) 数据 )
Daily (7 day week ) ( 每周 7 天日
Monthly (月度) 不规则的)
Undated or irreqular (未注明日期或
或点已存的文件名,再点“ok”。若要读取已存盘数据,点击“fire/Open”,在 对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。
STEP4:在 EViews 主页界面点击“Quick”菜单,点击“Estimate Equation”, 出现“Equation specification”对话框,选 OLS 估计,即选击“Least Squares”, 键入“Y C X”,点“ok”或按回车,即出现如图 3-14 那样的回归结果。也可以 在 EViews 命令框中直接键入“LS Y C X”,按回车,即出现回归结果。
eviews实验报告
eviews实验报告Eviews 实验报告摘要Eviews 是一个被广泛应用于经济学、金融学等领域的计量经济学软件。
本实验报告通过一个具体案例,介绍了如何运用 Eviews进行数据处理、模型建立和分析。
通过对此案例的完整实施流程,读者能够了解到 Eviews 的基本使用方法以及它在实际经济问题中的应用能力。
引言Eviews(Econometric Views)是一种功能强大的计量经济学软件工具,能够处理和分析经济与金融数据。
它不仅仅是一个数据处理工具,还可用于建立经济模型、估计经济关系、进行预测以及进行模型检验等。
本实验报告将通过一个案例,介绍如何利用Eviews 进行数据处理、模型建立和分析。
数据处理在使用 Eviews 进行数据处理之前,首先需要准备好待分析的数据。
这些数据可以是收集到的实际数据,也可以是从其他来源获取的公开数据。
无论数据来源如何,都需要通过 Eviews 的数据导入功能将其导入到软件中。
在导入数据之后,可以使用 Eviews 的数据处理功能对数据进行清洗和转换。
例如,可以通过计算某个变量的平均值、标准差等统计指标,快速了解数据的基本特征。
此外,还可以使用Eviews 的图表功能绘制各种统计图表,如折线图、散点图等,以便更好地理解数据。
模型建立在数据处理完成后,可以根据研究目的建立相应的经济模型。
Eviews 提供了丰富的模型建立功能,可以根据需要选择不同的模型类型。
例如,可以建立回归模型、时间序列模型等。
对于回归模型,可以通过 Eviews 的回归分析功能进行模型的估计和检验。
此功能可根据输入的自变量和因变量数据,自动估计出回归方程的参数,并计算出各种统计指标。
通过对模型的参数估计和假设检验,可以判断模型的有效性。
分析和预测在模型建立完成后,可以利用 Eviews 的分析功能对模型进行进一步的分析和预测。
Eviews 提供了丰富的统计方法和技术,如方差分析、协整分析等,可以帮助用户深入理解模型关系。
计量EVIEWS实验报告
计量EVIEWS实验报告CPI与M1的关系(1) 导⼊数据,建⽴⼯作组(2)⽣成cpi数据列对其进⾏ADF检验,⼀阶平稳,结果如下:同样⽅法⽣成m1数据列,并对其进⾏ADF检验,⼀阶平稳,结果如下:(3)以上实验说明CPI与M1是⼀阶单整序列,接着对DM1与DCPI进⾏协整检验,Quick→Group Statistics→Cointegration Test检验结果如下:说明存在2个协整关系。
(4)对其⼀阶差分序列进⾏格兰杰因果检验,Quick→Group Statistics→Granger Causality Test检验结果如下:说明M1是CPI变动的格兰杰原因,⽽CPI不是M1变动的格兰杰原因。
综上所述,CPI与M1存在协整关系,且M1的变动引起CPI的变动。
沪深股市收益率波动性分析⼀沪深股市收益率的波动性研究1、描述性统计图⼀上证收益率图⼆深证收益率从图⼀可以发现,样本期内沪市收益率均值为-0.000824,标准差为0.019323,偏度为-0.146983,峰度为5.707683,远⾼于正态分布的峰度值3,说明收益率r t具有尖峰和厚尾特征。
JB正态性检验也证实了这点,统计量为318.9724,说明在极⼩置信概率下,收益率显著异于正态分布;从图⼆可以发现,样本期内深市收益率均值为-0.00062,标准差为0.021601,偏度为-0.253026,峰度为4.838825,收益率同样具有尖峰厚尾特征。
深市收益率的标准差⼤于沪市,说明深圳股市的波动更⼤。
析。
3、均值⽅程的确定及残差序列⾃相关检验图三上证收益率⾃相关检验图四深证收益率⾃相关检验从图三和图四可以看出上证收益率和深证收益率都不存在⾃相关性,因此我们选择以下模型作为波动率模型的均值⽅程:it it it u r ε+= 2,1=i其中t r 1表⽰上证收益率,t r 2表⽰深证收益率。
对沪深市场收益率分别作如上模型的回归,结果如图五和图六所⽰:图五上证收益率回归分析图六深证收益率回归分析4、⽤Ljung-Box Q 统计量对均值⽅程拟和后的残差及残差平⽅做⾃相关检验图七上证收益率回归模型图⼋上证收益率回归模型残差残差的⾃相关检验平⽅的⾃相关检验图九深证收益率回归模型图⼗深证收益率回归模型残差残差的⾃相关检验平⽅的⾃相关检验从图七和图⼋可以发现,上证收益率回归模型的残差不存在⾃相关性,⽽上证收益率回归模型的残差平⽅存在很强的⾃相关,即模型残差存在条件异⽅差。
计量经济学eviews经典实验教案 (5)
EViews软件的基本操作1.1 实验目的了解EViews 软件的基本操作对象,掌握软件的基本操作。
1.2 实验内容以表1.1所列中国的GDP与消费的总量数据(1990~2000,亿元)为例,利用EViews 软件进行如下操作:(1)EViews 软件的启动(2)数据的输入、编辑与序列生成(3)图形分析与描述统计分析(4)数据文件的存贮、调用与转换表1.12004 142394.2 75439.7数据来源:2004年中国统计年鉴,中国统计出版社1.3 实验步骤1.3.1 EViews的启动步骤进入Windows /双击EViews5快捷方式,进入EViews窗口;或点击开始/程序/EViews5/EViews5进入EViews窗口,如图1.1。
图1.1标题栏:窗口的顶部是标题栏,标题栏的右端有三个按钮:最小化、最大化(或复原)和关闭,点击这三个按钮可以控制窗口的大小或关闭窗口。
菜单栏:标题栏下是主菜单栏。
主菜单栏上共有7个选项:File,Edit,Objects,View,Procs,Quick,Options,Window,Help。
用鼠标点击可打开下拉式菜单(或再下一级菜单,如果有的话),点击某个选项电脑就执行对应的操作响应。
命令窗口:主菜单栏下是命令窗口,窗口最左端一竖线是提示符,允许用户在提示符后通过键盘输入EViews命令。
主显示窗口:命令窗口之下是EViews的主显示窗口,以后操作产生的窗口(称为子窗口)均在此范围之内,不能移出主窗口之外。
状态栏:主窗口之下是状态栏,左端显示信息,中部显示当前路径,右下端显示当前状态,例如有无工作文件等。
EViews有四种工作方式:(1)鼠标图形导向方式;(2)简单命令方式;(3)命令参数方式[(1)与(2)相结合)] ;(4)程序(采用EViews 命令编制程序)运行方式。
用户可以选择自己喜欢的方式进行操作。
1.3.2数据的输入、编辑与序列生成进入EViews后的第一件工作应从创建新的或调入原有的工作文件开始。
eviews实验报告
eviews实验报告EViews实验报告引言:EViews是一款经济学和金融学领域常用的计量经济学软件,它提供了丰富的数据分析和模型建立功能。
本实验报告将通过一个实例来展示EViews在经济分析中的应用。
实验目的:本实验旨在通过EViews软件对某国家的经济数据进行分析,以探索其经济发展的趋势和特点,并构建合适的经济模型,以期对未来的经济走势进行预测。
实验步骤:1. 数据收集与导入首先,我们需要收集某国家的经济数据,如GDP、通货膨胀率、失业率等。
这些数据可以从官方统计机构或相关研究机构获取。
然后,我们将这些数据导入EViews软件中,以便进行后续的数据分析和建模。
2. 数据预处理与可视化在进行数据分析之前,我们需要对数据进行预处理,包括处理缺失值、异常值和数据平滑等。
EViews提供了丰富的数据处理工具,如插值法、平滑算法等,可以帮助我们更好地处理数据。
同时,我们还可以利用EViews的可视化功能,绘制出各个经济指标的趋势图和相关性分析图,以便更好地理解数据。
3. 统计分析与模型建立在对数据进行预处理和可视化之后,我们可以进行统计分析,探索各个经济指标之间的关系。
EViews提供了多种统计方法,如相关性分析、回归分析等,可以帮助我们发现变量之间的关联性。
基于统计分析的结果,我们可以构建合适的经济模型,如VAR模型、ARIMA模型等,以期对未来的经济走势进行预测。
4. 模型评估与优化构建经济模型后,我们需要对模型进行评估和优化,以提高其预测准确性。
EViews提供了多种模型评估指标,如均方根误差(RMSE)、平均绝对误差(MAE)等,可以帮助我们评估模型的拟合效果。
如果模型的预测效果不理想,我们可以通过调整模型参数或选择不同的模型结构来优化模型。
5. 经济预测与政策建议在模型评估和优化之后,我们可以利用经济模型对未来的经济走势进行预测。
基于预测结果,我们可以提出相应的经济政策建议,以帮助决策者制定合理的经济政策。
eviews实验报告
eviews实验报告EViews实验报告引言:EViews是一种广泛应用于经济学和金融学领域的计量经济学软件,它提供了一套强大的数据分析和建模工具。
本实验报告将通过一个实际案例,展示EViews 在经济数据分析中的应用。
数据收集与导入:首先,我们需要收集与我们研究主题相关的数据。
在本实验中,我们将以中国GDP和失业率数据为例。
我们可以通过EViews的数据导入功能将这些数据导入到软件中。
这样,我们就可以在EViews中对这些数据进行分析。
数据描述与可视化:在导入数据后,我们可以使用EViews的数据描述和可视化功能来了解数据的基本特征。
我们可以查看数据的统计摘要,包括均值、标准差、最小值和最大值等。
此外,我们还可以通过绘制折线图、散点图和直方图等图表来更好地理解数据的分布和趋势。
时间序列分析:EViews在时间序列分析方面具有强大的功能。
我们可以使用EViews中的自回归移动平均模型(ARMA)来对时间序列数据进行建模和预测。
通过对中国GDP数据进行ARMA建模,我们可以获得一个模型,该模型可以用来预测未来的GDP值。
面板数据分析:除了时间序列分析,EViews还支持面板数据分析。
面板数据是一种同时包含多个个体和多个时间点观测的数据类型。
通过EViews的面板数据分析功能,我们可以对个体和时间的固定效应进行建模和分析。
例如,我们可以使用面板数据分析功能来研究不同城市之间的失业率差异,并探索与失业率相关的因素。
计量经济模型估计:EViews还提供了一系列计量经济模型的估计方法,包括最小二乘法、广义矩估计和极大似然估计等。
我们可以使用这些方法来估计经济模型的参数。
例如,我们可以使用EViews的OLS(Ordinary Least Squares)方法来估计一个简单的线性回归模型,以研究GDP与失业率之间的关系。
假设检验与模型诊断:在进行计量经济分析时,假设检验和模型诊断是非常重要的步骤。
EViews提供了一系列假设检验和模型诊断的工具。
eviews计量经济学实验报告
eviews计量经济学实验报告EViews计量经济学实验报告引言:计量经济学是经济学的一个重要分支,它运用数学和统计学方法对经济现象进行定量分析和预测。
EViews是一种强大的计量经济学软件,它提供了丰富的数据处理、统计分析和模型建立功能,被广泛应用于学术研究和实际经济分析中。
本实验报告旨在通过使用EViews软件,对某一经济现象进行实证研究,从而展示EViews在计量经济学中的应用和价值。
数据收集与预处理:本实验选择了中国GDP和CPI数据作为研究对象,数据来源于国家统计局。
首先,我们从国家统计局的官方网站上下载了相应的数据集,并导入到EViews中。
然后,我们对数据进行了初步的预处理,包括缺失值处理、异常值处理和数据平滑等。
通过这些步骤,我们得到了一份完整、可靠的数据集,为后续的分析和建模打下了基础。
描述性统计与数据可视化:在进行进一步的分析之前,我们首先对数据进行了描述性统计和数据可视化。
通过EViews的统计功能,我们计算了GDP和CPI的均值、标准差、最大值和最小值等统计指标,以及相关系数和协方差等相关指标。
同时,我们还使用EViews的绘图功能,绘制了GDP和CPI的时间序列图、散点图和直方图等。
这些统计和图表可以直观地展示数据的分布和变化趋势,为后续的模型分析提供参考。
时间序列分析:在进行时间序列分析时,我们首先对GDP和CPI数据进行平稳性检验。
通过EViews的单位根检验和ADF检验,我们发现GDP和CPI序列都是非平稳的,即存在单位根。
为了消除非平稳性,我们对数据进行了差分处理。
通过一阶差分,我们得到了平稳的GDP和CPI序列。
接下来,我们对平稳序列进行了自相关和偏自相关分析,以确定合适的ARIMA模型。
通过EViews的自相关函数和偏自相关函数图,我们发现GDP序列可以拟合为ARIMA(1,1,0)模型,而CPI序列可以拟合为ARIMA(0,1,1)模型。
回归分析与模型评估:在进行回归分析时,我们选择了GDP作为因变量,CPI作为自变量,建立了线性回归模型。
Eviews实验报告5
绘制1992-1998年的中国城镇居民月人均生活费支出(y)和可支配收入序列(x)的折线图如下:
可以看到序列呈逐年上升趋势,并且在每年二月份会出现一个高位,这与实际是想符合的。
鉴于消费既受到当期收入等经济实力因素的影响,也受到前期消费的影响,因此建立一个消费的自回归分布滞后模型。
采用y c y(-1) y(-2) y(-3) y(-12) x x(-1) x(-2) x(-3) x(-12)建立模型。
如下图:
得到分析结果如下:
有较多项系数对应的p值显著大于0.05,因此我们逐个删除p值最大的项,
最后留下四项,得到下图:
可以看到对应的四个参数的系数的p值都显著小于0.001。
模型拟合的预测值DCPIF的折线图和与dcpi的对比图如下:
精品文档
可编辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EViews 最小二乘法估计结果:
Dependent Variable: LNY Method: LeasБайду номын сангаас Squares Date: 12/01/11 Time: 11:09
Sample: 1980 2000 Included observations: 21 Coefficient C LNX R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 1.452109 0.870419 0.988300 0.987684 0.117889 0.264059 16.15139 1604.952 0.000000 Std. Error 0.190925 0.021727 t-Statistic 7.605641 40.06186 Prob. 0.0000 0.0000 9.031179 1.062296 -1.347752 -1.248273 -1.326162 0.451709
-0.027388 0.003293 1.034982 -0.521883 0.057467 0.582003 0.477503 0.083057 0.110376 25.31033 5.569435 0.005271
0.0006 0.0022
Time: 11:17
Sample: 1980 2000 Included observations: 21 Presample missing value lagged residuals set to zero. Coefficient C LNX RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) -0.025902 0.003098 1.008103 -0.465000 0.580668 0.506668 0.080706 0.110728 25.27686 7.846883 0.001679 Std. Error 0.131079 0.014926 0.216751 0.217953 t-Statistic -0.197609 0.207594 4.650981 -2.133486 Prob. 0.8457 0.8380 0.0002 0.0478 1.09E-15 0.114904 -2.026367 -1.827411 -1.983189 1.516376
Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared Test Equation: Dependent Variable: RESID Method: Least Squares Date: 12/01/11 Time: 11:18 7.425914 12.22205 Prob. F(3,16) Prob. Chi-Square(3) 0.0025 0.0067
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
由于resid(-1)、resid(-2)分别为0.0002、0.0478.均小于显著性水平0.05,且其T统计量的 绝对值均大于1.729,所以此方程存在二阶序列相关。 接着进行三阶序列相关的检验:
Sample: 1980 2000 Included observations: 21 Presample missing value lagged residuals set to zero. Coefficient Std. Error t-Statistic Prob.
C LNX RESID(-1) RESID(-2) RESID(-3) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
F-statistic Obs*R-squared Test Equation: Dependent Variable: RESID Method: Least Squares Date: 12/01/11
11.77032 12.19402
Prob. F(2,17) Prob. Chi-Square(2)
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
3.做 LM 检验
Breusch-Godfrey Serial Correlation LM Test:
.3
.2
.1
R(-1)
.0 -.1 -.2 -.2 -.1 .0 R .1 .2 .3
根据 OLS 计算结果,看出残差 r 呈线性自回归,表明随机误差μ 存在自相关。且 由 DW 检验得: Durbin-Watson stat=0.451709,给定显著性水平 a=0.05,查 D-W 表, n=21, k (解释变量个数) =1, 得下限临界值 dL=1.22, 上限临界值 dU=1.42, 因为 DW 统计量为 0.451709<dL=1.22。根据判定区域知,此时随机误差项存在一 阶自相关。
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
11
.3
10
.2
9
.1
.15 8 .10 7
.0
.05 .00
-.1
暨南大学本科实验报告专用纸
课程名称 计量经济学成绩评定 实验项目名称序列相关指导教师黄建军 实验项目编号 02010037905 实验项目类型 综合性 学生姓名 李碧妍学号 2009050226 学院经济学院系财税系专业财政学专业 实验时间 2011 年 12 月 1 日 上午实验地点 经济学院机房
为此,进行如下的校正:
Dependent Variable: LNY
Method: Least Squares Date: 12/13/11 Time: 19:51
Sample (adjusted): 1982 2000 Included observations: 19 after adjustments Convergence achieved after 7 iterations Variable C LNX AR(1) AR(2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Inverted AR Roots Dependent Variable: R Method: Least Squares Date: 12/13/11 Time: 19:55 Coefficient 1.067728 0.911255 0.913717 -0.427302 0.996982 0.996379 0.060374 0.054675 28.62274 1651.791 0.000000 .46+.47i .46-.47i Std. Error 0.253666 0.027926 0.203740 0.180875 t-Statistic 4.209196 32.63122 4.484725 -2.362418 Prob. 0.0008 0.0000 0.0004 0.0321 9.180568 1.003240 -2.591867 -2.393038 -2.558217 1.983830
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat
Sample (adjusted): 1982 2000 Included observations: 19 after adjustments Variable C LNY R(-1) R(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Coefficient -0.285362 0.029973 0.894153 -0.381699 0.718521 0.662225 0.056613 0.048076 29.84463 12.76331 0.000209 Std. Error 0.131589 0.014182 0.201074 0.178163 t-Statistic -2.168586 2.113405 4.446888 -2.142411 Prob. 0.0466 0.0517 0.0005 0.0490 -0.021596 0.097410 -2.720487 -2.521658 -2.686837 1.989727
-.05
-.2 80 82 84 86 88 90 92 94 96 98 00
-.10 82 84 86 88 Residual 90 92 Actual 94 96 Fitted 98 00