耳聋基因检测方法及原理

合集下载

孕妇做耳聋基因十五项有什么

孕妇做耳聋基因十五项有什么

孕妇做耳聋基因十五项有什么近年来,随着科技和医疗的发展,越来越多的孕妇开始接受耳聋基因检测。

耳聋基因检测是一种通过分析某些基因的变异来确定一个人是否携带耳聋的遗传基因。

这项检测可以帮助孕妇预测自己或未出生的孩子是否会患有耳聋。

本文将为您介绍孕妇做耳聋基因十五项检测的相关知识。

一、耳聋基因十五项的内容孕妇做的耳聋基因十五项检测是基于孩子的基因进行的,属于新一代测序技术。

该检测项目能够覆盖多种耳聋基因的检测,包括大约15种遗传耳聋的主要基因突变,能够检测遗传性的耳聋和致聋基因。

其中包括以下的项目:1. GJB2基因2. SLC26A4基因3. MT-RNR1基因4. 12S rRNA基因5. CDH23基因6. MYO7A基因7. COCH基因8. TMC1基因9. WFS1基因10. LOXHD1基因11. ESPN基因12. POU3F4基因13. OTOF基因14. ACTG1基因15. GJB3基因二、治疗方法对于孕妇做的耳聋基因十五项检测结果呈阳性的情况,需要及时进行干预和治疗。

1.植入助听器植入助听器是一种常见的治疗耳聋的方法。

通过手术将助听器植入患者的耳朵,可以增强听力,改善听力障碍。

不过,孕妇不宜进行此类手术,需等孕期结束后再行手术。

2.使用人工耳蜗人工耳蜗是一种通过外部设备将声音传至内耳的治疗方案。

在某些情况下,人工耳蜗也可以用来治疗耳聋。

3.影响听力的药物某些药物如氨基糖苷类等,会对听力产生不良影响,在治疗中应限制使用。

孕妇在任何情况下都不应自行服用药物,应该要咨询医生维护孕妇和胎儿健康。

4.手术治疗对于某些特别严重的耳聋,可能需要通过手术进行治疗,例如通过托槽和其他手术形式进行。

三、注意事项1.选择合适的医院孕妇在进行耳聋基因十五项检测时,务必要选择正规、有资质的医院或检测机构进行检测。

检测机构应该能够提供完整的检测报告和解读,避免因为检测不标准或结果不准确导致给胎儿或产妇不好的影响。

耳聋基因检测的项目有哪些

耳聋基因检测的项目有哪些
耳聋基因检测的项目有哪些

核子基因科技 微信号:hezijiyinDNA
耳聋基因检测的项目有哪些
新生儿常见耳聋基因检测采用飞行时间质谱 检测技术,对新生儿抽取微量血液,在基因 水平上对常见耳聋基因进行检测。
耳聋基因检测的项目有哪些
耳聋基因检测通过用一定强度的激光照射样品与基质形成的共 结晶薄膜,基质从激光中吸收能量,样品解吸附,基质-样品之 间发生电荷转移使得样品分子电离,电离的样品在电场作用下 加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测, 即测定离子的质量电荷之比(M/Z)与离子的飞行时间成正比 来检测离子,并测得样品的分子量,进而推知突变位点。
耳聋基因检测的技术
飞行时间质谱仪: 利用目标序列捕获与高通量测序技术,对外周血样本DNA中遗传性耳聋的 相关基因目标区域进行测序和生物信息分析,获取该区域基因变异信息, 并对可疑致病突变进行验证,该方法能够检测到的遗传性耳聋包括常染色 体隐性(显性)非综合征性耳聋、线粒体遗传性耳聋等各种类型综合征性 的耳聋,可检测到包括GJB2、GJB3、线粒体基因等在内的84个基因的全部 突变位点,为临床诊断和突变筛查做出参考依据。

检测耳聋基因实验报告

检测耳聋基因实验报告

检测耳聋基因实验报告研究背景耳聋是一种常见的感知器官缺陷,影响着全球数百万人口的听觉能力。

据世界卫生组织的数据,约有4660万人在全球范围内患有严重的耳聋问题,其中大部分是由遗传因素引起的。

因此,了解耳聋的遗传基础对于预防和治疗耳聋至关重要。

本实验旨在检测耳聋相关基因的存在,以帮助进一步了解耳聋的遗传机制。

实验设计样本收集本实验中,我们收集了100个来自不同地区、不同年龄和性别的样本,其中包括耳聋患者和正常人群。

所有的样本采集工作均在伦理审查委员会的指导下进行,并征得了每个受试者的知情同意。

DNA提取我们从每个受试者的全血样本中提取了DNA。

采用常规的DNA提取方法,包括细胞裂解、蛋白质沉淀、DNA沉淀等步骤,最终获得高质量的DNA样本。

耳聋相关基因检测根据文献研究和数据库查询,我们选择了九个与耳聋相关的常见基因进行检测,包括GJB2、GJB3、SLC26A4、MYO7A、USH1C、CDH23、PCDH15、TMC1和TECTA。

使用聚合酶链式反应(PCR)扩增这些基因的特定区域,并进行限制性内切酶切割试验或测序分析,以检测这些基因的突变。

实验结果经过耳聋相关基因的筛选和检测,我们获得了以下结果:基因突变类型突变频率突变位点:-: :-: :-: ::GJB2 缺失3% c.35delGGJB3 基因敲除1% 多个位点SLC26A4 缺失5% c.2168delAMYO7A 点突变2% c.101T>CUSH1C 插入突变1% c.2167_2168insACDH23 缺失4% c.6326delGPCDH15 缺失2% c.3165delCTMC1 点突变3% c.1001G>ATECTA 点突变1% c.546C>T结果表明,在100个受试者中,GJB2、SLC26A4、CDH23和TMC1这四个基因的突变频率较高,分别为3%、5%、4%和3%。

而其他基因的突变频率较低,不超过2%。

耳聋基因检测 - 2

耳聋基因检测 - 2

遵循常染色体隐性遗传模式
在不同人群均具有显著的高发病率
临床表现:绝大多数为先天性重度、
极重度耳聋
2
常见的致聋基因及位点
GJB3基因特点
GJB3基因是我国本土克隆的第一个遗传疾病基因
临床症状主要与GJB3突变基因的外显度有关,表现为正 常听力、轻度耳聋、中度耳聋、重度耳聋及极重度耳聋等
荧光探针法 飞行时间质谱法
测序法
耳聋基因检测常用方法比较
方法
主要设备
检测时间 所需步骤
特点
DNA测序法
PCR仪,测序仪 >10H
核酸提取、PCR,金标准,操作繁琐,需
电泳、纯化、测 要专门培训,结果判读

复杂
限制性内切酶法 PCR仪,电泳仪 约4H ARMS-PCR法
基因芯片法
P扫C描R仪仪,杂交仪,约5H
荧光PCR法
PDS基因突变 检测 试剂盒
SLC26A4:IVS7-2A>G、1174A>T、、 1229C>T、2168A>G ;
检测位点 (10个)
通量低
厦门致善
GJB2:35delG、167delT、176-
191del16、235delC、299-300delAT
; GJB3:538C>T、547G>A;
12SrRNA:1494C>T、1555A>G;
微阵列 芯片法
微阵列 芯片法
优缺点
检测位点少 (9个) 专用仪器 价格高 耗时长
检测位点 (15个) 专用仪器
价格高 耗时长
凯普
GJB2:35delG、176-191del16、235delC、299-
耳聋易感基因检测 试剂盒

耳聋易感基因检测试剂盒实验标准操作程序

耳聋易感基因检测试剂盒实验标准操作程序

耳聋易感基因检测试剂盒实验标准操作程序1.项目概述耳聋是一种严重影响人类生活质量的常见先天性疾病,它可以由单一基因突变或不同基因的复合突变引起,也可由环境因素(如医疗因素,环境暴露,创伤,药物等)或基因和环境两者共同作用而致。

在世界范围内,每1000名新生儿中就有1名先天性耳聋患儿,50% 患儿的耳聋与遗传因素有关。

70%的遗传性耳聋不伴有其他症状,称为非综合征性耳聋 ( nonsyndromic hearing impairment, NSHI)。

非综合征耳聋是最常见的感音神经性聋,可以分为常染色体显性(DFNA,15%~ 20%)、常染色体隐性(DFNB,80%)、性连锁(DFN X-linked,1%)和线粒体遗传性耳聋(1%)四类。

迄今为止,共有114个耳聋位点见诸报道(54个为常染色体显性位点,60个为常染色体隐性位点)。

40余个感音神经性耳聋基因和更多的综合征耳聋基因被克隆。

据中国残疾人联合会网站统计,中国6000万残疾人口中2100万为听力残疾者。

听力言语残疾者中7岁以下的聋儿达80万人并以每年新增3万聋儿的速度在增长。

研究表明,大量的迟发性听力下降患者中,亦有许多患者也是由自身的基因缺陷致病,或由于基因缺陷和多态性造成对致聋环境因素易感性增加而致病。

因此,需要开展耳聋基因检测,对于由明确检测到的基因缺陷致病的患者及早进行干预治疗与预防措施,提高患者的生活质量,降低患耳聋的风险度。

2.测定原理本试剂盒采用了PCR体外扩增和DNA反向点杂交相结合的DNA芯片技术。

采用生物素标记的引物分别对耳聋易感基因突变区域进行特异性扩增,将扩增产物与标记不同突变类型耳聋易感基因探针的尼龙膜在导流杂交仪上进行导流杂交,然后通过化学显色对结果进行判读。

3.样品采集和制备3.1. 标本采集:①成人男性和女性及患儿:采用无菌抗凝管(添加抗凝剂),抽取静脉血2ml耳聋易感基因检测试剂盒实验标准操作程序生效日期:混匀,拧紧瓶盖并标上病人编号。

遗传性耳聋基因检测与筛查 2

遗传性耳聋基因检测与筛查 2

遗传性耳聋
由于基因和染色体异常所致的 耳聋。这种疾病是由父母的遗 传物质发生了改变传给后代而 引起的耳聋,并且在子孙后代
中以一定数量出现。
综合征型耳聋
Syndromic hearing loss , SHL 除耳聋外,还伴随有其它组织
器官的病变。
非综合征型耳聋
Non-syndromic hearing loss , NSHL
shape of bony structures such as the cochlea and vestibular aqueduct .
Transport iodide ions out of certain cells
Transport:
Ions(chloride , iodide , bicarbonate ,)
耳聋比例:第二常见耳聋基因, SLC26A4基因突变占 全部遗传性耳聋的14%。
遗传方式: SLC26A4基因突变引起非综合征型和综合征 型耳聋PDS综合征均常染性色体隐遗传(DFNB4),大部分 DFNB4 和综合征性耳聋PDS综合征都伴有大前庭水管扩 大,并且PDS综合征还伴有甲状腺病变。
突变相关病症:这是一种先天性内耳发育畸形,出生时患 儿听力可以正常,但头部外伤、噪声、感染等诱因就可致 患儿听力急剧下降甚至全聋。
• 1846年Thomson发表的下颌骨-面颅骨发育不全综合征最早报道了综 合征型听力损失
• 1882年,Politzer首次描述了X-连锁遗传的听力损失 • 1995年发现第一个非综合征型听力损失基因后的近十年来,这一领域出
现了飞速的进展 • 2004年,王秋菊博士发现了一个Y-连锁遗传的听力损失家系,从而进一步
丰富了遗传性听力损失的理论内容

线粒体耳聋基因(mtDNA) 突变检测标准操作程序

线粒体耳聋基因(mtDNA) 突变检测标准操作程序

线粒体耳聋基因(mtDNA) 突变检测标准操作程序1 检验目的保证受检者线粒体(mtDNA)耳聋基因突变检测的准确、可靠。

2 检验原理采用 PCR 扩增和基因测序方法检测 mtDNA A1555G、C1494T 两个位点基因突变情况。

3 性能参数3.1 敏感性:PCR 测序所需模板的量较少,一般 PCR 产物需 30~90ng,单链 DNA 需 50~100ng,双链 DNA 需 200~500ng;3.2 特异性:采用 BigDye 荧光标记终止底物循环测序试剂盒,一般可测 DNA 长度为 650bp 左右;3.3 精确度:DNA 测序精确度为(98.5±0.5) %;3.4 简便安全:采用 ABI3130 自动化测序仪,能自动灌胶、自动进样、自动数据收集分析等。

3.5 快速:每组基因测序可在 40min 完成。

4 原始样品系统外周血。

5 容器和添加剂类型EDTA 抗凝管(血常规管)。

6 所需设备和试剂6.1 仪器设备ABI9700 PCR 仪,ABI3130 测序仪,凝胶成像系统。

6.2 试剂盒6.2.1 提取外周血DNA:采用上海赛百盛试剂盒快速提取外周血 DNA;6.2.2 Axygen 公司提供的胶回收试剂盒;6.2.3 ABI 公司提供的 BigDye 测序反应试剂盒:主要试剂是BigDye Mix,内含 PE 专利四色荧光标记的 ddNTP 和普通 dNTP ,AmpliTaq DNA polymerase FS,反应缓冲液等;6.2.4 测序反应产物纯化:醋酸钠/乙醇法纯化 PCR 产物。

7 校准程序厂家工程师完成。

8 程序步骤8.1 全血 DNA 提取试剂盒提取 DNA8.1.1 GN 结合液预热澄清后使用;8.1.2 将 0.3-0.5ml 全血加入到 1ml 纯化树脂中,颠倒混匀 5-6 次。

室温下温育 3min,期间颠倒混匀一次, 5000rpm 离心 3sec,收集沉淀;8.1.3 用 1ml GN 结合液将纯化树脂悬浮,颠倒混匀, 5000rpm 离心 3sec,收集沉淀;8.1.4 用 0.5ml 漂洗液漂洗纯化树脂两次,颠倒混匀, 5000rpm 离心 3sec,收集沉淀;8.1.5 用 0.8ml 无水乙醇悬浮,装入离心纯化柱, 12000rpm 离心 1min ,倒掉废液收集管中的乙醇,再次离心 1min,尽量除尽乙醇;8.1.6 将离心纯化柱套入一个干净的 1.5ml 离心管中,加入 100μl 超纯水于纯化树脂中,室温下放置 3min ,12000rpm 离心 2min ,-20C备用。

遗传性耳聋检测 (2)精选全文

遗传性耳聋检测 (2)精选全文
点,根据峰的颜色可得知掺入的碱基种类,从而确定 该样本的基因型。对于PCR产物模板可通过多重 PCR反应体系来获得。通常用于10-30个SNP位点分 析。
热点基因21位点的携带率与检出率
基因
突变位点
GJB2
c.35delG or c.35dupG c.176_191del16
(人群携带率 2.6%,遗传 性耳聋患者突 变率为 14%~41%)
50.10%ቤተ መጻሕፍቲ ባይዱ
SLC26A4 c.2168A>G
c.281C>T
13.17% 0.86%
(人群携带率 约为1.9%, 遗传性耳聋患 者突变率
8.95~14.54% ,)
c.589G>A c.1174A>T c.1707+5G>A (常用名 IVS15+5G>A) c.1226G>A c.1229C>T
常情况下3-6个月干预)。
34
新生儿筛查及早发现迟发聋
王× 宋× 王×
父亲 母亲 女儿
29岁 29岁 5岁
听力正常
IVS7-2A>G杂合突变
听力正常
IVS7-2A>G杂合突变
双侧感音神经性聋 IVS7-2A>G纯合突变
IVS7-2A>G杂合
IVS7-2A>G杂合
IVS7-2A>G纯合
因说话不清,5岁才被发现
熊X的妈妈,GJB2基因突变 携带者并怀孕5个月。
陕西汉中熊XX一家
熊X的父母是GJB2基因突变携带者,由于未进行产前诊断,先后育有两个聋儿,此次怀孕26, 经301医院进行孕期耳聋基因诊断,胎儿确定为杂合突变,出生后听力应正常。
耳聋基因普筛的意义

新生儿遗传性耳聋基因筛查项目

新生儿遗传性耳聋基因筛查项目

新生儿遗传性耳聋基因筛查项目新生儿遗传性耳聋是指由遗传因素引起的听力障碍。

在全球范围内,约有6000个新生儿出生时患有严重的遗传性耳聋。

早期检测能够帮助医生更早地介入治疗,提高治疗效果,从而提高患儿的生活质量。

意义基因筛查项目可以通过检测新生儿的遗传物质,确定是否存在导致遗传性耳聋的基因突变。

筛查的早期发现可以帮助医生制定更为有效的治疗方案,还可以为未来的胎儿诊断提供基础数据。

流程新生儿遗传性耳聋基因筛查项目通常在出生后的前几天完成。

其具体流程如下:1.采集婴儿DNA样本:医生从新生儿体内采集DNA样本,并用专业的设备进行分离和提取。

2.样本检测:样本会经过一系列的实验室检测,以确认是否存在耳聋相关的基因突变。

3.订单生成:若样本中检测出患有耳聋相关基因异常,则会生成相关的治疗订单,同时提供相关医疗建议。

4.结果反馈:通常,整个测试流程需要7-10个工作日,医生会将结果通知患者和相关医护人员。

如果结果呈阳性,则需要及时采取治疗措施。

注意事项1.项目测序的精度极高,但是并不能排除所有耳聋相关基因检测异常。

若发现遗传性耳聋征兆,医生仍需对新生儿进行推荐的检测流程。

2.项目主要针对的是新生儿遗传性耳聋,因此不适用于其他类型的听力障碍。

3.对于遗传性耳聋患者的家属,可以考虑进行相应的基因检测。

如果新生儿的家族中存在类似病例,建议在孕期进行遗传性耳聋基因筛查。

遗传性耳聋是一种不可逆的听力障碍,对患者和家庭都会带来长期的负面影响。

新生儿遗传性耳聋基因筛查项目是一种可靠的筛查方法,可以有效预防和治疗遗传性耳聋病例。

我们希望相关部门能够积极支持并推行这项项目。

博奥耳聋基因检测原理

博奥耳聋基因检测原理

博奥耳聋基因检测原理今天来聊聊博奥耳聋基因检测原理的事儿。

大家在生活里有没有注意到这样一个现象,有些人家里好几代好像听力都不太好,但是有些人听力减弱好像就是因为年老或者意外生病什么的,而且那些家族性的听力问题好像特别顽强,老是会出现在家族后代里。

这就跟遗传有关系啦,而博奥耳聋基因检测呢,就是专门针对与耳聋相关的基因进行检测的。

博奥耳聋基因检测主要是通过一些科学技术手段,像是生物芯片技术和高通量测序技术之类的(这里的生物芯片技术感觉就像是一个特殊的“基因检测板”,高通量测序技术呢就相当于一个超级高效能的基因“扫描仪”)。

这些技术能够让检测精准地找到人体内与耳聋有关的基因是否有异常。

打个比方,咱们把人体的基因看成一本超级厚的书,那耳聋基因就是这本书里特定的几页内容。

博奥耳聋基因检测技术就像是一个超级精确的书签探测器,专门能检测这几页内容有没有写错字(基因变异等异常情况)。

老实说,我一开始也不明白这个检测是怎么做的这么精确的呢。

这就要说到这个检测里面复杂的科学理论啦,这里面涉及到分子生物学的好多知识。

简单来讲,基因都是由特定的碱基序列组成的,一旦这个序列发生了改变,就像是书里的字发生了错误替换或者增减,那可能就会让基因表达的“听力功能相关蛋白”产生问题,从而导致耳聋。

说到这里,你可能会问检测出耳聋基因异常有什么用呢?比如说,如果一个家庭想要生宝宝,那这个检测结果就可以帮助他们提前知道宝宝是否有携带耳聋基因异常的风险,就像提前知道前面路上有没有坑一样。

如果检测出来有风险,就可以早做准备,在孕期可以有针对性的去监控或者后续在宝宝出生后可以采取早期干预措施。

实际应用案例也有很多,比如在某些地区对新生儿进行耳聋基因检测的筛查,发现很多潜在的遗传性耳聋患儿,从而可以对他们进行及时的干预治疗和监控。

不过这里面也有一些注意事项,在检测的时候一定要保证样本采集的准确性,不然就像你找书签的时候翻错了页,那结果肯定就是错的呀。

先天性耳聋的基因检测技术

先天性耳聋的基因检测技术

先天性耳聋的基因检测技术先天性耳聋是指出生时或者在婴儿期时就已经出现的耳聋。

它是一种影响儿童发育和交流的严重疾病,也是一种常见的遗传病。

遗传因素是导致先天性耳聋的最主要原因,而基因检测技术可以帮助人们更好地了解自己的遗传基因,以及进行预测和治疗,已经被广泛应用于医学诊断和治疗。

遗传学家发现,先天性耳聋的遗传方式多种多样,包括单基因遗传、复杂遗传、染色体异常等等。

根据遗传方式的不同,先天性耳聋的基因检测技术也在不断地更新和发展。

目前,最常用的技术是基于新一代测序技术(Next Generation Sequencing,简称NGS)和高通量芯片技术。

基于 NGS 技术的遗传检测是一种高通量、高准确性的遗传检测技术。

它可以同时检测数百个基因,从而发现低频率的变异和罕见的基因变异,对临床诊断和治疗提供了更全面、更精确的支持。

同时,这种技术还可以检测基因突变的复杂性,如某些基因的复杂变异、基因缺失和复制数变异等。

高通量芯片技术也是一种常用的基因检测技术。

它利用芯片上的基因探针,可以同样检测数百个基因,但是和 NGS 技术相比,芯片技术对变异的灵敏度相对较低,但也是一种比较成熟的技术。

无论是 NGS 还是芯片技术,都需要高度的专业技术,以及高质量的试剂和设备来保证准确性和可靠性。

这也是目前基因检测技术的发展趋势之一,即如何解决技术分析的复杂性,优化数据分析算法和数据挖掘技术,以及开发更高效的数据录入和存储软件。

基于这些技术的先天性耳聋基因检测已经开始应用于临床诊断和治疗。

根据检测结果,医生可以给予患者更有效的治疗建议,包括手术治疗、药物治疗、助听器和人工耳蜗等医疗手段。

同时,基于这些技术的基因筛查也能够发现无症状的遗传突变,及早诊断,及早治疗,降低后代遗传耳聋的风险。

在应用基因检测技术进行先天性耳聋的诊断和治疗时,也需要考虑到一系列的伦理和社会问题,包括隐私保护、信息公开、数据质量、数据分析和结果解读的专业性等。

耳聋基因检测临床应用

耳聋基因检测临床应用

耳聋基因检测临床应用耳聋是一种常见的疾病,据统计,全球约有4660万人患有严重耳聋,而其中大约90%的情况都是由基因突变引起的。

随着基因研究的不断深入,基于耳聋基因的检测已经成为预防、诊断和治疗耳聋的一种新型手段。

在此文中,我们将讨论耳聋基因检测的临床应用。

检测原理耳聋基因检测是基于DNA序列的分析技术,该技术可以检测耳聋相关基因的异常,并确定该异常是否导致了耳聋。

耳聋基因检测可以分为两类:单基因遗传性耳聋和多基因遗传性耳聋。

单基因遗传性耳聋是由单个基因突变引起的。

如果一个人携带该基因,他或她就会患上此类耳聋。

这类耳聋通常具有明显的家族历史。

多基因遗传性耳聋是由多个基因突变引起的。

如果一个人携带多个相关基因突变,则可能患上此类耳聋。

这类耳聋通常没有明显的家族历史,但是其遗传概率更高。

临床应用诊断耳聋耳聋基因检测可以用于诊断患者的耳聋类型。

如果患者的耳聋是单基因遗传性的,那么基因突变会被测出。

如果患者的耳聋是多基因遗传性的,那么检测结果将显示多种基因缺陷。

通过耳聋基因检测,医生可以提供更为准确的诊断结果,并制定更为有效的治疗方案。

预测遗传风险耳聋基因检测还可以用于预测患者是否有遗传风险。

如果一个人携带耳聋相关的基因突变,那么他或她的子女也可能患上这种耳聋。

通过耳聋基因检测,人们可以了解患病风险,采取措施提前规避。

个性化治疗耳聋基因检测不仅可以诊断和预测耳聋,还可以帮助医生制定个性化治疗方案。

如果一个人的耳聋是由单基因突变引起的,那么医生可以针对该基因制定个性化治疗。

如果一个人的耳聋是由多基因遗传性引起的,那么医生可以制定综合治疗方案。

可能限制尽管耳聋基因检测具有许多优点,但该检测仍然存在一些限制。

首先,耳聋基因检测的可靠程度还不能令人完全满意。

尤其是在多基因遗传性耳聋的检测中,检测结果的可靠性会受到多个因素的影响。

其次,耳聋基因检测还面临一些伦理和道德问题。

例如,如果通过携带某种耳聋基因来进行筛查,那么该筛查是否违背了相关法律法规?最后,耳聋基因检测的成本也很高,有时无法被一般病人所承受。

为什么要做耳聋基因检测?课件

为什么要做耳聋基因检测?课件

常见聋病基因
• 线粒体DNA :线粒体DNA 突变与氨基糖甙类药物引起的药物性耳聋
关系密切; • GJB2 基因: GJB2 基因和先天性聋有着密切关系,中国先天性聋患 者中携带有GJB2基因突变的约占20%; • • PDS基因:PDS基因突变可以导致大前庭水管综合征; GJB3基因:我国克隆的第一个遗传病基因;相对较少。
氨基糖甙(苷)类临床药物
依替米星 链霉素 庆大霉素 卡那霉素 阿米卡星 妥布霉素 奈替米星 大观霉素 异帕米星 新霉素 巴龙霉素 春雷霉素 小诺霉素 西索米星 利维霉素 核糖霉素 福提霉素 阿贝卡星 阿米卡星洗剂 阿米卡星滴眼液 复方新霉素软膏 复方庆大霉素普鲁卡因颗粒 复方硫酸新霉素滴眼液 复方倍氯米松新霉素贴膏 复方妥布霉素滴眼液 硫酸庆大霉素咀嚼片 硫酸小诺霉素片 硫酸异帕米星注射液 硫酸依替米星注射液 硫酸新霉素滴眼液 硫酸小诺霉素注射液 硫酸小诺霉素滴眼液 硫酸西索米星注射液 硫酸新霉素片 硫酸妥布霉素注射液 硫酸庆大霉素注射液 硫酸卡那霉素注射液 硫酸卡那霉素滴眼液 硫酸核糖霉素注射液 硫酸丁胺卡那霉素注射液 硫酸阿米卡星注射液 硫酸西索米星氯化钠注射液 硫酸庆大霉素颗粒 硫酸奈替米星注射液 硫酸庆大霉素片 硫酸巴龙霉素片 硫酸庆大霉素缓释片 硫酸庆大霉素滴眼液 硫酸奈替米星葡萄糖注射液 庆大霉素甲氧苄啶注射 液 妥布霉素氯化钠注射液 妥布霉素地塞米松滴眼液 妥布霉素滴眼液 注射用硫酸妥布霉素 注射用硫酸卡那霉素 注射用硫酸核糖霉素 注射用硫酸阿米卡星 注射用硫酸链霉素 注射用硫酸奈替米星 注射用硫酸依替米星
为50%;如果父母均是聋人,则子女出现耳聋的可能性为75%; (2)耳聋子女的下一代仍可能是聋人,不聋子女的下一代不会再出
现遗传性聋;
(3)这种遗传性聋,没有性别差异。

耳聋基因检测

耳聋基因检测
等位基因异质性是指某一遗传病是由同一基因座上的不同突变引 起的,如β地中海贫血,既可能是由于β珠蛋白基因点突变所致的 RNA加工障碍或转录调控区改变引起的,也可能是由于β珠蛋白 基因缺失引起的。
先天性 迟发性 药物性
按照发病时间 语前聋 语后聋
如果合并有外耳畸形,或者同时发生其他器官或系统疾病,称 为综合征型耳聋( SHI) ,占遗传性耳聋的 30%; 而没有视觉可见的外耳畸形及与耳聋同时出现的其他器官或系 统疾病,称为非综合征型耳聋 ( NSHI ) ,占遗传性耳聋的70%。
耳聋的病因
与后天突发性耳聋有一定关 系
遗传异质性(genetic heterogeneity)分为基因座异质性和等位基因异 质性。
基因座异质性病是由不同基因座的基因突变引起的,如先天性聋 哑有常染色体隐性遗传、常染色体显性遗传、X连锁隐性遗传、Y 连锁遗传和母系遗传5种遗传方式。属于常染色体隐性遗传的有35 个基因座位(位点),占病例总数的68%。因此,常可见到2个先 天性聋哑患者婚配后生出并不聋哑的孩子,就是由于父母的聋哑 基因不在同一基因座位所致,即一个亲代的基因型为AAbb,另一 个亲代的基因型为aaBB,两个亲代都是某基因座的纯合子患者, 但他们子女的基因型为AaBb,在两个基因座位上均为杂合子,故 表现正常。
IVS7-2A>G(919-2A>G); 2168A>G
SLC26A4(PDS)
此基因突变者,生活行为要 大前庭水管综合征先天或后天中 1229C>T;1174A>T; 防止导致颅内压升高的行为 度以上感音神经性耳聋(发病率 281C>T;589G>A; 因素,避免外界环境刺激致 1226G>A;IVS15-5G>A; 14.5%) 聋 1975G>C;2027T>A; 2162C>T;2168A>G

为什么要做耳聋基因检测

为什么要做耳聋基因检测

为什么要进行耳聋的基因检测?
我国是听障人口最多的国家。每年约新生聋儿万余名。引起耳聋的原因有很多,但在聋病 患者中,约 60 %的耳聋与遗传因素有关,而且在正常人群中也存在较高的基因突变致聋 的现象,因此耳聋发病率一直居高不下。但耳蜗结构细微且复杂,无法通过电生理和生化 检测作出病因学诊断,制约了聋病研究的发展。这一切都决定了聋病的基因检测是目前耳聋基因检测
遗传性耳聋基因检测能帮助聋人在基因和分子水平确定耳聋基因,根据病因及早进行 正确的治疗和有效的听力恢复。还能对指导我们生育听力健康的孩子。因为不管父母 是耳聋基因携带者,还是耳聋患者,耳聋基因都可能通过父母向子女传递导致聋儿的 降生。为了避免聋儿的再次降生,在再生育前进行耳聋基因检测,通过科学的手段生 育正常听力的孩子。
为什么要做耳聋基因检测
核子基因科技
耳聋在生活中很高发
正常群体中携带耳聋基因的比例高达5-6%,其中以常染色体隐性遗传方式出现的遗 传性耳聋非常常见,占遗传性耳聋的70%~80%。这就是耳聋发病率之所以高居不下 的重要原因之一。 隐性遗传的耳聋,往往在出生后就被发现为重度或极重度耳聋。一对听力正常的父 母却生育了一个先天性听力障碍的孩子,这种情况是由于遗传的原因导致的:极有可 能在于这对父母是耳聋基因的携带者。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耳聋基因检测是通过分析个体的基因组来确定与耳聋相关的遗传变异。

以下是常见的耳聋基因检测方法及其原理:
1. Sanger测序:Sanger测序是一种传统、经典的基因测序方法。

它通过将待测样本DNA片段进行扩增,然后使用DNA 聚合酶和剪切酶对扩增产物进行测序。

通过比对测序结果与参考基因组,可以鉴定个体是否携带与耳聋相关的突变。

2. 基于芯片的检测方法:这种方法使用特制的芯片或芯片阵列来同时检测多个耳聋相关基因的突变。

芯片上包含了预先设计好的探针,这些探针可以与特定的基因片段结合。

检测过程中,待测样本DNA片段与芯片上的探针发生杂交反应,通过芯片上的信号检测技术,可以确定样本中的突变情况。

3. 下一代测序(NGS):NGS是一种高通量、高效的基因测序技术。

它通过同时测序多个DNA分子,可以快速、准确地确定个体的基因组序列。

对于耳聋基因检测,NGS可以检测多个耳聋相关基因的突变,捕捉并分析大量的遗传变异,提供更全面的基因信息。

4. RT-PCR:逆转录-聚合酶链反应(RT-PCR)是一种能够检测基因表达水平的方法。

在耳聋基因研究中,RT-PCR可用来
检测耳聋相关基因在耳部组织中的表达水平,以确定是否存在异常表达。

这些方法在耳聋基因检测中发挥了重要作用。

通过对个体的基因进行检测和分析,可以帮助识别与耳聋相关的遗传突变,为早期干预和治疗提供依据,并为家族遗传咨询和基因筛查提供重要参考。

需要注意的是,耳聋是一个复杂的遗传疾病,除了单基因突变外,还可能受到环境和多基因相互作用的影响,因此仅通过基因检测无法完全解释耳聋的发生机制。

相关文档
最新文档