八年级数学下册 分式的乘除法教案 北师大版
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
北师大版数学八年级下册 5.2 分式的乘除法 教案
5.2 分式的乘除法1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力;(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入 观察下列运算:23×45=2×43×5,57×29=5×27×9, 23÷45=23×54=2×53×4,57÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?今天我们仿照分数的乘除来研究分式的乘除.二、合作探究探究点一:分式的乘法【类型一】 利用分式的乘法法则和除法法则进行计算计算下列各式:(1)3xy 24z 2·(-8z 2y ); (2)-3xy ÷2y 23x.解析:(1)直接利用分式的乘法运算法则,先找出公因式,然后进行约分;(2)变为乘法,再直接利用分式的乘法运算法则求出即可.解:(1)3xy 24z 2·(-8z 2y )=-6xy ;(2)-3xy ÷2y 23x =-9x 22y.方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.【类型二】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( )A .x ≠-2,x ≠-4B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C.方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型三】 分式的乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab=2aba 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2aba 2+b 2倍.方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.【类型四】 分式乘除法的混合运算计算:a -1a +2·a -4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算.解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2.方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3 D .(-x n y 2n )n =x 2n y3n解析:A 、B 、C 计算都正确;D 中(-x n y 2n )n=(-1)nxn 2y 2n 2,原题计算错误.故选D.方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】 分式的乘除、乘方混合运算计算:(1)(-x 2y )2·(-y 2x )3·(-1x )4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4). 解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x 4y 2·(-y 6x 3)·1x 4=-y 4x 3;(2)原式=(x -2)(x -4)(x +4)(x -4)·(3x -4)2(x -2)2·(x -2)(x +4)(x -3)(3x -4)=3x -4x -3.方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】 分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V =43πR 3(其中R 为球的半径),求: (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积比是多少? (3)买大西瓜合算还是买小西瓜合算? 解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R -d )3,整个西瓜的体积是43πR 3;(2)西瓜瓤与整个西瓜的体积比是43π(R -d )343πR 3=(R -d )3R 3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R -d )3R 3<1,故买大西瓜比买小西瓜合算. 方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】 分式的化简求值化简求值:(2xy 2x +y)3÷(xy 3x 2-y 2)2·[12(x -y )]2,其中x =-12,y =23.解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x 3y 6(x +y )3·(x +y )2(x -y )2x 2y 6·14(x -y )2=2x x +y.将x =-12,y =23代入得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式是解决此类问题的常用方法.三、板书设计1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.。
北师大版八年级数学下册教学设计 分式的乘除法
《分式的乘除法》教学模式介绍:“传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。
在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。
该模式以传授系统知识、培养基本技能为目标。
其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。
该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。
“传递-接受”教学模式的课程环节:复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习设计思路说明:通过提问的方式复习旧课,问题设置为:观察分数的运算,想一想分数乘法运算法则是什么?让学生回忆知识点同时让学生体会类比这一数学学习方法。
接下来是新知识的讲授环节,以任务形式引导学生主动学习:1.通过类比得到分式乘除法的法则。
通过体会分式和分数的关系,类比得到法则。
2.学生活动:试一试自己根据已有的经验计算。
巩固运用环节,给出相关习题,提高学生对于知识点的合并认知,检查学生对于知识点的掌握情况,同时提高课堂效率。
在课堂结尾,随机抽查同学提问关于本节课的认识,让学生自己总结知识点,本课重难点,加深学生对本课内容的印象,同时锻炼学生对于知识的归纳总结能力。
布置课后作业,并在后面的教学过程中进行间隔性复习。
教材分析这是北师大版数学教材八年级下册第五章,在学习整式因式分解的基础上学习分式和分式方程的解法。
培养学生的符号意识和计算能力。
教学目标【知识与能力目标】1.经历探索分式的乘除运算法则的过程,培养代数化归意识,发展合情推理能力;2.掌握分式乘除法的法则,会进行简单分式的乘除运算,发展运算能力。
3.能解决一些与分式乘除运算有关的简单的实际问题。
【过程与方法目标】通过复习和小组活动,理清学习的思路,增强动手实践的能力,培养严谨的数学思维。
【情感态度价值观目标】1.培养学生跟他人交流合作的意识和用实验解决问题的方法与能力;2.培养学生的合情推理能力,提高数学素养。
北师大版数学八年级下册5.2《分式的乘除法》教学设计
北师大版数学八年级下册5.2《分式的乘除法》教学设计一. 教材分析北师大版数学八年级下册5.2《分式的乘除法》是学生在掌握了分式的基本概念、分式的加减法的基础上进行学习的。
本节内容主要介绍了分式的乘除法运算规则,通过实例引导学生理解并掌握分式乘除法的运算方法,培养学生解决实际问题的能力。
本节课的内容在初中数学知识体系中占有重要地位,对于学生进一步学习函数、方程等数学知识具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、分式的加减法,具备了一定的数学思维能力。
但部分学生对分式的乘除法运算规则理解不够深入,容易在实际运算中出错。
因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况进行有针对性的教学。
三. 教学目标1.理解分式乘除法的运算规则,掌握相应的运算方法。
2.能够运用分式乘除法解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.分式乘除法的运算规则。
2.如何运用分式乘除法解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生运用分式乘除法解决问题,提高学生的应用能力。
2.启发式教学法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握分式乘除法的运算规则。
3.小组合作学习:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作精美的课件,帮助学生直观地理解分式乘除法的运算规则。
2.实际问题:准备一些与生活密切相关的实际问题,引导学生运用分式乘除法解决问题。
3.练习题:准备一些分式乘除法的练习题,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生运用已学的分式加减法知识解决问题。
在此基础上,引出本节课的内容——分式的乘除法。
2.呈现(10分钟)教师通过课件展示分式乘除法的运算规则,让学生直观地理解分式乘除法的运算方法。
同时,教师进行讲解,帮助学生掌握分式乘除法的运算规则。
北师大版《分式的乘除法》教学设计
一、教材分析(一)教材所处的地位及作用“分式的乘除法”是北师大版八年级下册第三章第二节的内容,本节课在学习了分式基本性质和因式分解的基础上进一步学习分式的乘除法,是为学习分式加减等作准备,具有承上启下的作用,在教材中处于重要的位置。
(二)学情分析学生在前面学习了分式基本性质,因式分解,现在所学的乘除法是分式基本性质的一个应用,一个实践。
学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。
(三)教学目标根据课程标准的要求和学生的实际情况,制定以下教学目标:知识与技能目标1、熟练掌握分式乘除法则。
2、学会对比、猜想、转化、归纳方法。
过程与方法目标通过对分数乘除法则的观察,归纳分式乘除法则,使学生感知数学知识具有普遍的联系性。
情感与态度目标1、培养学生与人合作、与人交流的良好品质。
2、体验数学活动充满着探索性,尝试在数学活动中获得成功的喜悦,树立自信心。
(四)教学的重点与难点教学重点:熟练掌握分式的乘除法法则教学难点:进行分式的乘除运算,正确体会具体的运算过程和一般步骤。
二、说教法、学法1、教法:根据教材特点和八年级学生的心理特点和认知水平,在课堂教学中要引导学生多观察,多合作、多交流、大胆猜想、验证归纳分式乘除法法则,并进行应用,数学知识来源于生活,数学知识具有普遍的联系性,大胆采用探索式教学,注重学生探究能力的培养,同时注意加强对学生的启发和引导,充分展示自己的观点和见解,创设一个宽松愉快的学习氛围。
2、学法通过本节课的教学,应引导学生学会观察类比猜想归纳的学习方法,培养学生与人合作,与人交流的良好品质,培养学生团队精神,充分调动学生的学习热情,让学生学会学习、学会探索问题的方法,培养学生自主学习的能力三、说教学程序附:板书设计教材选用义务教育课程标准实验教科书(北师大版)八年级下一册第三章第二节,重点是熟练掌握分式的乘除法则。
这节课提供给学生一个探索,思考与同伴合作交流的机会,学生通过对比观察,动脑思考对新旧知识进行联系探究,很自然地学习了新知识。
八年级数学下册 5.2 分式的乘除法教案 (新版)北师大版-(新版)北师大版初中八年级下册数学教案
第五章分式与分式方程5.2 分式的乘除法【教学内容】掌握分式的乘除法法则。
【教学目标】知识与技能经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;会进行简单分式的乘除法计算,具有一定的化归能力。
过程与方法学习类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题。
情感、态度与价值观在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题,让学生经历体会数学观点,培养学生的数学意识。
【教学重难点】重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。
【导学过程】【知识回顾】1.分数的乘法法则:【情景导入】1、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。
2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。
当分解因式完成以后,要进行____________,直到分子、分母没有______________时再进行乘除。
(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。
【新知探究】 探究一、()222244229164311y x x y y xy x y x x y y x +-•+--•2 ) 计算:(例探究二、(1)=vu g f . (2) v u g f ÷= 计算:⑴3234x y y x ⋅⑵cd b a cab 4522223-÷ 总结步骤:⑴确定符号;⑵除法转化为乘法;⑶因式分解;⑷运用乘法法则计算;⑸约分为最简分式. 计算:⑴291643a b b a ⋅⑵225432ab xy y x ab -⋅-⑶y x a xy 28512÷⑷⎪⎪⎭⎫ ⎝⎛-÷x y xy 3232 探究三 计算:2b a ⎛⎫ ⎪⎝⎭=3b a ⎛⎫ ⎪⎝⎭=10b a ⎛⎫ ⎪⎝⎭= 猜想:n b a ⎛⎫ ⎪⎝⎭= 归纳:分式乘方的运算法则:【知识梳理】分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。
北师大版数学八年级下册5.2《分式的乘除法》教案
北师大版数学八年级下册5.2《分式的乘除法》教案一. 教材分析北师大版数学八年级下册5.2《分式的乘除法》是学生在掌握了分式的基本概念、分式的加减法的基础上,进一步学习分式的乘除法。
本节内容是分式运算的重要部分,为后续的高中数学学习打下基础。
教材通过例题和练习,使学生掌握分式乘除法的运算方法,理解乘除法与加减法之间的关系。
二. 学情分析学生在学习本节内容时,已具备了分式的基本概念、分式的加减法的基础知识。
但部分学生对分式的运算规律理解不深,容易混淆。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和辅导。
三. 教学目标1.理解分式乘除法的运算方法。
2.掌握分式乘除法与加减法之间的关系。
3.提高学生的分式运算能力。
四. 教学重难点1.重点:分式乘除法的运算方法。
2.难点:分式乘除法与加减法之间的关系的理解。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生的动手操作能力和思维能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备黑板、粉笔等教学工具。
3.准备练习题和测试题。
七. 教学过程1.导入(5分钟)利用一个实际问题,引出分式的乘除法运算。
例如,某商品的原价是100元,现在进行打折活动,打八折后的价格是多少?让学生思考如何用分式来表示打折后的价格,从而引出分式的乘除法运算。
2.呈现(10分钟)通过PPT展示分式乘除法的运算方法,结合例题进行讲解。
例如,讲解分式乘法时,可以呈现一个分式乘法的例子:ab ×cd=acbd。
让学生观察、理解并记住这个规律。
3.操练(10分钟)让学生分组进行分式乘除法的练习,教师巡回指导。
可以设置一些简单的题目,让学生动手操作,巩固所学知识。
例如,计算以下分式的乘除法:2 3×45;a b ÷cd;4.巩固(10分钟)让学生独立完成一些分式乘除法的题目,教师选题讲解,巩固所学知识。
北师大版八下分式的乘除法word教案2篇
分式的乘除法●教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算.(二)能力训练要求 1.类比分数乘除法的运算法则.探索分式乘除法的运算法则2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识. (三)情感与价值观要求1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学生的创新意识和应用数学的意识.●教学重点让学生掌握分式乘除法的法则及其应用.●教学难点分子、分母是多项式的分式的乘除法的运算.●教学方法引导、启发、探求●教具准备投影片四张 第一张:探索、交流,(记作§ A );第二张:例1,(记作§ B );第三张:例2,(记作§ C )第四张:做一做,(记作§ D ). ●教学过程Ⅰ.创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§ A ) 探索、交流——观察下列算式:32×54=5342⨯⨯,75×92=9725⨯⨯, 32÷54=32×45=4352⨯⨯,75÷92=75×29=2795⨯⨯. 猜一猜a b ×c d =? a b ÷cd =?与同伴交流. [生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.即a b ×c d =acbd ; a b ÷c d =a b ×d c =adbc .这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零.[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法. Ⅱ.讲授新课 1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.2.例题讲解出示投影片(§ B ) [例1]计算:(1)y x 34·32x y ;(2)22-+a a ·aa 212+. 分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.解:(1)y x 34·32x y =3234x y y x ⋅⋅ =23222x xy xy ⋅⋅=232x ; (2)22-+a a ·aa 212+ =)2()2(2+⋅⋅-+a a a a =aa 212-. 出示投影片(§ C )[例2]计算:(1)3xy 2÷x y 26;(2)4412+--a a a ÷4122--a a 分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.解:(1)3xy 2÷x y 26=3xy 2·26yx =2263y x xy ⋅=21x 2; (2)4412+--a a a ÷4122--a a=4414+--a a a ×1422--a a =)1)(44()4)(1(222-+---a a a a a =)1)(1()2()2)(2)(1(2+---+-a a a a a a =)1)(2(2+-+a a a 3.做一做 出示投影片(§ D ) 通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V=34πR 3(其中R 为球的半径),那么 (1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.[生]我们不妨设西瓜的半径为R ,根据题意,可得:(1)整个西瓜的体积为V 1=34πR 3; 西瓜瓤的体积为V 2=34π(R -d )3. (2)西瓜瓤与整个西瓜的体积比为:12V V =3334)(34R d R ππ-=33)(R d R - =(R d R -)3=(1-Rd )3. (3)我认为买大西瓜合算.由12V V =(1-R d )3可知,R 越大,即西瓜越大,R d 的值越小,(1-Rd )的值越大,(1-Rd )3也越大,则12V V 的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.Ⅲ.随堂练习1.计算:(1)b a ·2a b ;(2)(a 2-a )÷1-a a ;(3)y x 12-÷21y x + 2.化简:(1)362--+x x x ÷xx x --+632; (2)(ab -b 2)÷ba b a +-22 解:1.(1)b a ·2a b =2ba ab =a ab ab ⋅=a1; (2)(a 2-a )÷1-a a =(a 2-a )×aa 1- =a a a a )1)(1(--=(a -1)2 =a 2-2a +1(3)y x 12-÷21y x +=y x 12-×12+x y =)1()1)(1(2+-+x y y x x =(x -1)y =x y -y . 2.(1)362--+x x x ÷xx x --+632 =3)2)(3(--+x x x ×362+--x x x =)3)(3()2)(3)(2)(3(+-+--+x x x x x x =(x -2)(x +2)=x 2-4(2)(ab -b 2)÷ba b a +-22 =(ab -b 2)×22b a b a -+=))(())((b a b a b a b a b +-+- =bⅣ.课时小结[师]同学们这节课有何收获呢?[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可. [师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展. [生]今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.……Ⅴ.课后作业1.习题的第1、2题.2.通过习题总结分式的乘方运算.Ⅵ.活动与探究已知a 2+3a +1=0,求(1)a +a 1;(2)a 2+21a; (3)a 3+31a ;(4)a 4+41a [过程] 根据题意可知a ≠0,观察所求四个式子不难发现只要求出(1),其他便可迎刃而解.因为a 2+3a +1=0,a ≠0,所以a 2+3a +1=0两边同除以a ,得a +3+a 1=0,a +a1=-3. [结果]因为a 2+3a +1=0,a ≠0,(1)a 2+3a +1=0两边同除以a ,得 a +3+a 1=0,a +a1=-3; (2)a 2+21a =(a +a1)2-2=(-3)2-2=7; (3)a 3+31a =(a +a 1)(a 2+21a-1)=(-3)×(7-1)=-18; (4)a 4+41a =(a 2+21a )2-2=72-2=47. ●板书设计§ 分式的乘除法一、运算法则:a b ×c d =ac bd ;a b ÷c d =a b ×d c =adbc . (其中a 、c 、d 是不为零的整式,a b ,cd 是分式). 二、应用,升华[例1](1)y x 34·32x y ;(2)22-+a a ·aa 212+. 分析:(1)对照分式乘法的运算法则.(2)运算的结果要化简.(3)分子、分母如果是多项式,应先分解因式,可以使运算少走弯路.[例2](1)3xy 2÷xy 26;(2)4412+--a a a ÷4122--a a (略)第三课时●课 题§ 分式的乘除法●教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算.(二)能力训练要求1.类比分数乘除法的运算法则.探索分式乘除法的运算法则.2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.(三)情感与价值观要求1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学生的创新意识和应用数学的意识.●教学重点让学生掌握分式乘除法的法则及其应用.●教学难点分子、分母是多项式的分式的乘除法的运算.●教学方法引导、启发、探求●教具准备 投影片四张第一张:探索、交流,(记作§ A );第二张:例1,(记作§ B );第三张:例2,(记作§ C );第四张:做一做,(记作§ D ).●教学过程Ⅰ.创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§ A )探索、交流——观察下列算式:32×54=5342⨯⨯,75×92=9725⨯⨯, 32÷54=32×45=4352⨯⨯,75÷92=75×29=2795⨯⨯. 猜一猜a b ×c d =? a b ÷cd =?与同伴交流. [生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.即a b ×c d =acbd ; a b ÷c d =a b ×d c =adbc . 这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零.[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.Ⅱ.讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.2.例题讲解出示投影片(§ B )[例1]计算:(1)y x 34·32x y ;(2)22-+a a ·aa 212+. 分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.解:(1)y x 34·32x y =3234x y y x ⋅⋅ =23222x xy xy ⋅⋅=232x; (2)22-+a a ·aa 212+ =)2()2(2+⋅⋅-+a a a a =aa 212-. 出示投影片(§ C )[例2]计算:(1)3xy 2÷x y 26;(2)4412+--a a a ÷4122--a a 分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.解:(1)3xy 2÷x y 26=3xy 2·26y x =2263y x xy ⋅=21x 2; (2)4412+--a a a ÷4122--a a =4414+--a a a ×1422--a a =)1)(44()4)(1(222-+---a a a a a=)1)(1()2()2)(2)(1(2+---+-a a a a a a =)1)(2(2+-+a a a 3.做一做出示投影片(§ D ) 通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V=34πR 3(其中R 为球的半径),那么 (1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.[生]我们不妨设西瓜的半径为R ,根据题意,可得:(1)整个西瓜的体积为V 1=34πR 3; 西瓜瓤的体积为V 2=34π(R -d )3. (2)西瓜瓤与整个西瓜的体积比为:12V V =3334)(34R d R ππ-=33)(R d R - =(R d R -)3=(1-Rd )3. (3)我认为买大西瓜合算.由12V V =(1-R d )3可知,R 越大,即西瓜越大,R d 的值越小,(1-Rd )的值越大,(1-Rd )3也越大,则12V V 的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.Ⅲ.随堂练习 1.计算:(1)b a ·2a b ;(2)(a 2-a )÷1-a a ;(3)y x 12-÷21y x + 2.化简:(1)362--+x x x ÷xx x --+632; (2)(ab -b 2)÷b a b a +-22 解:1.(1)b a ·2a b =2ba ab =a ab ab ⋅=a1; (2)(a 2-a )÷1-a a =(a 2-a )×aa 1- =a a a a )1)(1(--=(a -1)2 =a 2-2a +1 (3)y x 12-÷21y x +=y x 12-×12+x y =)1()1)(1(2+-+x y y x x =(x -1)y =xy -y . 2.(1)362--+x x x ÷xx x --+632 =3)2)(3(--+x x x ×362+--x x x =)3)(3()2)(3)(2)(3(+-+--+x x x x x x =(x -2)(x +2)=x 2-4.(2)(ab -b 2)÷b a b a +-22 =(ab -b 2)×22b a b a -+=))(())((b a b a b a b a b +-+- =b .Ⅳ.课时小结[师]同学们这节课有何收获呢?[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可.[师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展.[生]今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.……Ⅴ.课后作业Ⅵ.活动与探究已知a 2+3a +1=0,求 (1)a +a 1;(2)a 2+21a; (3)a 3+31a ;(4)a 4+41a [过程] 根据题意可知a ≠0,观察所求四个式子不难发现只要求出(1),其他便可迎刃而解.因为a 2+3a +1=0,a ≠0,所以a 2+3a +1=0两边同除以a ,得a +3+a 1=0,a +a1=-3. [结果]因为a 2+3a +1=0,a ≠0,(1)a 2+3a +1=0两边同除以a ,得 a +3+a 1=0,a +a1=-3; (2)a 2+21a =(a +a1)2-2=(-3)2-2=7; (3)a 3+31a =(a +a 1)(a 2+21a-1)=(-3)×(7-1)=-18; (4)a 4+41a =(a 2+21a )2-2=72-2=47. ●板书设计§ 分式的乘除法一、运算法则二、a b ×c d =ac bd ;a b ÷c d =a b ×d c =adbc . (其中a 、c 、d 是不为零的整式,a b ,c d 是分式).)y 3·32x ;)2-a ·aa 22+. (3)分子、分母如果是多项式,应先分解因式,可以使运算少走弯路.[例2](1)3xy 2÷x y 26; (2)4412+--a a a ÷4122--a a (略)。
北师大版八年级下册5.2分式的乘除法教学设计
2.能力提升题:
-探究分式乘除法在几何图形中的应用,如计算相似图形的面积比、体积比等,培养学生的空间想象能力和解决问题的能力。
-设计2-3道含有变量的分式乘除题目,要求学生不仅计算出结果,还要解释每一步运算的原理。
2.练习题类型:基础题、提高题、拓展题。
3.教学过程:学生完成练习题,教师巡回指导,解答学生的疑问。
-基础题:计算以下分式的乘除运算:$\frac{1}{2} \times \frac{3}{4}$、$\frac{5}{6} \div \frac{1}{2}$。
-提高题:计算以下分式的乘除运算:$\frac{x}{3} \times \frac{2}{x}$、$\frac{2x-1}{x+1} \div \frac{x-1}{2x}$。
(二)过程与方法
1.通过引导、发现、讨论的学习过程,让学生自主探究分式乘除法的运算规律,提高自主学习能力。
2.采用问题驱动法,设计具有挑战性的问题和实际案例,培养学生分析问题、解决问题的能力。
3.运用变式教学,让学生在解决不同类型的问题中,逐步深化对分式乘除法的理解,提高思维的灵活性和深刻性。
(三)情感态度与价值观
-教师将根据作业完成情况,给予个性化的反馈和指导,帮助学生提高。
3.创设互动课堂,鼓励学生提问、讨论,培养合作意识和解决问题的能力。
-例如:分组讨论典型例题,让学生在交流中互相学习,共同提高。
4.搭建梯度练习,针对不同水平的学生,设计难易程度不同的练习题,使每位学生都能得到有效训练。
-例如:基础题、提高题、拓展题等,让学生自主选择,实现个性化学习。
5.利用多媒体辅助教学,通过动态演示分式乘除法的运算过程,帮助学生形象地理解知识点。
北师大版八年级下册数学《5.2 分式的乘除法》教学设计
北师大版八年级下册数学《5.2 分式的乘除法》教学设计一. 教材分析《5.2 分式的乘除法》这一节主要介绍了分式乘除法的运算方法,包括分式乘以分式、分式除以分式以及分式乘以整数和整数乘以分式。
这些内容是分式运算的基础,对于学生来说,掌握这些运算方法对于后续的数学学习具有重要意义。
二. 学情分析八年级的学生已经学习了分式的基本概念和性质,对于分式的加减法有一定的了解。
但是,学生在分式乘除法的运算上可能还存在一定的困难,特别是对于分式乘除法的运算规则理解不够深入。
因此,在教学过程中,需要帮助学生深化对分式乘除法的理解,提高运算能力。
三. 教学目标1.理解分式乘除法的运算规则,能够熟练地进行分式乘除法的运算。
2.能够运用分式乘除法解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式乘除法的运算规则。
2.如何将实际问题转化为分式乘除法的问题。
五. 教学方法采用讲授法、案例分析法、小组讨论法等多种教学方法,引导学生通过自主学习、合作学习,深入理解分式乘除法的运算规则,提高运算能力。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出分式乘除法的重要性。
2.呈现(10分钟)讲解分式乘除法的运算规则,并通过PPT课件展示,让学生清晰地理解分式乘除法的运算过程。
3.操练(10分钟)让学生通过练习题,运用分式乘除法的运算规则进行计算,巩固所学知识。
4.巩固(5分钟)通过小组讨论,让学生分享自己的解题过程,互相学习,巩固分式乘除法的运算方法。
5.拓展(5分钟)引导学生思考如何将实际问题转化为分式乘除法的问题,提高学生解决问题的能力。
6.小结(3分钟)对本节课的内容进行小结,让学生明确分式乘除法的运算规则及其应用。
7.家庭作业(2分钟)布置适量的家庭作业,让学生进一步巩固分式乘除法的运算方法。
8.板书(1分钟)板书本节课的重点内容,方便学生复习。
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。
八年级数学下册北师大版5.2分式的乘除法教学设计
-计算一个长方形和一个圆形的面积之比,要求将分式乘除法应用于解题过程。
3.提高题:这部分题目旨在提高学生的运算技巧和解决问题的能力,包括以下内容:
-分式乘除法的简化,如:(3x^2 / 4y) * (4y / 3x^2)的计算。
-混合运算题目,如:(2a^3 / 3b^2) * (4b^2 / 5a^2) ÷ (6a / 7b)的计算。
最后,我会对学生的表现给予积极评价,并强调数学学习的重要性和乐趣。我会鼓励学生在课后继续练习,并提醒他们在日常生活中寻找数学的应用,以此来提高他们对数学的兴趣和认识。通过这样的总结归纳,学生可以更加系统地掌握所学知识,增强自信心,为下一阶段的学习打下坚实的基础。
五、作业布置
为了巩固学生对分式乘除法的理解和应用,我设计了以下几类作业:
4.探究题:鼓励学生自主探究分式乘除法的规律,提高他们的发现问题和解决问题的能力。题目如下:
-探究分式乘除法中的规律,如分子分母的交叉相乘、约分等。
-探索分式乘除法在生活中的应用,结合实际情境设计题目。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
2.作业完成后,学生应认真检查,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘除法的运算规律及简化方法。
2.难点:将分式乘除法应用于解决实际问题,以及分式乘除混合运算的简化。
(二)教学设想
1.创设情境,导入新课
教学开始时,可以创设一个与学生生活相关的情境,如计算两个长方形面积之和,引导学生运用已学的分式加减法知识解决问题。然后提出问题:“如果这两个长方形的宽是相等的,我们可以直接相加吗?如何计算?”由此引出分式乘除法的概念。
新北师大版数学八下教案: 分式的乘除法
5.2分式的乘除法1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力;(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入观察下列运算:2 3×45=2×43×5,57×29=5×27×9,2 3÷45=23×54=2×53×4,57÷29=57×92=5×97×2.以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么?今天我们仿照分数的乘除来研究分式的乘除.二、合作探究探究点一:分式的乘法【类型一】利用分式的乘法法则和除法法则进行计算计算下列各式:(1)3xy24z2·(-8z2y);(2)-3xy÷2y23x.解析:(1)直接利用分式的乘法运算法则,先找出公因式,然后进行约分;(2)变为乘法,再直接利用分式的乘法运算法则求出即可.解:(1)3xy24z2·(-8z2y)=-6xy;(2)-3xy÷2y23x=-9x22y.方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.【类型二】根据分式的除法,判断分式中字母的取值范围若式子x+1x+2÷x+3x+4有意义,则x的取值范围是()A.x≠-2,x≠-4B.x≠-2C.x≠-2,x≠-3,x≠-4D.x≠-2,x≠-3解析:∵x+3x+4≠0,x+2≠0,∴x+3≠0且x+4≠0,解得x≠-2,x≠-3,x≠-4,故选C.方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型三】分式的乘除法的应用老王家种植两块正方形土地,边长分别为a米和b米(a≠b),老李家种植一块长方形土地,长为2a米,宽为b米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2aba 2+b2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2aba 2+b2倍.方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可.【类型四】 分式乘除法的混合运算计算:a -1a +2·a -4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算.解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2.方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( ) A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b 2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3 D .(-x n y 2n )n =x 2n y3n解析:A 、B 、C 计算都正确;D 中(-x n y 2n )n=(-1)nxn 2y 2n 2,原题计算错误.故选D.方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】 分式的乘除、乘方混合运算计算:(1)(-x 2y )2·(-y 2x )3·(-1x )4;(2)(2-x )(4-x )x 2-16÷(x -24-3x )2·x 2+2x -8(x -3)(3x -4). 解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x 4y 2·(-y 6x 3)·1x 4=-y 4x 3;(2)原式=(x -2)(x -4)(x +4)(x -4)·(3x -4)2(x -2)2·(x -2)(x +4)(x -3)(3x -4)=3x -4x -3.方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3,整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R-d)3R3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】分式的化简求值化简求值:(2xy2x+y)3÷(xy3x2-y2)2·[12(x-y)]2,其中x=-12,y=23.解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x3y6(x+y)3·(x+y)2(x-y)2x2y6·14(x-y)2=2xx+y.将x=-12,y=23代入得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式是解决此类问题的常用方法.三、板书设计1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.。
北师大版八年级数学下册《分式的乘除法》教案
第五章分式与分式方程5.2分式的乘除法一、学生知识状况分析知识技能基础:在小学,学生已经学过分数的乘除法并掌握了分数的乘除法法则,因此在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。
之前学习了分式基本性质、分式的约分和因式分解,为分式的运算和结果的化简奠定基础。
能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。
二、教材分析1、教材的地位和作用本节教材是北师大版八年级数学下册第五章第二节的内容,是初中数学的重要内容之一。
我认为,本节课起着承前启后的作用。
一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式的加减法和分式方程等知识奠定了基础。
2、教学目标分析1.类比分数乘除法的运算法则,探索分式的乘除法运算法则.2.会进行简单分式的乘除运算,并体会因式分解在分式乘除法中的作用.3、教学重难点教学重点:分式乘除法的法则及应用.教学难点:分子分母是多项式的分式的乘除法运算。
三、教法分析结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线。
四、学法分析我认为本节课适合采用学生自主探索、合作交流的数学学习方式。
一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算。
五、教学过程分析(一)知识回顾,奠定基础(1)约分的基本步骤:1.若分子﹑分母都是单项式,则约去分子、分母的 ;2.若分子﹑分母含有多项式,则先将多项式 ,然后约去分子﹑分母的 .约分的依据: .约分的结果: .化简(2)2.分数的乘除法法则:1)分数乘以分数,用分子的积做 ;分母的积做2)分数除以分数,把除数的分子分母颠倒位置与 .(二)类比联想,探究新知探究活动一:分式的乘法法则师生活动:首先让学生计算式子 (1)2934⨯32= (2)22174⨯32= 解后反思:(1)、(2)式是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)(学生应该能说出依据的是:分数的乘法法则)教师加以肯定,并指出与分数的乘法法则类似,引导学生类比分数的乘法则,猜想出分式的乘法则.(课件展示)分式的乘法则是:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
2.分式的乘除法-北师大版八年级数学下册教案
2. 分式的乘除法-北师大版八年级数学下册教案一、教学目标1.了解分式乘法和除法的运算规律,并会灵活应用;2.掌握分式乘法和除法的计算方法,提高计算能力;3.能够将实际问题转化为分式运算问题,运用分式乘除法解决实际问题。
二、教学重点和难点1.教学重点:–分式乘法的运算法则;–分式除法的运算法则;2.教学难点:–将实际问题转化为分式运算问题;–运用分式乘除法解决实际问题。
三、教学内容和教学方法1.教学内容–分式乘法的运算法则及例题;–分式除法的运算法则及例题;–实际问题的转化及应用。
2.教学方法–讲授法:讲授分式乘法和除法的计算方法、应用技巧及注意事项;–练习法:布置分式乘除法的练习题,培养学生解决实际问题的能力。
四、教学过程1. 分式乘法的运算法则1.通过例题引入分式乘法的计算方法;2.讲解分式乘法的运算规律:分式相乘时,分子相乘,分母相乘,然后约分即可;3.给出实例讲解分式乘法的具体计算方法。
2. 分式除法的运算法则1.通过例题引入分式除法的计算方法;2.讲解分式除法的运算规律:分式相除时,先将除式取倒数变为乘式,再进行乘法运算;3.给出实例讲解分式除法的具体计算方法。
3. 实际问题的转化及应用1.通过实例引入如何将实际问题转化为分式问题;2.通过实例讲解如何应用分式乘除法解决实际问题;3.布置作业,让学生练习将实际问题转化为分式问题,然后应用分式乘除法进行解答。
五、教学评价和反思1.教学评价–通过讲解分式乘除法的运算规律、计算方法和应用技巧,使学生掌握了分式乘除法的基本概念和计算方法;–在实际问题的转化及应用方面,通过实例的讲解,提高了学生的应用能力。
2.教学反思–在教学分式乘除法时,应充分利用实例,帮助学生理解分式的运算法则;–在实际问题转化及应用方面,应选择生动有趣的例题,激发学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章分式2.分式的乘除法
一、学生知识状况分析
知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。
在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础
能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。
二、教学任务分析
具体学习任务分析:本节课的重点是分式乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算。
分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
因此,本课时的教学目标是:
知识目标:1、分式的乘除运算法则
2、会进行简单的分式的乘除法运算
能力目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
情感目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
三、教学过程分析
第一环节复习旧知识
复习小学学过的分数的乘除法运算。
活动内容
1、计算,并说出分数的乘除法的法则:
(1)(2);
分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.
活动目的:
复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备。
教学效果:
学生能准确的说出分数的乘除法运算法则。
第二环节引入新课
活动内容
猜一猜:;
你能总结分式乘除法的法则吗?与同伴交流。
,
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
活动目的:
让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:
通过类比分数的乘除法的法则,学生明白字母代表数,这样很顺利的得出分式的乘除法的法则。
第三环节知识运用
活动内容
例题1:
(1)(2)
例题2
(1)(2)
活动目的:
通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,
并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。
需要给学
生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分
式计算时往往没有注意到结果要化简。
教学效果:
学生能将算式对照乘除法的法则进行运算,在运算结果中,如果不是最简分式往往忘记约分,
因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一
般先分解因式,并在运算过程中约分,可以是运算简化。
活动内容:
例题3
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西
瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚
都是d,已知球的体积公式为 (其中R为球的半径),那么,(1)西瓜瓤与整个西瓜的体
积各是多少?
(2)西瓜瓤与整个西瓜的体积的比是多少?
(3)你认为买大西瓜合算还是买小西瓜合算?与同伴交流
活动目的:
能解决一些与分式有关的简单的实际问题。
教学效果:
通过以上例题帮助学生总结出分式乘除法的运算步骤:
当分式的分子与分母都是单项式时:
(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②把分式积中的分子与分母分别写成分子与分母的分因式与另一个因式的乘积形式,如果分子(或分母)的符号是负号,应把负号提到分式的前面;③约分
(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
当分式的分子、分母中有多项式,①先分解因式;②如果分子与分母有公因式,先约分再计算.
③如果分式的分子(或分母)的符号是负号时,应把负号提到分式的前面.
最后的计算结果必须是最简分式.
第四环节课堂反馈
活动内容:
化简:(1)(2)(3)
对本节知识进行巩固练习
教学效果:
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。
式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
第五环节课堂小结
活动内容:
1.分式的乘除法的法则
2.分式运算的结果通常要化成最简分式或整式.
3. 学会类比的数学方法
布置作业:课本P77习题3.3第1、2题
活动目的:本课的回顾与小节。
四、教学反思
1、学生对于法则的运用不难,但是较差班级的学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强
化简意识和能力。
还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。
2、类比的学习方法是学习新知识的好方法。