七年级数学平行线的判定教案

合集下载

初中平行线判定定理教案

初中平行线判定定理教案

初中平行线判定定理教案教学目标:知识与技能目标:学生能够理解平行线的定义,掌握平行线的判定定理,并能够运用判定定理判断两条直线是否平行。

过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

教学重点:平行线的判定定理。

教学难点:平行线的判定定理的理解和运用。

教学准备:三角板、直尺、铅笔、投影仪。

教学过程:一、导入新课1. 教师通过展示生活中的图片,如楼梯、铁轨等,引导学生观察并找出其中的平行线。

2. 学生分享观察到的平行线,教师总结并板书平行线的定义。

二、探究平行线的判定定理1. 教师提出问题:“如何判断两条直线是否平行?”引导学生进行思考和讨论。

2. 学生尝试用尺子和三角板画出两条直线,并判断它们是否平行。

3. 教师引导学生总结判断两条直线平行的方法,学生得出平行线的判定定理。

三、巩固练习1. 教师给出几组直线,要求学生判断它们是否平行,并说明判断的依据。

2. 学生独立完成练习,教师巡回指导。

四、课堂小结1. 教师引导学生总结本节课所学的平行线的判定定理。

2. 学生分享学习收获和感悟。

教学反思:本节课通过观察生活中的实例,引导学生发现平行线,激发学生的学习兴趣。

在探究平行线的判定定理时,教师引导学生通过操作和交流,培养学生的逻辑思维能力和空间想象能力。

练习环节,教师给予学生足够的自主空间,让学生在实践中巩固知识,提高运用能力。

总体来说,本节课达到了预期的教学目标,学生对平行线的判定定理有了较好的理解和掌握。

平行线的判定数学教案

平行线的判定数学教案

平行线的判定数学教案一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生运用平行线的知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。

三、教学重点与难点:1. 教学重点:平行线的定义,平行线的判定方法。

2. 教学难点:平行线的判定方法的运用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究平行线的判定方法。

2. 利用多媒体课件,直观展示平行线的判定过程。

3. 进行小组讨论,培养学生团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考平行线的概念。

2. 讲解平行线的定义,让学生理解平行线的特点。

3. 讲解平行线的判定方法,并结合实例进行演示。

4. 进行小组讨论,让学生运用平行线的判定方法解决实际问题。

六、教学评价:1. 通过课堂提问,检查学生对平行线概念的理解程度。

2. 利用课后作业,评估学生对平行线判定方法的掌握情况。

3. 组织小组讨论,评估学生在实际问题中运用平行线知识的能力。

七、课后作业:1. 请学生绘制一组平行线,并注明判定方法。

2. 选择一道与平行线相关的实际问题,运用所学知识进行解答。

八、教学拓展:1. 探讨平行线的性质,如:平行线之间的距离相等。

2. 介绍平行线的应用领域,如:工程、设计、地理等。

九、教学资源:1. 多媒体课件:用于展示平行线的判定过程。

2. 练习题库:用于巩固学生对平行线知识的掌握。

3. 小组讨论工具:如白板、彩笔等。

十、教学反思:1. 回顾本节课的教学内容,评估学生对新知识的掌握情况。

2. 分析教学方法的有效性,如:问题驱动法、多媒体展示等。

3. 针对学生的反馈,调整后续教学计划,提高教学效果。

重点和难点解析六、教学评价:重点关注学生对平行线概念的理解程度和判定方法的掌握情况。

七年级数学平行线教案

七年级数学平行线教案

七年级数学平行线教案七年级数学平行线教案通用9篇七年级数学平行线教案1一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。

3、解决问题能在观察、想像、实践、操作中发现并提出问题,初步体会在解决问题的过程中与他人合作、交流的重要性。

4、情感与态度目标认识到通过观察、想象、实践、操作、归纳可以获取数学知识,体验数学活动富有探索性,人而激发学生学习兴趣,增强学生的学习信心,培养学生可持续学习的能力。

二、教材分析“平行线”是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关性质,为今后学平行线的判定做好铺垫。

本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关结论。

学生在观察、实践、操作之前,教师要提醒学生注意以下几点:1、注意想象木条在转动过程中的位置变化情况;2、实际生活中,大量存在的是平行线段,要把它们看成直线;3、强调画平行线时要使用工具,不能徒手画,还注意不能只画横平或竖立的图形,要让学生画出一些变式图形。

三、学校与学生情况分析万宁市第二中学是万宁市一所普通中学,大部分的学生来自农村,学校的教学条件一般。

我校七年级的学生没有通过选拔考试,只是按要求就近入学。

因此,大部分学生的基础以及学习习惯较差。

但在新的教学理念的指导下,在课堂教学中,逐渐淡化了知识传授、接受学习、模仿训练等传统的模式,而注重学生学习兴趣与态度的培养,注重学生的自主探索和合作交流以及创新意识的培养,把课堂真正还给学生。

浙教版数学七年级下册1.3《平行线的判定》教学设计1

浙教版数学七年级下册1.3《平行线的判定》教学设计1

浙教版数学七年级下册1.3《平行线的判定》教学设计1一. 教材分析《平行线的判定》是浙教版数学七年级下册第1.3节的内容。

本节主要让学生掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法,并通过实际例题让学生学会运用这些方法解决实际问题。

教材通过简单的图形和实例,引导学生探究平行线的判定方法,培养学生的观察、思考和解决问题的能力。

二. 学情分析七年级的学生已经掌握了基本的图形知识,具有一定的观察和思考能力。

但学生在解决实际问题时,还缺乏一定的逻辑推理能力和证明意识。

因此,在教学过程中,教师需要注重启发学生的思考,引导学生学会用数学语言表达问题,并用逻辑推理的方式解决问题。

三. 教学目标1.了解并掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。

2.学会运用平行线的判定方法解决实际问题。

3.培养学生的观察、思考和解决问题的能力。

4.培养学生运用数学语言表达问题和用逻辑推理解决问题的意识。

四. 教学重难点1.教学重点:掌握同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。

2.教学难点:如何引导学生理解并运用这些判定方法解决实际问题。

五. 教学方法1.启发式教学:通过提问、引导学生思考,激发学生的学习兴趣和主动性。

2.实例分析:通过具体的实例,让学生直观地理解平行线的判定方法。

3.小组讨论:让学生分组讨论,培养学生的合作意识和解决问题的能力。

4.归纳总结:引导学生自己总结平行线的判定方法,培养学生的归纳能力。

六. 教学准备1.准备相关的图形和实例,用于讲解和练习。

2.准备课件,用于辅助教学。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,激发学生的学习兴趣。

2.呈现(10分钟)展示相关的图形和实例,引导学生观察和思考,引导学生总结出同位角相等、内错角相等、同旁内角互补这三个平行线的判定方法。

3.操练(10分钟)让学生分组讨论,每组给出一个实例,运用所学的判定方法进行判断。

七年级数学下《平行线及其判定》教案

七年级数学下《平行线及其判定》教案

七年级数学下《平行线及其判定》教案
一、教学目标
1.知识与技能:学生掌握平行线的概念,理解平行线的判定定理,能够应用这些
定理解决一些实际问题。

2.过程与方法:通过观察、实验和推理论证,培养学生的几何思维能力和探究能
力。

3.情感态度与价值观:激发学生对几何的兴趣,培养他们主动探究、合作学习的
精神。

二、教学内容与过程
1.导入:通过实物展示和情境创设,引入平行线的概念,引导学生观察平行线的
特点。

2.知识讲解:详细讲解平行线的判定定理,包括同位角相等、内错角相等、同旁
内角互补等,结合实例进行解释。

3.探究活动:设计探究活动,让学生自己动手操作,观察平行线的判定定理,并
进行小组讨论,总结规律。

4.应用实践:设计实际问题,让学生运用所学知识解决,如判断两条直线是否平
行、计算平行线的距离等。

5.总结与提升:总结平行线的主要知识点,强调重点和难点。

通过综合性题目,
提升学生运用知识解决实际问题的能力。

三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

2.教学手段:利用实物模型、PPT演示、几何画板等辅助教学工具,帮助学生更
好地理解平行线的判定定理。

四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整
教学策略。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈,帮助学
生巩固所学知识。

3.测试与反馈:组织阶段性测试,检测学生对平行线知识的掌握程度,及时发现
问题并进行针对性辅导。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。

2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。

2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。

3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。

4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。

五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。

2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。

3. 应用:运用平行线的性质和判定方法解决实际问题。

4. 总结:对本节课的内容进行总结,布置课后作业。

第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。

2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。

3. 练习:进行课堂练习,巩固所学知识。

4. 总结:对本节课的内容进行总结,布置课后作业。

六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。

2. 探究:引导学生通过实际操作,发现并证明平行线的性质。

3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。

4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。

5. 总结:对本节课的内容进行总结,布置课后作业。

七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。

5.2.2平行线的判定 教案 七年级数学下学期人教版

5.2.2平行线的判定 教案 七年级数学下学期人教版

5.2.2平行线的判定教案七年级数学下学期人教版一、教材分析(一)教材地位与作用本课是七年级学过的“同位角”,“内错角”,“同旁内角和”“平行线”的继续,是后面研究平移以及三角形、四边形(特别是平行四边形)的相关学习的基础.起到了承上启下的作用。

从本节课起,培养和发展学生合情推理能力,同时也开始从有条理的口头表述逐渐过渡到书写自己的理由.因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的几何推理等内容的基础,也是空间与图形的重要组成部分。

(二)教学目标1、经历探索直线平行的条件的过程,掌握平行线的判定方法。

2、体会“由未知向已知”转化的数学思想是认识客观事物的基本方法。

经历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流。

3、通过问题引入和解决,培养学生逻辑推理能力。

(三)教学重、难点根据新课标的要求及七年级学生的认知基础,确定本节课的教学重点:经历观察、操作、交流、猜想、推理等活动,探索得到直线平行的条件.。

难点:会进行文字语言,图形语言,符号语言之间的互译,理解“转化”的思想.二、学情分析从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,学生已经学了平行线的定义、平行公理及其推论,具备了探究直线平行的条件的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。

三、教法与学法分析根据本节课的内容特点和学生的已有的认知基础,我采用合作探究式的教学方法和动手实践、自主探索、合作交流的学习方法。

以多媒体为教学平台,以学生感兴趣的问题情境引入学习课题,给学生创设自主探索、合作交流、独立获取知识的时间和空间,让学生经历观察、操作、交流等活动,通过归纳、类比、概括出平行线的判定方法,让他们经历知识形成过程,体验从合情推理到演绎推理的思维过程。

提高学生主动获取知识的能力,逐步养成合作交流的习惯,形成勇于探索的意识,增强学生数学学习的兴趣和自信心。

人教版七年级数学教案:5.2.2平行线的判定

人教版七年级数学教案:5.2.2平行线的判定
五、教学反思
在今天的课堂中,我们探讨了平行线的判定方法,这是几何学习中的一个重要部分。我注意到,学生在理解同位角、内错角和同旁内角的概念时,普遍感到有些困难。我尝试使用了动态图示和实物模型来帮助学生直观地感受这些角度的形成,效果似乎不错,但我认为还需要在后续的课堂中继续巩固这些概念。
课堂上,我设计了一些实践活动,让学生分组讨论并操作实验,我希望通过这样的方式,让他们在实践中学习和理解。从学生的反馈来看,他们对于能够亲手操作、亲眼观察的环节非常感兴趣,这也帮助他们更好地理解了判定条件。不过,我也观察到,在将理论知识应用到具体问题解决时,部分学生仍然感到困惑。这可能是因为他们还没有完全消化和吸收这些概念,或者是我没有提供足够的引导和示例。
直接输出:
二、教学重点与难点
教学重点:
1.平行线的判定方法:同位角相等、内错角相等、同旁内角互补。
2.平行线在实际几何图形中的应用。
3.逻辑推理在平行线判定中的应用。
教学难点:
1.同位角、内错角、同旁内角的准确识别和测量。
2.理解并运用逻辑推理来判断两条直线是否平行。
3.在复杂的几何图形中找出所有相关的角,并进行正确的判定。
-举例:设计练习题,如给出一个图形,要求学生找出所有的平行线,并说明使用的是哪个判定条件。
2.教学难点
-难点一:理解同位角、内错角、同旁内角的概念及其在判定平行线中的作用。
-举例:学生可能难以理解同位角和内错角的概念,教师需用模型或动态图示来直观展示这些角度的关系。
-难点二:在实际图形中准确找出相应的角度,特别是在图形复杂时。
二、核心素养目标
本节课的核心素养目标为:培养学生的逻辑推理能力、几何直观能力和问题解决能力。通过探索平行线的判定方法,使学生能够运用逻辑思维分析和解决问题,提高推理的准确性;通过观察和操作几何图形,发展几何直观,增强对空间关系的认识;在实际问题中,运用所学的平行线判定方法,提高解决几何问题的能力。同时,注重培养学生合作交流的意识,提升数学表达和概括能力,为后续几何学习奠定坚实基础。

人教版七年级数学下册《平行线的判定》教案

人教版七年级数学下册《平行线的判定》教案

七年级下册数学教案:平行线的判定(第一课时)【教学目标】知识与技能目标:了解推理、证明的格式,掌握平行线判定方法过程与方法目标:能运用所学过的平行线的判定方法进行简单的推理论证.情感与态度目标:通过教学演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.【任务分析】1、学习结果:本课属于智慧技能的规则学习。

2、学习条件:( 1)必要性条件:规则学习的先决条件是概念,此处要学习的四个概念是“同位角” ,“内错角”,“同旁内角”和“平行线” ,四个都属于定义性概念。

概念的先决条件是辨别。

(因而决定教学的顺序为辨别—概念学习—规则学习)。

( 2)支持性条件:两直线平行可用推平行线法来检测,同位角相等,内错角相等和同旁内角互补都可以用量角器测得。

学生学习用具:两把尺子或三角板。

本节分两个课时讲,第一课时介绍前两个判定方法,课时二再介绍判定方法三。

3、学生的起点能力:学生已经掌握“同位角” ,“内错角”,“同旁内角”和“平行线”的概念。

学生会具有辨别能力,会使用几何工具辅助学习,具备一般的推理能力。

起点能力使能目标一使能目标二终点能力学生已经掌握“同位角”,“内错角”,“同旁内角”和作图在平行线和结合图形学生自知道两角关系运用判定“平行线”的概念非平行线上找到己归纳出平行线方法来证明,并使用正学生会使用几何这几对角判定方法确的证明格式工具辅助学习,具发现这些角的关备一般的推理能系力。

4、教学重点:对判定方法的概括与推导5、教学难点:方法的归纳与综合运用【教学内容】教学教师活动过程1、?本堂课分五块讲解习得1、回顾三线八角阶段2、平行线概念3、平行线判定方法4、本课重难点5、总结与练习(一)创设情景,激发求知欲望1、回顾上节课所学习的“三线八角”a314a12358a267问那些角是“同位角” ,“内错角”,“同旁内角”让学生在自己纸上也画一下,或者用手势比一下。

学生活动看 PPT个别举手回答大部分学生跟着老师用手势表示各种角学生回答平行线的概念,一部分学生会把在同一2、平行线概念:在同一平面内,不相交的两条直线叫做平行线。

人教版数学七年级下册5.3.1平行线的判定(教案)

人教版数学七年级下册5.3.1平行线的判定(教案)
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补。对于难点部分,我会通过图形示例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。

华师大版数学七年级上册《平行线的判定》教学设计

华师大版数学七年级上册《平行线的判定》教学设计

华师大版数学七年级上册《平行线的判定》教学设计一. 教材分析华师大版数学七年级上册《平行线的判定》是初中学段几何部分的重要内容,主要让学生掌握平行线的判定方法,理解平行线的性质。

本节课的教学内容主要包括平行线的定义、平行线的判定定理及其推论。

教材通过实例引导学生探究平行线的判定方法,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析七年级的学生已经掌握了基本的数学运算能力和一定的几何知识。

但学生在空间想象能力和逻辑推理方面还有待提高。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等活动,逐步掌握平行线的判定方法。

三. 教学目标1.知识与技能:使学生掌握平行线的定义及判定方法,能够运用平行线的性质解决一些实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和合作交流能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的良好学习习惯。

四. 教学重难点1.重点:平行线的定义及其判定方法。

2.难点:平行线性质的理解和运用。

五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生观察、操作、思考,发现平行线的判定方法。

3.合作交流法:学生分组讨论,分享学习心得,培养团队协作能力。

4.实践应用法:设计适量练习,让学生在实践中巩固所学知识。

六. 教学准备1.准备相关的生活实例和图片,用于导入新课。

2.准备平行线的判定定理及其推论的PPT,用于呈现知识点。

3.准备一些练习题,用于巩固所学知识。

4.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如公交线路、铁轨等,引导学生观察并思考:这些实例中是否存在平行线?学生回答后,教师总结并引入平行线的概念。

2.呈现(10分钟)教师利用PPT呈现平行线的定义及其判定方法,引导学生通过观察、操作、思考,发现平行线的判定定理。

最新-初中数学平行线教案优秀6篇

最新-初中数学平行线教案优秀6篇

初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。

你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。

初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。

2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。

3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。

教学重难点:重点:学会平行线识别的。

方法,能在实际生活和数学图形中识别平行线。

难点:能根据图形中的已知条件,学会用数学语言简单的说理。

教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。

在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。

请同学们根据这样的一个事实用一句话来叙述。

3、学生分组交流二、探索结论1、同位角相等,两直线平行。

2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。

如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。

3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。

4、组织学生分组讨论,归纳总结平行线的识别方法。

(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。

数学教案:平行线的判定

数学教案:平行线的判定

数学教案:平行线的判定一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生的观察能力、思考能力和动手能力。

3. 培养学生合作学习、交流分享的良好学习习惯。

二、教学内容:1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1) 同位角相等,两直线平行。

(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的判定方法。

2. 教学难点:同位角、内错角、同旁内角的判断。

四、教学方法:1. 采用直观演示法,让学生通过观察、实践,理解平行线的判定方法。

2. 采用讨论法,让学生在小组内交流分享,培养学生的合作学习能力。

3. 采用练习法,让学生通过独立练习,巩固所学知识。

五、教学步骤:1. 导入新课:通过生活实例引入平行线的概念,引导学生思考如何判断两条直线是否平行。

2. 讲解与演示:讲解平行线的判定方法,并通过多媒体演示,让学生直观地理解判定方法。

3. 实践操作:让学生在纸上画出两条直线,运用所学方法判断它们是否平行。

4. 小组讨论:让学生在小组内交流分享自己的判断过程,讨论如何正确运用判定方法。

5. 练习巩固:布置一些判断平行线的练习题,让学生独立完成,检验所学知识。

6. 总结与反思:对本节课所学内容进行总结,引导学生反思自己在判断平行线时的注意事项。

7. 作业布置:布置一些有关平行线的练习题,让学生课后巩固所学知识。

六、教学评估:1. 课堂练习:观察学生在练习中的表现,判断他们对平行线判定方法的掌握程度。

2. 小组讨论:评估学生在小组讨论中的参与程度,以及他们能否与他人有效沟通和分享。

3. 课后作业:检查学生完成作业的质量,了解他们对课堂所学知识的巩固情况。

七、教学拓展:1. 邀请数学家或者相关领域的专家进行讲座,分享平行线在现实生活中的应用。

2. 组织学生进行数学竞赛,以提高他们对平行线判定方法的兴趣和应用能力。

《平行线的判定》教案

《平行线的判定》教案

《平行线的判定》教案一、教学目标知识与技能:1. 让学生掌握平行线的定义和性质;2. 能够运用平行线的判定方法判断两条直线是否平行。

过程与方法:1. 通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力;2. 学会运用同位角、内错角、同旁内角等方法判定平行线。

情感态度与价值观:1. 激发学生对数学学科的兴趣;2. 培养学生的团队合作精神,提高学生的解决问题的能力。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等;(2)平行线上的内错角相等;(3)平行线上的同位角相等;(4)平行线之间的距离相等。

3. 平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。

三、教学重点与难点重点:平行线的定义和性质,平行线的判定方法。

难点:平行线的判定方法的灵活运用。

四、教学准备1. 教学课件;2. 直线模型;3. 量角器;4. 直尺。

五、教学过程1. 导入:通过展示直线模型,引导学生回顾直线的性质,为新课的学习做好铺垫。

3. 平行线的性质:引导学生通过量角器测量直线上的角,发现平行线的性质。

5. 巩固练习:设计一些判断题,让学生运用所学知识判断直线是否平行。

7. 布置作业:设计一些有关平行线的练习题,巩固所学知识。

六、教学策略1. 采用问题驱动的教学方法,引导学生主动探索平行线的性质和判定方法;2. 通过小组合作、讨论交流的形式,培养学生的团队合作精神;3. 利用多媒体课件,直观展示直线和平行线的性质,提高学生的空间想象能力。

七、教学评价1. 课堂提问:检查学生对平行线定义、性质和判定方法的理解程度;2. 课后作业:评估学生对平行线知识的掌握情况;3. 小组讨论:评价学生在团队合作中的表现,以及解决问题的能力。

1. 邀请数学家或相关领域专家,进行专题讲座,加深学生对平行线知识的理解;2. 组织学生进行数学竞赛,激发学生学习数学的兴趣;3. 开展数学实践活动,如制作直线和平行线的模型,提高学生的动手能力。

七年级数学下册---《平行线的判定》课堂设计

七年级数学下册---《平行线的判定》课堂设计

七年级数学下册---《平行线的判定》课堂设计教学基本信息教学目标及教学重点、难点本节课的主要内容是平行线的3个判定方法.方法1作为扩大了的公理通过探究获得,再由方法1经过简单推理得出方法2和方法3.本节课对推理证明的要求到了“简单推理”的层次,体现了数学核心素养中的“逻辑推理”素养。

教学过程(表格描述)教学环节主要教学活动设置意图引入一、复习引入先来回顾一下本章的一些知识,我们知道在同一平面内,不重合的两条直线有相交和平行两种位置关系,垂直是相交的一种特殊情况,关于平行,我们已经学习了平行线的定义,平行线的画法,平行公理以及它的推论.回顾以往学习知识及经验.新课二、新知探究1.问题:图中的直线a与b互相平行吗?2.还有什么方法能判断两条直线是否平行?如图:已知直线AB和直线CD,如何判断它们是否平行?3.类比垂直的判定提出:可否由数量关系判定两条直线平行?为解决这个问题我们回顾一下平行线定义的探究过程:通过视觉误差的图形提起学生对本节课的兴趣.一系列探究的设置重在让学生理解面对新问ab观察直线a 与直线c 的夹角α,它的度数随着直线a 的转动而发生改变.由此得到,猜想:可以由角的数量关系判定两条直线平行.4.回顾平行线的画法,得出平行线的判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 推理过程: 因为∠1=∠2 所以a ∥b三、再探新知1.思考:有没有其他的判定方法?我们知道两条直线被三条直线所截, 同时得到同位角、内错角、同旁内角,能否利用内错角和同旁内角的数量关系判定两条直线互相平行?2.猜想:如图,如果∠2=∠3,则a ∥b .分析:先提出问题,然后得到猜想,最后推理得出猜想的结论是正确的,从而利用判定方法1得到了判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3.如图,∠2和∠4满足怎样的数量关系时,能得到a ∥b ?写出推理过程.分析:先提出问题,同旁内角满足怎样的数量关系能判定两条直线平行,然后提出猜想,最后利用判定方法1和判定方21c ba1b a2341ba 23法2得到了判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.数学转化思想.例题问题1 如图,你能说出木工用图中的角尺画平行线的道理吗?解答:用角尺画平行线实际上是画出了两个直角,根据“同位角相等(也可以根据内错角相等,同旁内角互补),两直线平行”这样画出的就是平行线.问题2 如图,为了加固房屋,要在屋架上加一根横梁DE,使DE∥BC.如果∠ABC=31°,∠ADE应为多少度?答:∠ADE=31°.巩固本节课所得出的三个判定方法.简单应用判定方法解决问题.总结总结本节课的探究过程,梳理解决问题的经验.A作业1如图,这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?作业2通过本节课的学习,你觉得最大的收获是什么?遇到新问题时我们可以如何解决呢?巩固本节课所学知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学平行线的判定教案
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
一重点
判定定理的推导和例题的解答.
二难点
使用符号语言进行推理.
三解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
教学步骤
一明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
二整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
三教学过程
创设情境,复习引入
师:上节课我们学习了公理和一种判定方法,根据所学看下面的问题出示投影. 1.如图1所示,直线、被直线所截,如果,那么,为什么?
2.如图2,如果,那么,为什么?
图1 图2
3.如图3,直线、被直线所截.1如果,那么,为什么?
2如果,那么,为什么?
4.如图4,一个弯形管道的拐角,,这时管道、平行吗?
图3 图4
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
[板书]∵ 已知,
邻补角定义,
∴ 同角的补角相等.
以备后面推导判定定理使用.
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
[板书]2.5 2
师:请同学们看复习提问中的第3题,我们知道了与互补,那么,由此你还可以推出什么?根据什么?
学生活动:学生思考、回答,还可以推出,这个推理的全过程就是:
∵ 已知,邻补角定义,
∴ 同角的补角相等.
∴ 同位角相等,两直线平行.教师再加上这一步即可.
由此你能得到什么结论?
学生活动:学生思索后回答出,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学生语言不规范,注意纠正.
师:也就是说,我们又得到了一种方法,我们把它简单说成:
[板书]同旁内角互补,两直线平行.
【教法说明】由于复习引入第3题为定理的推导做好了铺垫,所以学生并不难接受推理过程,放手由学生总结出判定方法,注意培养学生的归纳总结能力,另外在叙述判定方法时,训练学生用准确、规范的几何语言.
师:请同学们思考,刚才我们由同旁内角互补,推导两条直线平行,除了上面的推理过程,有没有其他途径?怎样写推理格式?
学生活动:学生思考,对照复习提问第3题的第2问很快地找到另一种途径,并在练习本上写出推理格式,找一个学生在原来黑板上的板书基础上完成.
【教法说明】通过使用不同种方法的推理,不仅开拓学生思维,同时也能够让学生尽可能地使用推理,从而使学生掌握推理格式的书写.
尝试反过,巩固练习
师:有了这种判定方法,我们就可以由同旁内角互补,直接判定两条直线平行了,让我们回到复习提问的第4题,管道、平行吗?为什么?
学生活动:平行,因为同旁内角互补,两直线平行.
【教法说明】不仅解决了前面遗留的问题,同时巩固了所学新知识.
师:下面我们一起应用这种判定方法再来研究一些题目出示投影.
练习:
1.如图1,量得,,可以判定,它的根据是什么?
图1 图2
2.如图2,已知,与互补,可以判定哪两条直线平行? 与哪个角互补,可以判定直线 ?
【教法说明】这组练习进一步对判定方法加以巩固,第2题的第2问是根据给出的结果,找它成立的条件,是执果索因,学生应该没有什么困难,教师不必多讲,但要注意第2问中出现答与互补这类错误时,要结合图形让学生弄清是哪两条直线被哪两条直线所截.
例题讲解
师:我们学习了三种方法,在具体题目中如何选择应用它们来解决问题呢?下面我们看例题出示投影.
例两条直线垂直于同一条直线,这两条直线平行吗?为什么?
师:这个题目相当于文字题,解答时应根据题意画出图形如图3,同时为了叙述方便,还要在图形上标出需要的字母或符号.
图3
学生活动:学生分析题意,按所说画出相应的图形.
师:我们要判定两条直线是否平行,应先想什么?可以讨论.
学生活动:讨论后答出,先想学过哪些判定平行线的方法.
师:再看已知条件与哪一种方法的条件相同或有关,思考时注意图形,按老师所标直
角符号,回答问题.
学生活动:学生认真观察,积极思考后,踊跃回答.
教师给出规范的板书,答:垂直于同一条直线的两条直线平行.
理由:如图3,, .
∵ ,已知,
∴ 垂直的定义.
∴ 同位角相等,两直线平行.
师:这是两步推理,两个“∵”之间省略的一个“∴”,是什么内容?
学生活动:∵ 已证.
【教法说明】教师在讲解时,注意后发学生,引导学生形成正确的思维,从而学会分
析问题,提高解题能力.
师:想一想,能不能利用内错角相等,或者同旁内角互补,来说明呢?图形中的符号
怎样改动?模仿例题说出理由
学生活动:学生思考,并在练习本上写出理由,请两名同学到黑板上去做,形成板书:
理由:如图4,, .
∵ ,已知,∴ 垂直的定义.
∴ 内错角相等,两直线平行.
理由:如图5,, .
∵ ,已知,
∴ 垂直的定义.
∴ 同旁内角互补,两直线平行.
【教法说明】一题多解既巩固所学知识,同时培养了学生的发散思维,提高了学生的解题能力.
变式训练,培养能力
练习出示投影:
1.如图6,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?
2.如图7,如何判断这块玻璃板的上下两边平行?
图6 图7
学生活动:学生思考,给出第1题的答案为两条垂线平行.因为画出的两条线都垂直于工件边缘,也就是说,相交成直角,根据同位角相等或内错角相等或同旁内角互补,两直线平行;对于第2题需要添出截线,然后有三种方法来判断.
【教法说明】这两个题目都是实际问题,培养学生应用所学知识解决实际问题的能力尤其是第2题,我们判定两条直线是否平行,必须根据被第三条直线截出的三种位置的关系角的大小来判定,通过此题,让学生进一步理解平行线的三种判定方法及应用.
四总结、扩展
师:我们学习了几种判定两条直线平行的方法.
学生活动:学生自己总结归纳完成下表.
布置作业
课本第97~98页A组第 63、7、8题.
作业答案
6.3可判定 .根据同旁内角互补,两直线平行.
7.1 同位角相等,两直线平行.
2 内错角相等,两直线平行.
3 同旁内角互补,两直线平行.
8.1 同位角相等,两直线平行.
2 内错角相等,两直线平行.
3 内错角相等,两直线平行.
4 内错角相等,两直线平行.
5 同旁内角互补,两直线平行.
感谢您的阅读,祝您生活愉快。

相关文档
最新文档