实验一EVIEWS中时间的序列相关函数操作

合集下载

eviews常用运算、函数及命令

eviews常用运算、函数及命令

1.常用运算:加、减、乘、除、幂例如:已知变量X 、Y,生成新变量Z在命令窗口输入:Genr Z=X + Y 加Genr Z=X – Y 减Genr Z=X * Y 乘Genr Z=X / Y 除Genr Z=X ^(3) 3次幂Genr Z=X ^(0.5) 开根号Genr Z=X ^(-1) 倒数Genr Z=X ^(2)平方以此类推……注意:*是乘,保留运算符号,不能用于设置变量名此外,还可以用括号进行复合运算,比如:Genr Z=(X + Y)*X^(3)/Y2.常用函数:对数、指数、滞后值、差分Genr Z1=LOG(X) 自然对数Ln,注意Ln(X)是错误的Genr Z2=LOG(Y)Genr Z3=EXP(X) e xGenr Z4=ABS(X) X的绝对值Genr Z5= X(-1) 滞后值:X的前一期值,注意跟倒数的区别Genr Z6= X(-2) 滞后值:X的前二期值,注意跟负二次方的区别Genr Z7= X(-3) ……Genr Z8=D( X ) X的差分,即X-X(-1)变量名必须以字母开头,后面可以跟数字,以示区别注意:D是差分,保留函数符号,不能用于设置变量名复合运算,比如:Genr Z9= EXP( X ) *((1+EXP( X ))^(-1))3.一些@开头的函数比如:@OBS(X) 返回变量X的观察值个数,其实就是n@mean(X) 返回变量X的均值@sum(X) 返回变量X的序列求和@r2 返回当前回归的R平方@dw 返回当前回归的dw值@ssr 返回当前回归的残差平方和4.常用回归命令LS Y C XLS Y C X1 X2 X3LS LOG(Y) C LOG(X1) LOG(X2)5.常用绘图命令SCA T X Y 散点图X为横轴,Y为纵轴LINE Y X1 X2 X3 折线图。

EVIEWS时间序列实验指导(上机操作说明)

EVIEWS时间序列实验指导(上机操作说明)
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。

Eviews 应用实例

Eviews 应用实例

指数平滑对话框中包含五个部分的选项:平滑方法 (Smoothing Method)、平滑系数(Smoothing Method)、平滑系数(Smoothing Parameters)、平滑后生成序列的名称(Smoothed Parameters)、平滑后生成序列的名称(Smoothed Series)、预测样本范围(Estimation Sample)和季节变动 Series)、预测样本范围(Estimation Sample)和季节变动 周期(Cycle 周期(Cycle for Seasonal)。 Seasonal)。 对话框左上部分的平滑方法(Smoothing Method)包括: 对话框左上部分的平滑方法(Smoothing Method)包括: Single 一次指数平滑 Double 二次指数平滑 Holt-Winters- Holt-Winters-No seasonal Holt-Winters无 Holt-Winters无 季节模型 Holt-Winters- Holt-Winters-Additive Holt-Winters季节 Holt-Winters季节 迭加模型 Holt-Winters- Holt-Winters-Multiplicative Holt-Winters季 Holt-Winters季 节乘积模型 平滑系数(Smoothing Parameters)包括Alpha,Beta, 平滑系数(Smoothing Parameters)包括Alpha,Beta, Gamma。平滑系数可由系统自动给定,也可以由用户指定。 Gamma。平滑系数可由系统自动给定,也可以由用户指定。 缺省状态是由系统自动给定。如果用户需要指定,只需在对应 参数的位置填入指定的数值。
出于预测的考虑,有时系统给定的系数不是很 理想,用户需要自己指定平滑系数值。平滑系数取 什么值比较合适呢?一般来说,如果序列变化比较 平缓,平滑系数值应该比较小,比如小于0.l;如果 平缓,平滑系数值应该比较小,比如小于0.l;如果 序列变化比较剧烈,平滑系数值可以取得大一些, 如0.3~0.5。若平滑系数值大于0.5才能跟上序列 0.3~0.5。若平滑系数值大于0.5才能跟上序列 的变化,表明序列有很强的趋势,不能采用一次指 数平滑进行预测。 [例1 [例1]某企业食盐销售量预测。现在拥有最近 连续30个月份的历史资料(见表l 连续30个月份的历史资料(见表l),试预测下一 月份销售量。

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

Eviews 实验操作手册(部分)

Eviews 实验操作手册(部分)

Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。

②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。

相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。

个人感觉0.5左右的相关关系(趋势)就比较弱了。

eviews提供的相关计算是指序列之间的线性相关关系。

如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。

通常显著性是和建设检验关联的。

统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。

显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。

显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。

假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。

假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。

如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。

这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。

计量经济学 —理论方法EVIEWS应用--第七章 序列相关性

计量经济学 —理论方法EVIEWS应用--第七章  序列相关性
C o v ( , j ) E ( ) 0 i i j
在其他假设仍然成立的条件下,随机干扰项序列相关意味着
(7-2)
如果仅存在
E ( ) 0 , i 1 , 2 , . . . , n i i 1
(7-3)
则称为一阶序列相关或自相关(简写为AR(1)),这是常见的一种序列相关问题。
D .W .
不存在一阶自相关,构造如下统计量: t
t
( eˆ
t2
n
ˆt 1 ) 2 e
2 t

t 1
n
杜宾—沃森证明该统计量的分布与出现在给定样本中的X值有复杂的关系,
其准确的抽样或概率分布很难得到;
因为D.W.值要从
eˆ t 中算出,而 eˆ t
又依赖于给定的X的值。
2 χ 因此D-W检验不同于t、F或 检验,它没有唯一的临界值可以导出拒绝或
用OLS法估计序列相关的模型得到的随机误差项的方差不仅是 有偏的,而且这一偏误也将传递到用OLS方法得到的参数估计 量的方差中来,从而使得建立在OLS参数估计量方差基础上的 变量显著性检验失去意义。
以一元回归模型为例,
Y X i 0 1 i i
2
ˆ) Var ( 1 2 xt
序列相关性及其产生原因序列相关性的影响序列相关性的检验序列相关的补救第一节序列相关性及其产生原因序列相关性的含义对于多元线性回归模型71在其他假设仍然成立的条件下随机干扰项序列相关意味着如果仅存在则称为一阶序列相关或自相关简写为ar1这是常见的一种序列相关问题
—理论· 方法· EViews应用
郭存芝 杜延军 李春吉 编著
二、回归检验法
, eˆ, 以 e ˆ t 为解释变量,以各种可能的相关变量,诸如 t1

Eviews操作教程_完整版

Eviews操作教程_完整版

Eviews操作教程_完整版1.EVIEWS基础 (3)1.1. E VIEWS简介 (3)1.2. E VIEWS的启动、主界⾯和退出 (3)1.3. E VIEWS的操作⽅式 (6)1.4. E VIEWS应⽤⼊门 (6)1.5. E VIEWS常⽤的数据操作 (15)2.⼀元线性回归模型 (24)2.1. ⽤普通最⼩⼆乘估计法建⽴⼀元线性回归模型 (24) 2.2. 模型的预测 (30)2.3. 结构稳定性的C HOW检验 (34)3. 多元线性回归 (39)3.1. ⽤OLS建⽴多元线性回归模型 (39)3.2. 函数形式误设的RESET检验 (45)4. ⾮线性回归 (48)4.1. ⽤直接代换法对含有幂函数的⾮线性模型的估计 (48) 4.2. ⽤间接代换法对含有对数函数的⾮线性模型的估计 (50) 4.3. ⽤间接代换法对CD函数的⾮线性模型的估计 (53)4.4. NLS对可线性化的⾮线性模型的估计 (55)4.5. NLS对不可线性化的⾮线性模型的估计 (58)4.6. ⼆元选择模型 (62)5. 异⽅差 (68)5.1. 异⽅差的⼽得菲尔德——匡特检验 (68)5.2. 异⽅差的WHITE检验 (72)5.3. 异⽅差的处理 (75)6. ⾃相关 (79)6.1. ⾃相关的判别 (79)6.2. ⾃相关的修正 (83)7. 多重共线性 (87)7.1. 多重共线性的检验 (87)7.2. 多重共线性的处理 (92)8. 虚拟变量 (94)8.1. 虚拟⾃变量的应⽤ (94)8.2. 虚拟变量的交互作⽤ (99)8.3. ⼆值因变量:线性概率模型 (101)9. 滞后变量模型 (106)9.1. ⾃回归分布滞后模型的估计 (106)9.2. 多项式分布滞后模型的参数估计 (111)10. 联⽴⽅程模型 (116)10.1. 联⽴⽅程模型的单⽅程估计⽅法 (116)10.2. 联⽴⽅程模型的系统估计⽅法 (120)2..1.Eviews基础1.1.Eviews简介Eviews:Econometric Views(经济计量视图),是美国QMS公司(Quantitative Micro Software Co.,⽹址为/doc/8e38170bbed126fff705cc1755270722192e59b1.html )开发的运⾏于Windows环境下的经济计量分析软件。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (14)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)二、ARIMA模型 (57)三、季节模型 (62)第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

实验一 EVIEWS中时间序列相关函数操作

实验一  EVIEWS中时间序列相关函数操作

实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

掌握时间序列的白噪声检验【实验内容】一、复习EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式以及确定性趋势模型拟合;三、时间序列的自相关和偏自相关图与函数;四、时间序列的白噪声检验【实验步骤】复习:EViews软件的常用菜单方式和命令方式;(一)创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998(二)输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X⒉鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。

eviews教程时间序列回归

eviews教程时间序列回归

eviews教程时间序列回归
17
§15.3.5 含有AR项模型的估计输出
当估计某个含有AR项的模型时,在解释结果时一定要小心。在用通常的方 法解释估计系数,系数标准误差和t-统计量时,涉及残差的结果会不同于OLS的 估计结果。
要理解这些差别,记住一个含有AR项的模型有两种残差: 第一种是无条件残差
对于含有AR项的模型,基于残差的回归统计量,如R2 (回归标准误差)和 D-W值都是以一期向前预测误差为基础的。含有AR项的模型独有的统计量是
估计的AR系数ˆ i。对于简单AR(1)模型,ˆ 是无条件残差的序列相关系数。
对于平稳AR(1)模型, 在-1(极端负序列相关)和+1(极端正序列相关)之
间。一般AR(p)平稳条件是:滞后算子多项式的根的倒数在单位圆内。
平稳性定义: 如果随机过程 Yt {, y1, y0 , y1, y2 ,, yT , yT1,} 的均值和方 差、自协方差都不取决于 t,则称 Y t 是协方差平稳的或弱平稳的:
E(Yt )
对所有的 t
Var(Yt ) 2
对所有的 t
eviews教程时间序列回归
7
§15.2.2 相关图和Q-统计量
在方程工具栏选择View/Residual Tests/correlogram-Q-statistics 。 EViews将显示残差的自相关和偏自相关函数以及对应于高阶序列相关的 Ljung-Box Q统计量。如果残差不存在序列相关,在各阶滞后的自相关和 偏自相关值都接近于零。所有的Q-统计量不显著,并且有大的P值。
k 阶滞后的Q-统计量是原假设为序列没有k 阶自相关的统计量。计算
式如下
QLB
T
T 2
k rj2 j1 T

Eviews中的常用函数及应用

Eviews中的常用函数及应用

Eviews中的常用函数及应用Eviews 常用命令 (对于命令和变量名,不区分大小写)1.创建时间序列的工作文件a annual : create a 1952 2000s semi-annual :create s 1952 1960 qquarterly : create q 1951:1 1952:3m monthly : create m 1952:01 1954:11w weekly: create w 2/15/94 3/31/94,自动认为第一天为周一,和正常的周不同。

d daily (5 day week): create d 3/15/2008 3/31/2008,和日历上周末一致,自动跳过周末。

7 daily (7 day week): create 7 3/03/2008 3/31/2008。

u undated: create u 1 33。

创建工作文件时可直接命名文件,即在create 后面直接键入“文件名”, 如create myfilename a 1952 2000 或者 workfile myfilename a 1952 2000系统自动生成两个序列:存放参数估计值c 和残差resid 。

4)回归统计函数回归统计函数是从一个指定的回归方程返回一个数。

调用方法:方程名后接.再接@函数。

如EQ1.@DW ,则返回EQ1方程的D-W 统计量。

如果在函数前不使用方程名,则返回当前估计方程的统计量。

统计函数见下面:@RESIDCOVA(I,j) 向量自回归中残差之间的协方差7.矩阵 8.常用命令:1)Cov x y :cov(,)()()/iix y x x y y n =--∑协方差矩阵。

Cor x y :22co (,)()()()()iiiir x y x x y y x x y y =----∑∑∑相关矩阵。

2)plot x y :出现趋势分析图,观察两个变量的变化趋势或是否存在异常值。

(完整word版)实验一Eviews软件的基本操作-学生实验报告

(完整word版)实验一Eviews软件的基本操作-学生实验报告

实验报告课程名称: 计量经济学实验项目:实验一EViews软件的基本操作实验类型:综合性□设计性□验证性专业班别:姓名:学号:实验课室:指导教师:石立实验日期:广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否小组成员:无实验目的:了解熟悉EViews软件的基本操作对象,掌握软件的基本操作。

实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。

实验训练内容(包括实验原理和操作步骤):【实验内容】1.打开运行并认识Eviews软件;2.EViews软件的数据输入、编辑与序列生成;3.图形分析与描述统计分析;4.数据文件的存储与调用。

【实验数据】实验以附件“数据”所列出数据资料为例进行操作。

【实验步骤】一、打开运行软件实验中采用Eviews软件6.0版本绿色版,实验计算机上已安装,请找到图标,点击即可打开软件的操作界面.【注意:FTP中上传了软件的压缩包,同学们可以拷贝到自己的电脑,将压缩包解压后,打开文件夹,双击注册表,进行注册,注册成功后即可使用。

】二、认识软件界面Eviews软件窗口有无部分组成:标题栏、主菜单、命令窗口、状态栏、工作区.三、输入数据1.创建工作文件(1)菜单方式在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

注:根据数据的不同类型,应创建不同的工作文件,Eviews提供的数据工作文件可分为三种:a、无结构数据/截面数据:Unstructured/Undatedb、时间序列数据:Dated-regular frequency具体有:年度数据(Annual)、半年数据(Semi-annual)、季度数据(Quarterly)、月度数据(Monthly)、周数据(Weekly)、一周五天的数据(Daily-5days week)、一周七天的数据(Daily-7days week)、每日数据(Daily/integer date)c、面板数据Balanced Panel在本例中,按照下图的方式选取选项和填写数据:(2)命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件.命令格式为:CREATE 时间频率类型起始期终止期(时间频率类型以该类型英文首字母标记)则本例实验中的程序可写为:CREATE A 1978 2005在创建的工作文件中,一开始其就包含了两个对象:(如图)*系数向量C(保存估计系数用)*残差序列RESID(实际值与拟合值之差)2.输入数据并命名(1)添加新序列..点击Objects/New Object(或在工作区右击鼠标,选取New Object),对象类型选择Series,并给定序列名,一次只能创建一个新序列。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

EVIEWS上机实验指导书

EVIEWS上机实验指导书

计量经济学上机指导及练习第一部分Eviews基础1.1. Eviews 简介Eviews :Econometric Views (经济计量视图),是美国QMS 公司(Quantitative Micro Software Co.,网址为 )开发的运行于Windows 环境下的经济计量分析软件。

Eviews 是应用较为广泛的经济计量分析软件——MicroTSP 的Windows 版本,它引入了全新的面向对象概念,通过操作对象实现各种计量分析功能。

Eviews 软件功能很强,能够处理以时间序列为主的多种类型数据,进行包括描述统计、回归分析、传统时间序列分析等基本数据分析以及建立条件异方差、向量自回归等复杂的计量经济模型。

1.2. Eviews 的启动、主界面和退出1.2.1. Eviews 的启动单击Windows 的【开始】按钮,选择【程序】选项中的【Eviews 5】,单击其中的【Eviews5】;或者在相应目录下用鼠标双击启动Eviews 5程序,进入主窗口。

如图1.1所示:图1.1Eviews 窗口1.2.2. Eviews 的主界面1.2.2.1. 标题栏Eviews 窗口的顶部是标题栏,标题栏左边是控制框;右边是控制按钮,有【最小化】、【最大化菜单栏命令窗口 工作区状态栏(或还原)】、【关闭】三个按钮。

1.2.2.2. 菜单栏标题栏下面是菜单栏。

菜单栏中排列着按照功能划分的9个主菜单选项,用鼠标单击任意选项会出现不同的下拉菜单,显示该部分的具体功能。

9个主菜单选项提供的主要功能如下:【File】有关文件(工作文件、数据库、Eviews程序等)的常规操作,如文件的建立(New)、打开(Open)、保存(Save/Save As)、关闭(Close)、导入(Import)、导出(Export)、打印(Print)、运行程序(Run)等;选择下拉菜单中的Exit将退出Eviews软件。

【Edit】通常情况下只提供复制功能(下拉菜单中只有Cut、Copy项被激活),应与粘贴(Paste)配合使用;对某些特定窗口,如查看模型估计结果的表达式时,可对窗口中的内容进行剪切(Cut)、删除(Delete)、查找(Find)、替换(Replace)等操作,选择Undo表示撤销上步操作。

EVIEWS序列相关检验2介绍

EVIEWS序列相关检验2介绍

EVIEWS序列相关检验2介绍
Eviews序列相关检验(Serial Correlation Test)使用EViews可
以快捷方便地进行序列相关检验。

该工具可以使用不同的统计检验来检验
序列数据中是否存在自相关性。

一、检验原理
序列相关检验,也称为自相关检验,用于检查序列数据中是否存在其
中一种自相关性。

假设序列数据由一个残差过程组成,其中残差经过自相
关过程。

自相关过程指的是延迟和移动残差之间的关系(即序列数据可能
存在其中一种趋势或周期性变化)。

序列相关检验的目的是检测残差序列
是否存在自相关性,以及其是否具有统计学意义。

二、序列相关检验方法
使用EViews可以实现以下几种序列相关检验方法:
1)Durbin-Watson法:该测试方法使用差分来计算系数,并计算残差。

如果系数的值落在特定的范围之内,则说明残差具有显著的自相关特性。

此外,Durbin-Watson法还可以用于检查残差是否具有趋势或移动性。

2)Dickey-Fuller测试:该测试法基于假设残差序列是一个时变趋
势的非周期性过程。

假如该假设成立,则可以拟合一个线性模型,用于描
述残差的趋势,然后通过相关指标来评估该模型的拟合程度。

3)Cum-Sum法:该测试法基于假设残差序列具有定常性质,即残差
中可能存在其中一种移动性。

计量经济学实验一 EViews 软件的基本操作

计量经济学实验一 EViews 软件的基本操作

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载计量经济学实验一 EViews 软件的基本操作地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容实验一 EViews 软件的基本操作1.1 实验目的了解EViews 软件的基本操作对象,掌握软件的基本操作。

1.2 实验内容以表1.1所列中国的GDP与消费的总量数据(1990~2000,亿元)为例,利用EViews 软件进行如下操作:(1)EViews 软件的启动(2)数据的输入、编辑与序列生成(3)图形分析与描述统计分析(4)数据文件的存贮、调用与转换表1.1数据来源:2004年中国统计年鉴,中国统计出版社1.3 实验步骤1.3.1 EViews的启动步骤进入Windows /双击EViews5快捷方式,进入EViews窗口;或点击开始/程序/EViews5/EViews5进入EViews窗口,如图1.1。

图1.1标题栏:窗口的顶部是标题栏,标题栏的右端有三个按钮:最小化、最大化(或复原)和关闭,点击这三个按钮可以控制窗口的大小或关闭窗口。

菜单栏:标题栏下是主菜单栏。

主菜单栏上共有7个选项: File,Edit,Objects,View,Procs,Quick,Options,Window,Help。

用鼠标点击可打开下拉式菜单(或再下一级菜单,如果有的话),点击某个选项电脑就执行对应的操作响应。

命令窗口:主菜单栏下是命令窗口,窗口最左端一竖线是提示符,允许用户在提示符后通过键盘输入EViews命令。

主显示窗口:命令窗口之下是EViews的主显示窗口,以后操作产生的窗口(称为子窗口)均在此范围之内,不能移出主窗口之外。

状态栏:主窗口之下是状态栏,左端显示信息,中部显示当前路径,右下端显示当前状态,例如有无工作文件等。

EViews统计分析在计量经济学中的应用--第6章-时间序列模型

EViews统计分析在计量经济学中的应用--第6章-时间序列模型

1
在图6.9中,有两个选 择:一是针对何种数 据生成相关图,主要 分为原变量(level)、 一阶差分变量(1st difference)及二阶 差分变量(2st difference),这里 选择level;二是确定 相关图的滞后期 (Lags to include), 这里选择36。
15
自相关、偏自相关图
图6.26 图示对话框
2021/2/4
1
30
自相关函K”按钮, 可得自相关 函数和偏自 相关函数, 如图6.27 所示。
图6.27 对数二阶差分自相关函数
2021/2/4
1
31
自相关函数和偏自相关函数
对数二阶差分序列自相关和偏自相关函数,如图 6.27所示,由两部分组成,左半部分为自相关 (Autocorrelation)与偏自相关(Partial Correlation)分析图,右半部分为自相关系数 (AC)、偏自相关系数(PAC)、Q统计量(QStat)与相伴概率(Prob)。由图6.27可知,自 相关和偏自相关函数的峰值同为滞后1期,自相关 函数1阶截尾,偏自相关函数2阶截尾,可初步判 定p=1,2,q=1,即可能适合的模型有 ARMA(2,1),ARMA(1,1),AR(1),AR(2), MA(1)。
2021/2/4
如图6.15所示,单位根检验选项有四个选择 区域: Test type(检验方法):包括6种检验方法, 主要为ADF检验、DF检验、PP检验、KPSS 检验、ERSPO检验及NP检验,系统默认选择 ADF检验; Test for unit in(所检验的序列),有三种 可供选择: ◆Level:表示对水平序列进行单位根检验; ◆1st difference:表示对序列的一阶差分 序列进行单位根检验; ◆2nd difference:表示对序列的二阶差分 序列进行单位根检验;

Eviews数据统计与分析教程8章

Eviews数据统计与分析教程8章

△yt=(β1-Hale Waihona Puke ){+01 1
x +y
2
3t-1 t-1
}+β2△xt +μt
1
1
该式即为误差修正模型。
误差修正模型中描述了被解释变量的短期波动△yt情况。
第22页/共25页
EViews统计分析基础教程
五、协整和误差修正模型
2、误差修正模型(ECM) EViews操作
第一步:检验变量间是否存在协整关系,如存在可建立 ECM模型。 第二步:选择主菜单工具栏中的“Quick”| “Estimate Equation”选项,在弹出的文本框中输入误差修正模型的变量, 用最小二乘法(OLS)进行估计,单击“确定”按钮即可得 到误差修正模型的估计结果。
出来。
设 min t
T Yt 1
Y
T t
2
cLY
T t
2
HP滤波就是求该式的最小值。 HP滤波取决于参数λ,当λ=0时,符合最小化的趋势序列为 Yt序列;当λ逐渐变大时,估计的趋势变得越来越光滑;当λ 接近于∞时,估计的趋势接第1近页/于共2线5页性函数。
EViews统计分析基础教程
单击“OK”按钮即可得到序列对象的相关图和Q统计量。
第14页/共25页
EViews统计分析基础教程
四、时间序列模型的分类
3、自回归移动平均(ARMA)模型 ARMA模型的识别 在ARMA模型的识别中,如果自相关函数(AC)在p期后显 著趋于0,偏自相关函数(PAC)在q期后显著趋于0,则建 立ARMA(p,q)模型。
一、时间序列的趋势分解
趋势分解——HP(Hodrick – Prescott)滤波法 EViews操作方法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 EVIEWS中时间序列相关函数操作
【实验目的】熟悉Eviews的操作:菜单方式,命令方式;
练习并掌握与时间序列分析相关的函数操作。

掌握时间序列的白噪声检验
【实验内容】
一、复习EViews软件的常用菜单方式和命令方式;
二、各种常用差分函数表达式以及确定性趋势模型拟合;
三、时间序列的自相关和偏自相关图与函数;
四、时间序列的白噪声检验
【实验步骤】
复习:EViews软件的常用菜单方式和命令方式;
(一)创建工作文件
⒈菜单方式
启动EViews软件之后,进入EViews主窗口
在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

⒉命令方式
在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期
则菜单方式过程可写为:CREATE A 1985 1998
(二)输入Y、X的数据
⒈DATA命令方式
在EViews软件的命令窗口键入DATA命令,命令格式为:
DATA <序列名1> <序列名2>…<序列名n>
本例中可在命令窗口键入如下命令:
DATA Y X
⒉鼠标图形界面方式
在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。

(三)生成log(Y)、log(X)、X^2、1/X、时间变量T等序列
在命令窗口中依次键入以下命令即可:
GENR LOGY=LOG(Y)
GENR LOGX=LOG(X)
GENR X1=X^2
GENR X2=1/X
GENR T=@TREND(84)
(四)选择若干变量构成数组,在数组中增加变量。

在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。

在数组窗口点击Edit+/-,进入全屏幕编辑状态,选择一个空列,点击标题栏,在编辑窗口输入变量名,再点击屏幕任意位置,即可增加一个新变量增加变量后,即可输入数据。

点击要删除的变量列的标题栏,在编辑窗口输入新变量名,再点击屏幕任意位置,弹出RENAME对话框,点击YES按钮即可。

(五)在工作文件窗口中删除、更名变量。

⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
⒊在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Delete按钮即可删除变量。

练习一:各种常用函数表达式
实验文件:操作文件:usagnp.wf1(美国1947年第一季度~1970年第四季度GNP
数据)
实验内容:
(一)理解Eviews中各种差分函数的含义。

在Eviews 软件中,通过函数D(x,n,s)来实现对时间序列的差分运算,其
中: x为时间序列的名称,n为差分的阶数,s为季节长度。

如D(x)为一阶差
分,D(x,2)为二阶差分,D(x,0,4)对周期长度为4的序列求一阶季节差分等等。

在Eviews 软件中,通过函数Dlog(x,n,s)来实现对时间序列的对数差分运算。

步骤:(1)打开该文件,观察序列usagnp的趋势图的特征
Plot usagnp
(2)对序列取对数,观察其趋势图。

Genr lngnp=log(usagnp)
(或直接输入 plot log(usagnp),下同)
(3)对该序列取一阶差分,生新的序列,并观察其趋势图。

Genr dgnp=d(usagnp)
plot dgnp
(或直接输入 plot d(usagnp),下同)
(4)对该序列取一阶季节差分,生新的序列dsgnp,并观察其趋势图: Genr dsgnp=d(usagnp,0,4)
plot dsgnp。

(5)对该序列的自然对数取一阶差分,生成新的序列dlngnp观察其趋势
图。

Genr dlngnp=dlog(usagnp)
Plot dlngnp
(6)对序列取自然对数,再做一次季节差分,生成新序列dslngnp并观
察其趋势图的特征
genr dslngnp=dlog(usagnp,0,4)
plot dslngnp。

(7)对该序列的自然对数取一阶季节差分,再做一阶差分,生成新的序
列并观察其趋势图:。

dslngnp=dlog(usagnp,1,4)
plot ds1lngnp
图1 图2
图3 图4
图5 图6
图 7
(二)对usagnp序列拟合确定性趋势模型模型
(1)利用@trend( )函数生成确定性趋势序列t=1,2,….
genr t=@trend(1947.1)
(2)对usagnp的自然对数序列拟合线性趋势模型
Ls log(usagnp) c t
图8
(3)点击图8中“
(4)对usagnp的自然对数序列拟合确定性的季节模型,首先利用函数@seas ()生成季节虚拟变量
Genr d1=@seas(1)
Genr d2=@seas(2)
Genr d3=@seas(3)
Genr d4=@seas(4)
(5)对usagnp的自然对数序列拟合确定性的季节模型
Ls log(usagnp) d1 d2 d3 d4 t
(6)点击图10中“Resids”按钮,观察拟合图
图11
练习二:时间序列的自相关和偏自相关图与函数,以及序列的白噪声检验实验文件:Stpoor.wf1(美国S&P500工业股票价格指数1980年1月~1996年2月)
实验内容:观察时间序列的自相关图,并对序列进行白噪声检验
步骤:
(1)打开练习文件Stpoor.wf1,观察时间序列的自相关图,输入:
Ident stpoor
(或者使用菜单方式:双击序列stpoor图标,在出现的对话框中选择菜单操作方式:View—>Correlogram,滞后期选默认的即可)
图11
理解自相关图(自相关函数,偏自相关函数,2倍标准差,Q统计量,P值)。

并判断该序列是否为白噪声序列,并对原序列进行白噪声检验
例如:选取滞后期20期, Q统计量为2669.9,相应的P值为0.000,拒绝原假设,原序列不是白噪声。

(2)对stpoor取一阶差分,观察其自相关图,并做白噪声检验。

Ident d(stpoor)
图12
(3)对stpoor的自然对数取一阶差分,观察其自相关图,并做白噪声检验。

图12
作业:操作文件hsindices.wf1(香港恒生指数数据)
1.判断序列hs是否为白噪声序列,要求写出具体的检验过程。

2.生成序列hs的一阶对数差分序列,并检验其是否为白噪声。

相关文档
最新文档