污水生物除磷.ppt
合集下载
废水生物脱氮除磷技术148页PPT
概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
亚硝酸菌
H4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。
污水厂生物脱氮除磷工艺讲座PPT
厌氧—好氧生物除磷工艺 生物法与化学法结合的除磷工艺
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;
第六章除磷PPT课件
1)最简单的同步脱氮除磷技术 2)总的HRT很短 3)丝状菌不能大量繁殖(好氧,厌氧交替运行), 无污泥膨胀之虞,SVI<100 4)污泥中含磷浓度高,肥效高 5)勿需投药,两个A段只用轻搅拌, 运行费用低
(4)缺点
1)除磷效果很难提高
2)脱氮效果难于进一步提高,内循环量2Q,不宜
太高
.
12
3)进入沉淀池的处理水要保持一定的溶解氧
.
4
1.生物除磷机理
(1)好氧吸收(聚磷菌对磷的过量吸收)
ADP + H3PO4+能量
ATP + H2O
(磷酸盐)
(三磷酸腺苷)
(2)厌氧释放
厌氧条件下(DO=0,NO3-=0), ATP+H2O ADP+H3PO4+能量 上述两反应为可逆反应
.
5
聚磷酸ploy
厌氧段
好氧段
ADP
ATP
ATP
无机磷
改良的A2/O法
(1)利用少量进水中的可快速分解的有机物作碳源去
除回流污泥中的硝酸盐氮。
(2)降低回流污泥中溶解氧,保证厌氧池的厌氧状态
.
13
3、弗斯特利普工艺 (1)工艺流程图
.
14
.
15
(2)工艺过程
1)含磷废水进入曝气池同步进入的还有聚磷菌污泥,聚磷菌过 量地摄取磷,去除有机物,还能出现硝化作用;
ADP 有机磷
进水
有机磷聚磷释菌放+P无oly机磷
聚磷 聚磷菌
溶解质 ATP
合成
降解
PHB PHB
ADP
ADP
无机物 ATP
污泥回流
剩余污泥(高磷)
污水生物脱氮除磷教程PPT课件
第32页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页
生物脱氮除磷ppt
• MCRT 8-15d • 水力停留时间 厌氧1-2h 缺氧1.5-2.0h 好氧 6h
以上
• 内回流和外回流 300-500%,50-100%(最低, 避免过多硝酸盐进入厌氧段,干扰磷的释放,
为什么硝酸盐会干扰磷的释放?反硝化菌活性 增强,聚磷菌活性降低)
• BOD5/TKN >4.0(甲醇) BOD5/TP>20 (低级脂肪酸)
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
磷+上清液化学沉淀(回流污泥过程,旁 路) 回流污泥厌氧放磷后+进水——曝气池吸收 磷
三、 生物脱氮除磷
1. 工艺
A-A-O:厌氧——缺氧——好氧 OWASA:厌氧上清液回流到厌氧或缺氧段,
促进放磷或反硝化,为什么能?
改 进 Bardenpho : 厌 氧 —— 缺 氧 —— 好 氧 — —缺氧——好氧,A—A-O—A-O串联
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
以上
• 内回流和外回流 300-500%,50-100%(最低, 避免过多硝酸盐进入厌氧段,干扰磷的释放,
为什么硝酸盐会干扰磷的释放?反硝化菌活性 增强,聚磷菌活性降低)
• BOD5/TKN >4.0(甲醇) BOD5/TP>20 (低级脂肪酸)
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
磷+上清液化学沉淀(回流污泥过程,旁 路) 回流污泥厌氧放磷后+进水——曝气池吸收 磷
三、 生物脱氮除磷
1. 工艺
A-A-O:厌氧——缺氧——好氧 OWASA:厌氧上清液回流到厌氧或缺氧段,
促进放磷或反硝化,为什么能?
改 进 Bardenpho : 厌 氧 —— 缺 氧 —— 好 氧 — —缺氧——好氧,A—A-O—A-O串联
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
生物脱氮除磷课件.ppt
好氧
二沉
增加了一个缺氧池 使NO3-对厌氧段的影响程度降到最低
(8)VIP(Viginia Initiative Plant)
回流 每个区由多个完全混合 反应器串联
出水 进水
厌氧
缺氧
好氧
二沉
混合液回流 污泥回流
(9)Johannesburg(南非)
进水
好氧混合液回流 出水 缺氧
厌氧
缺氧
回流污泥
好氧
5320 m3
Settler
Effluent
Return sludge line
Recirculation
Excess sludge Sludge compartment
1650 m3
Aerobic 500 m3
Anoxic 350 m3
消化液
BABE
4.2
连续流活性污泥生物除磷工艺
A/O(厌氧-好氧)生物除磷工艺 Phostrip(弗斯特利普)除磷工艺
反应式如下: PO43-+ Mg2++NH4++6H2O → MgNH4PO4.6H2O
[PO43-][ Mg2+][ NH4+]=K1
•按溶度积原理,当离子浓度积 K1> KSP1(KSP1为磷 酸铵镁标准溶度积),则磷酸铵镁晶体析出;
• 对于MAP结晶来说,主要依赖两个参数: (1)反应器中PO43-、 Mg2+、 NH4+的浓度和比例;
投加晶种对结晶的影响
在反应器中投加晶种可以加快晶体成核速度,使其结 晶于晶种表面,同时有利于晶体与水的分离,减少因 晶粒微细所造成地随出水流失,以提高除 P效率与回 收率。 作为晶种的材料一般选择细石英砂、氧化镁等矿物颗 粒、晶体破碎后的颗粒。
《生物脱氮除磷》课件
有机物浓度和泥龄对生物除磷的影响也 较大,适宜的有机物浓度和泥龄需要针 对不同的工艺进行优化。
溶解氧浓度对生物除磷的影响较大,适 宜的溶解氧浓度范围为0.5-3mg/L。
温度对生物除磷的影响较大,适宜的温 度范围为10-30℃。
pH值对生物除磷的影响也较大,适宜的 pH值范围为6.5-8.5。
04 生物脱氮除磷技 术案例分析
温度
温度对生物脱氮效率有显著影 响,适宜的温度范围是20-30℃
。
pH值
pH值对硝化细菌和反硝化细菌 的生长和活性有重要影响,适 宜的pH值范围是7.0-8.0。
溶解氧
溶解氧对硝化反应和反硝化反 应均有影响,适宜的溶解氧浓 度是2-4mg/L。
碳源
碳源的种类和浓度对反硝化反 应有重要影响,常用的碳源有
某污水处理厂生物脱氮除磷运行管理
运行管理要点
为确保生物脱氮除磷工艺的稳定运行,需要定期对工艺参数进行监测与调整,如溶解氧、 pH值、温度等。同时,需要加强设备维护与保养,确保设备的正常运行。
应急处理措施
针对可能出现的异常情况,如污泥膨胀、污泥流失等,制定相应的应急处理措施,确保工 艺的可靠性。
人员培训与安全管理
某污水处理厂生物脱氮除磷效果分析
1 2 3
脱氮效果
通过合理的工艺控制,该污水处理厂的生物脱氮 效率较高,总氮去除率达到85%以上,满足国家 排放标微生物的聚磷作用,有效去除 磷元素,总磷去除率达到90%以上,显著降低水 体富营养化的风险。
经济效益与社会效益
该工艺的运行不仅提高了污水处理效果,减少了 污染物排放,同时也为污水处理厂带来了经济效 益和社会效益。
原理
生物脱氮基于硝化反硝化原理,通过好氧硝化和缺氧反硝化过程实现氮的去除 ;生物除磷则通过聚磷菌在厌氧和好氧环境下的代谢作用实现磷的去除。
废水脱氮除磷处理工艺 教学PPT课件
硝化和反硝化两个生化过程构成。 ► 单级A/O工艺是用一个缺氧反应器和一个好
氧反应器组成的联合系统。
10
活性污泥回流
缺
废
氧
水
反
硝
化
好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量
热
分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
氧反应器组成的联合系统。
10
活性污泥回流
缺
废
氧
水
反
硝
化
好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量
热
分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
生物脱氮除磷(1)资料PPT课件
✓ NH2OH+ H2O → HNO2+4H+ + 4 eΔG0= +23 kJ/mol
✓ 0.5 O2 + 2H+ + 2 e-→ H2O ΔG0= -137kJ/mol
✓ NH2OH+0.5 O2 → HNO2+2H+ + 2 eΔG0= -114 kJ/mol
羟胺氧化所需的氧是由水提供的
.
17
→1.00NO3-+0.00619C5H7NO2+0.00619H+
细胞物质: C5H7NO2
.
19
硝化生物合成总反应式:
NH4++1.89O2+0.0805CO2→ 0.984NO3-+ 0.0161C5H7NO2+0.952H2O+1.98H+
.
20
(2)硝化反应的化学计量关系
➢ 将1gNH3-N氧化为硝酸盐:
氨单加氧酶(AMO)、羟胺氧还酶(HAO)、亚硝酸盐氧 还酶(NOR)。
✓ 硝化反应代谢途径:
NH4+→ NH2OH→ NO → NO2✓ 电子转移数:
.
15
二、硝化反应式 (二)硝化反应的生化反应
氨单加 氧酶
羟胺氧 还酶
羟胺氧 还酶
亚硝酸盐 氧还酶
NH3 → NH2OH → NO → NO2- → NO3-
(1)氨氧化为羟氨: ✓ NH3 + O2 → NH2OH
.
16
(二)硝化反应的生化反应式
(2)羟胺氧化为亚硝酸盐:分两步,中间产物为NO
.
7
2.1.2 硝化反应与微生物 ➢ 一、硝化反应微生物 ➢ 二、硝化反应式
.
8
2.1.2 硝化反应与微生物
➢ 一、硝化反应与微生物 (一) 硝化过程 (二) 对硝化细菌的新认识
✓ 0.5 O2 + 2H+ + 2 e-→ H2O ΔG0= -137kJ/mol
✓ NH2OH+0.5 O2 → HNO2+2H+ + 2 eΔG0= -114 kJ/mol
羟胺氧化所需的氧是由水提供的
.
17
→1.00NO3-+0.00619C5H7NO2+0.00619H+
细胞物质: C5H7NO2
.
19
硝化生物合成总反应式:
NH4++1.89O2+0.0805CO2→ 0.984NO3-+ 0.0161C5H7NO2+0.952H2O+1.98H+
.
20
(2)硝化反应的化学计量关系
➢ 将1gNH3-N氧化为硝酸盐:
氨单加氧酶(AMO)、羟胺氧还酶(HAO)、亚硝酸盐氧 还酶(NOR)。
✓ 硝化反应代谢途径:
NH4+→ NH2OH→ NO → NO2✓ 电子转移数:
.
15
二、硝化反应式 (二)硝化反应的生化反应
氨单加 氧酶
羟胺氧 还酶
羟胺氧 还酶
亚硝酸盐 氧还酶
NH3 → NH2OH → NO → NO2- → NO3-
(1)氨氧化为羟氨: ✓ NH3 + O2 → NH2OH
.
16
(二)硝化反应的生化反应式
(2)羟胺氧化为亚硝酸盐:分两步,中间产物为NO
.
7
2.1.2 硝化反应与微生物 ➢ 一、硝化反应微生物 ➢ 二、硝化反应式
.
8
2.1.2 硝化反应与微生物
➢ 一、硝化反应与微生物 (一) 硝化过程 (二) 对硝化细菌的新认识
污水的脱氮除磷技术学习教育课件PPT
(4)生物脱氮的工艺流程
ⅰ、传统脱氮工艺
活性污泥法传统脱氮工艺 (三级生物脱氮系统)
第一级曝气池的功能: ① 碳化——去除BOD5、COD; ② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH值;
污水的脱氮除磷技术
主要内容
水体富营养化的概念、危害及控制方法
污水脱氮技术
污水除磷技术
污水同步脱氮除磷技术
一、富营养化的危害及控制方法
1、水体的富营养化
水体富营养化是由于氮、磷等植物营养物的排入 引起水体中藻类大量繁殖的现象。
在湖泊、水库、河口和港湾等水流较缓的区域, 最容易发生水体富营养化现象。一般来说,总磷和无 机氮分别为 20mg/m3 和 300mg/m3 ,就可以认为水体 已处于富营养化的状态。
( 2 )藻类大量繁殖,降低了水的透明度;同时,藻 类的生长过程还会向水体排放有毒物质,影响鱼类的生 存; ( 3 )藻类在水体中占据的空间越来越大,占据水体 空间、阻塞水道,使鱼类活动的空间越来越小;
( 4 )沉于水底的死亡藻类在缺氧状态下腐化、分解, 使水体变黑、变臭。
3、水体富营养化的控制
在碱性条件下,利用氨氮的气相浓度和液相浓度之间 的气液平衡关系进行分离的一种方法。
污水中的氨氮是以氨离子 (NH4+)和游离氨(NH3)两种 形式保持平衡状态而存在: NH3 + H2O NH4+ + OH-
将pH值保持在11.5左右(投加一定量的碱),让污水流 过吹脱塔,使NH3逸出,以达脱氮目的。
吹脱法脱氨处理流程
NH 4 HOCl NH 2Cl H H 2O
2NH 2Cl HOCl N 2 3Cl H 2O 3H
[教学]生物脱氮除磷课件(1)
Nitrosospira 严格自养; Nitrosovibrio 自养、混养; Nitrosolobus 自养、混养;
以氨为唯一能源,自养生长时,以CO2为唯一碳源; 混养时,可同化有机物。
11
(二) 对硝化细菌的新认识
2.1.2 硝化反应与微生物
✓ 硝酸细菌:自养型,有些可混养生长,某些菌株 能异养生长。 Nitrobacter 自养、可异养,自养快于异养 Nitrococcus 严格自养 Nitrospina 严格自养 Nitrospira 自养、混养
• 第二步 1.00NO2-+ 0.50O2+ 0.031CO2+ 0.00619NH4++0. 124H2O
→1.00NO3-+0.00619C5H7NO2+0.00619H+
细胞物质: C5H7NO2
19
硝化生物合成总反应式: NH4++1.89O2+0.0805CO2→
0.984NO3-+ 0.0161C5H7NO2+0.952H2O+
• 硝化反应中,亚硝酸菌的增值速度控制硝 化的总反应速度。
• 一、亚硝酸菌增值速率
• 二、 NH4+-N氧化反应速率Monod 动力学关系
• 三、亚硝酸菌的净增值速度
• 四、硝化的最小污泥龄
33
一、亚硝酸菌增值速度
(1)亚硝酸菌比增值速度———莫诺特关系式
• 式中 NX 1(d dX )tTNmaK xSN N N
10
2.1.2 硝化反应与微生物
(二) 对硝化细菌的新认识
• 硝化细菌属自养型细菌,碳源是CO2。 ✓ 有些自养型硝化细菌能混养(混合营养)生长
(以CO2、有机物为碳源), 少数可异养生长。 ✓ 亚硝酸细菌(五个属)
以氨为唯一能源,自养生长时,以CO2为唯一碳源; 混养时,可同化有机物。
11
(二) 对硝化细菌的新认识
2.1.2 硝化反应与微生物
✓ 硝酸细菌:自养型,有些可混养生长,某些菌株 能异养生长。 Nitrobacter 自养、可异养,自养快于异养 Nitrococcus 严格自养 Nitrospina 严格自养 Nitrospira 自养、混养
• 第二步 1.00NO2-+ 0.50O2+ 0.031CO2+ 0.00619NH4++0. 124H2O
→1.00NO3-+0.00619C5H7NO2+0.00619H+
细胞物质: C5H7NO2
19
硝化生物合成总反应式: NH4++1.89O2+0.0805CO2→
0.984NO3-+ 0.0161C5H7NO2+0.952H2O+
• 硝化反应中,亚硝酸菌的增值速度控制硝 化的总反应速度。
• 一、亚硝酸菌增值速率
• 二、 NH4+-N氧化反应速率Monod 动力学关系
• 三、亚硝酸菌的净增值速度
• 四、硝化的最小污泥龄
33
一、亚硝酸菌增值速度
(1)亚硝酸菌比增值速度———莫诺特关系式
• 式中 NX 1(d dX )tTNmaK xSN N N
10
2.1.2 硝化反应与微生物
(二) 对硝化细菌的新认识
• 硝化细菌属自养型细菌,碳源是CO2。 ✓ 有些自养型硝化细菌能混养(混合营养)生长
(以CO2、有机物为碳源), 少数可异养生长。 ✓ 亚硝酸细菌(五个属)
第四章污水生物处理脱氮除磷6课时ppt课件
(碳源)
6N3O 5CH 3OH 厌 氧 菌 5CO 23N27H2O6OH
还原1mg需要2.47mg 甲醇(合3.7mgCOD)
还原1mg硝酸盐氮产 生3.57mg碱度和
0.45mgVSS(新细胞)
适宜温度15~30℃; pH7.0~7.5; BOD5/TKN>3不需要 外加碳源
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
硝化曝气池,投 碱以维持pH 值
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
生物法除氮
处理工艺
利用原水中的有机物为碳源 和第一好氧池中回流的含有 硝态氮的混合液进行反硝化
反应。脱氮已基本完成
进一步提高脱氮效率, 废水进入第二段反硝化 反应器,利用内源呼吸
制约因素:DO>
对硝化影响大一般<3,
0.5mg/L,一般
BOD负荷
1.5~2.0mg/L
≤0.1kgBOD5/kgMLSS Nhomakorabead在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
氮的去除
生物法除氮
• 硝化过程影响因素:
水污染控制工程
第四章 污水生物处理 (脱氮除磷)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
第五节 生物脱氮除磷技术p147
• 随着城市人口的集中和工农业的发展,水体的富 营养化问题日益突出。目前中国的某些湖泊,如 昆明滇池,江苏太湖,安徽巢湖等都已出现不同 程度的富营养化现象。
6N3O 5CH 3OH 厌 氧 菌 5CO 23N27H2O6OH
还原1mg需要2.47mg 甲醇(合3.7mgCOD)
还原1mg硝酸盐氮产 生3.57mg碱度和
0.45mgVSS(新细胞)
适宜温度15~30℃; pH7.0~7.5; BOD5/TKN>3不需要 外加碳源
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
硝化曝气池,投 碱以维持pH 值
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
生物法除氮
处理工艺
利用原水中的有机物为碳源 和第一好氧池中回流的含有 硝态氮的混合液进行反硝化
反应。脱氮已基本完成
进一步提高脱氮效率, 废水进入第二段反硝化 反应器,利用内源呼吸
制约因素:DO>
对硝化影响大一般<3,
0.5mg/L,一般
BOD负荷
1.5~2.0mg/L
≤0.1kgBOD5/kgMLSS Nhomakorabead在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
氮的去除
生物法除氮
• 硝化过程影响因素:
水污染控制工程
第四章 污水生物处理 (脱氮除磷)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
第五节 生物脱氮除磷技术p147
• 随着城市人口的集中和工农业的发展,水体的富 营养化问题日益突出。目前中国的某些湖泊,如 昆明滇池,江苏太湖,安徽巢湖等都已出现不同 程度的富营养化现象。
污水生物脱氮除磷新工艺PPT课件
成。硝化过程可以分为两个过程,分别由亚硝酸菌 和硝酸菌完成。
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。
上较小的完全混合式反应格串联组成,在各反应 段具有良好的基质浓度梯度分布。 (2)污泥龄短、负荷高,运行速率高,除磷效果好。
4.MSBR工艺 MSBR是SBR和A2/O工艺的组合,污水和脱
氮后的活性污泥一并进入厌氧区,聚磷污泥在此 充分放磷,然后泥水混合液交替进入缺氧区和好 氧区,分别完成反硝化、有机物的好氧降解和吸 磷作用,最后在SBR池中沉淀出水。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。
上较小的完全混合式反应格串联组成,在各反应 段具有良好的基质浓度梯度分布。 (2)污泥龄短、负荷高,运行速率高,除磷效果好。
4.MSBR工艺 MSBR是SBR和A2/O工艺的组合,污水和脱
氮后的活性污泥一并进入厌氧区,聚磷污泥在此 充分放磷,然后泥水混合液交替进入缺氧区和好 氧区,分别完成反硝化、有机物的好氧降解和吸 磷作用,最后在SBR池中沉淀出水。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、硝酸盐
硝酸盐通过进水和回流液进入厌氧区会对生 物除磷产生不利影响,在厌氧区,硝酸盐会 被消耗,同时消耗COD,因此,易生物降解 COD的量就会产生不足,从而使除磷量降低。 硝酸盐进入厌氧段会产生不利影响。
ห้องสมุดไป่ตู้此,厌氧区的硝态氮的浓度需要得到严格 的控制。
5、溶解氧
在厌氧阶段,厌氧条件对于聚磷菌的生长非 常重要,它直接影响到聚磷菌(PAO)和反 硝化除磷菌(DPB)的释磷能力及保证合成 PHB所需的VFA或SCFA的数量,通常,厌氧 段中的DO应严格控制在0.2mg/L以下。
三、生物除磷基本原理
起除磷作用的细菌可分为两类:
(1)聚磷菌(PAOs,Poly-phosphate Accumulating Organisms)
(2)反硝化除磷菌(DPB,Denitrifying Phosphorus Removing Bacteria)。
PAOs原理
一般活性污泥的组成元素主要为C、H、O、N、P, 它们之间的关系一般为C:N:P=46:8:1
有机磷酸盐(有机磷)
一、城市污水中磷的主要来源
城市污水中所含的磷主要来源于: 人类活动的排泄物及废弃物、
工商企业、合成洗涤剂和家用洗涤 剂。
二、污水生物除磷技术的发展
污水生物除磷技术经理了5个发展阶段:
1、对具有明显除磷能力的污泥和生产性污水处 理厂进行了观测和试验研究,证明了除磷作 用的生物学本质和生物有道化学沉淀的辅助 作用。
污水生物除磷
一、城市污水中磷的主要来源 二、污水生物除磷技术的发展 三、生物除磷基本原理 四、生物除磷的主要影响因素
一、城市污水中磷的主要来源
城市污水中所存在的含磷物质基本上 都是不同形式的磷酸盐(简称磷或总 磷,一般用P或TP表示)
分类:
按物理特性溶 颗解 粒性 性
正磷酸盐(正磷) 按化学特性 聚合磷酸盐(聚磷)
2、认识到好氧区之前设置厌氧接触区,污泥进 行厌氧-好氧交替循环的必要性,从而开发了 多种生物除磷工艺流程,并开始工程化应用。
二、污水生物除磷技术的发展
3、在试验研究和工程实践中认识到避免缺氧和 好氧性电子受体(硝态氮或溶解氧)进入厌 氧区的必要性,开发了优化生物除磷性能的 工艺技术和运行技术;
4、认识到简单低分子量(可快速生物降解)基 质的作用及存在的必要性,引入了生物化学 和生物力能学理论,使污水生物除磷技术进 入了定量化模拟和优化阶段;
二、污水生物除磷技术的发展
5、人工强化除磷系统的快速生物降解基质(低 分子有机物)供给,建立了污水生物除磷的 数学模型,污水生物除磷技术在世界范围内 得到了广泛的重视和应用。
三、生物除磷基本原理
自从第一次报道在一些活性污泥法处理厂 中去除了超出正常生物代谢所需的磷之后, 人们对除磷机制就一直存在两种看法。
四、生物除磷的主要影响因素
1、温度 2、pH值 3、进水营养比 4、硝酸盐 5、溶解氧 6、污泥龄
1、温度
温度是生物除磷过程中的一个复杂影响因素,由于 温度影响着活性污泥工艺的各个层面,因此温度的 变化对除磷过程的影响还未被很清楚的认识,研究 表明,温度的变化有时会促进生物除磷过程和提高 生物处理效率,有时则相反。一般情况下,聚磷菌 吸磷和释磷速率均随温度的升高而增大。
DPB原理
近年来人们热衷于研究另一类细菌,即“兼性 厌氧反硝化除磷细菌”(DPB)的反硝化除磷行为。 若能在实际工程中培养出以DPB占优势的混合菌种, 则可期望反硝化与过量吸磷在同一构筑物中实现。
研究表明在不动杆菌属(Acinetobacter)中有一
部些分细种菌可 被利 证用 实具NO有3-同N为PA电O子s极受为体相来似过的量除吸磷收原磷理。,这 只是它们氧化细胞内贮存的PHA时的电子受体不同 而已(PAOs为O2,DPB为NO3-)。
通常,活性污泥细胞中正常磷含量约为细胞干重的 1.5~2.0%,但有一类细菌,当处于厌氧-好氧交替 运行条件下时,能够以高出普通活性污泥3~7倍的 水平摄取磷
这种在厌氧-好氧胶体运行条件下,具有过量摄取超 出正常细胞生理水平的磷的细菌,通常被称作聚磷 菌(PAOs)
PAOs原理
这类细菌具有这样一种特性:当它们处于厌氧 条件时(氧化还原电位ORP在-200~300mV之间), 可将细胞内有机磷转化为无机磷并加以释放,产生 的能量用于摄取废水中的溶解性有机基质以合成 聚—β—羟基丁酸盐(PHB)颗粒贮藏在体内;当 它们转入好氧环境中,则将PHB降解以提供能量, 使其从废水中过量摄取磷,并以聚磷酸盐形式贮存 体内,完成磷的过量吸收。
DPB原理
由于反硝化菌和聚磷菌对有机底物的竞争,因 而在脱氮除磷的污水厂中强化的生物除磷过程往往 会降低该厂的反硝化能力。大多数改进的活性污泥 脱氮除磷污水厂都将厌氧段设于缺氧段之前,因而 有机物在厌氧条件下被PAO吸收而不能在缺氧条件 下为反硝化菌利用。然而,这种情况只有当PAOs 与反硝化菌完全不同时才会发生。若PAOs(或部 分PAOs)在缺氧条件下能发生反硝化作用,则它 们对有机底物竞争的程度将大大降低。
5、溶解氧
而在好氧阶段,为最大限度发挥聚磷菌的摄 磷作用,必须在好氧段供给足够的溶解氧, 以满足聚磷菌对其贮存的PHB进行降解时对 DO作为最终电子受体的需求量 ,最大限度 地转化PHB并产生出足够的ATP,供其过量 摄磷之需。一般,好氧段DO应控制在 2.0mg/L左右。
一般情况下,在15~20℃,好氧吸磷速度达到最大。
2、pH值
生物除磷过程受pH值的影响也比较明显,特 别是在厌氧释磷阶段。在活性污泥工艺中相 对高的pH值(>7.5)能够以两种方式促进磷 去除率的提高:通过增加聚磷酸盐的吸收和 促进化学沉淀反应。
3、进水营养比
进水中能否有足够的有机基质是关系到聚磷 菌能否在厌氧压抑条件下顺利生存的重要因 素。在无硝酸盐回流到厌氧区的生物除磷处 理中,BOD/P比值至少为15~20。
一种认为,虽然存在生物转化,但主要 是无机物沉淀的结果;另一种则认为,是生 物体通过对磷酸盐的新陈代谢和富集作用而 引起的。
三、生物除磷基本原理
后来的许多研究表明,在设计合理的废 水生物除磷工艺中,虽然也存在由于生物作 用引起的化学变化而导致的无机磷沉淀,但 废水中磷的生物去除仍然是生物机制在发挥 主要作用。