中职高一数学期中测试卷

合集下载

职高高一上学期期中试卷

职高高一上学期期中试卷

2023-2024学年度第一学期高一数学期中考试题一、选择题(每小题3分,共45分)1、下列语句能确定一个集合的是( )。

A. 与1接近的实数全体B. 某学校高一农学班性格开朗的男生全体B. 大于10的全体自然数 D. 学校内穿漂亮衣服的女生2、若集合A={1,3,5},B={2,4,5},则A ∪B=( )。

A. {1,2,3,4,5}B.{5}C. ∅D.{1,3}3、集合A={-4,0,3}的所有子集的个数为( )。

A. 8B.7C.6D.44、下列关系不正确的是( )A.0∈NB.{2,1}∈{1,2,3}C.∅∈AD.√2 ∉R5、设A={x │x<3},B={x │x ≥1},则A ∩B 为( )A. {x │x ≥1或x<3}B.{x │x<3且x<1}B. C.{x │1≤x<3} D. ∅6、“a>1”是“a>0”的( )A. 充分条件B.必要条件C.充要条件D.既不充分也不必要条件7、若全集U=R ,A={x │-1<x ≤2},则∁u A=( )A. {x │x ≤-1或x>2B.{x │x <-1或x ≥2}C.{x │x ≤-1且x>2}D. R8、已知A={(x,y )│2x+3y=2},B=A={(x,y )│3x-2y=2}, 则A ∩B 为( )A. {1,31} B.{132,1310} C.{(1,31)} D.{(132,1310)}9、若a>b>c,下列各式中正确的是( )A. ab>bcB.ac>bcC.b a 22>D.a-c>b-c10、不等式x x x 2313121+->+-的解集是( ) A. ),31(+∞ B.(-∞,1) C.)31,(-∞ D.(-∞,0) 11、不等式5<x 的解集为( )A. {}5>x xB.{}55<<-x xC.{}5±>x xD.{}55-<>x x x 或12、不等式03522<+--x x 的解集为( )A. RB.∅C.{⎭⎬⎫<<-213x xD.{⎭⎬⎫>-<213x x x 或 13、关于x 的不等式()()()b a b x a x <>--0的解集为( )A. ()b a ,B.()a b ,C.()()+∞∞-,,b aD.()()+∞∞-,,a b14、不等式组⎩⎨⎧-<+->-5442243x x x x 的解集为( ) A. ),2(+∞ B.),3(+∞ C.(2,3) D.()()+∞∞-,32,15、若则设且,4,4,0,0-==+>>xy m y x y x ( )A. 0>mB.0<mC.0≥mD.0≤m二、填空(每空2分,共30分)16、用适当的符号填空:(1)0 ∅ (2)N Q (3)∅ {0}17、设A= }{{}=<<=<<-B A x x B x x 则,40,32 .18、设}{{}则,2,2,1,0,1,2==--=x x A U ∁u A= .19、用列举法写出15的所有正约数组成的集合 .20、用“充分”、“必要”或“充要”填空:(1)有实数根”的”是“方程“0422=++>b ax x b a 条件。

职教高一期中考试数学试卷

职教高一期中考试数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √9B. √16C. √25D. √22. 若x = -3,则代数式3x + 2的值是()A. -7B. -5C. 7D. 53. 已知函数f(x) = 2x - 1,若f(x) = 3,则x的值为()A. 2B. 1C. 0D. -14. 在直角坐标系中,点P(-2, 3)关于y轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (2, -3)D. (-2, 3)5. 若a, b是方程x² - 3x + 2 = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 56. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10的值为()A. 19B. 21C. 23D. 257. 在三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 60°C. 45°D. 30°8. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是()A. 24cm³B. 48cm³C. 72cm³D. 96cm³9. 已知函数f(x) = -x² + 4x - 3,则f(2)的值为()A. 1B. 3C. 5D. 710. 在下列各式中,正确的是()A. (a + b)² = a² + 2ab +b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²二、填空题(每题5分,共50分)1. 若a = 2,b = -3,则a² + b² = ________。

中职高一数学期中试题

中职高一数学期中试题

中职高一数学期中试题一、选择题(共6小题,每小题5分,共30分)(1)下列各组对象能构成集合的是()A.与π无限接近的数; B. {1,1,2};C. 所有的坏人;D.平方后与自身相等的数。

(2)下列结论:① -12∈R;②√2∈Q;③∣-3∣∈N*;④ 2∈{(-1,2)};⑤{x/x2-9=0}={3,-3};⑥ 0∈φ其中正确的个数为()个。

A.2 B. 3 C. 4 D.5(3)下列说法中,不正确的是()①φ={0};②若A⊆B,B⊆C,则A⊆C;③空集是任何一个集合的真子集;④自然数集合中的元素都是正整数中的元素。

A.①③;B.①④;C.③④;D.①③④(4)下列结论中,正确的是()①若x∈A,则x∈(A ∪B );②{x/x2+1=0}∩A=φ;③若A∩B=φ,则A=φ或B=φA.①②;B.①③;C.②③;D.①②③。

(5)“a<5”的一个必要不充分条件是()A. a<3;B. a<6;C. a=5;D. a>5.(6)下列三个结论中正确结论的序号为()①方程x2+4x+4=0的所有实数根组成的集合用列举法可以表示为{-2,+2};②设全集U=R,集合A={x/2≤x<4}则Сu A={x/x<2或x≥4};③已知集合A与B,则“A⊆B”是“A∩B=A”的充要条件。

A.①②;B. ①③;C. ②③;D.①②③。

二、填空题(共4 小题,每小题6分,共24分)(7)、已知集合A={x/x2-5x+6=0},B={x/mx+6=0}并且B⊆A,则实数m的值为。

(8)、若集合A={x/x2+6x+c=0}={m}则m的值为(9)、若集合A={x/1≤x≤3},B={x/x>2}则A∩B=(10)、已知集合A={(x ,y)/2x+y=3}与集合B={(-1,5),(0,3)},则集合A与B的关系为三、解答题(共3个题,每小题12分,共36分)(11)、已知全集U=R,集合A={x/-3≤x≤1}集合B={x/x≤0或x>3}.求①СU (A⋃B);②(СUA)∩B.(12)、解答下列问题.①已知集合A={(x,y)/4x+y=6},B={(x,y)/3x+2y=7}求A∩B.②已知集合A={x/x是小于13的质数},请用列举法把集合A表示出来。

职中高一期中考试数学试卷

职中高一期中考试数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. 3.14B. √2C. 0.1010010001...D. 3/52. 已知函数f(x) = 2x + 1,那么f(-3)的值为()A. -5B. -7C. 5D. 73. 下列各式中,等式正确的是()A. 3x + 2 = 2x + 5B. 2x - 3 = 2(x - 1)C. 3(x + 2) = 3x + 6D. 2(x + 3) = 2x + 6 + 34. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)5. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = 2x + 1C. f(x) = |x|D. f(x) = x^36. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 27. 已知a > b,那么下列不等式中正确的是()A. a + b > b + aB. a - b > b - aC. ab > baD. a/b > b/a8. 下列各式中,是等差数列通项公式的是()A. an = 3n + 2B. an = 2n^2 + 1C. an = 3n + 1D. an = n^2 + 2n9. 下列各式中,是等比数列通项公式的是()A. an = 2^nB. an = 3n - 1C. an = n^2D. an = n + 110. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且f(0) = 1,f(1) = 2,f(2) = 3,那么a的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 若sinα = 1/2,且α在第二象限,则cosα的值为______。

2. 若x^2 - 5x + 6 = 0,则x的值为______。

中职数学 2023-2024学年山东省潍坊市高密市中等专业学校高一(上)期中数学试卷

中职数学 2023-2024学年山东省潍坊市高密市中等专业学校高一(上)期中数学试卷

2023-2024学年山东省潍坊市高密市中等专业学校高一(上)期中数学试卷一、选择题。

(共本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)A.33B.3C.1D.−31.(3分)已知直线的倾斜角是30°,则直线的斜率是()√√√A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)2.(3分)圆x2+(y-2)2=1的圆心是()A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)3.(3分)抛物线y2=4x的焦点为()A.12B.2C.5D.74.(3分)已知等差数列{a n}的公差d=3,且a4=1,则a6等于()A.y=±32x B.y=±23x C.y=±21313x D.y=±132x5.(3分)双曲线x 24−y29=1的渐近线方程是()√√A.-4B.4C.-2D.26.(3分)已知各项均为正数的等比数列{a n},若a2•a6=16,则a4的值为()A.20B.30C.35D.507.(3分)等差数列{a n}的前5项和为S5=5,前10项和为S10=15,则S15等于()8.(3分)某养猪场2021年年初猪的存栏数1000,预计以后每年存栏数的增长率为8%.设该养猪场从今年起每年年初的计划存栏数依次为a1,a2,a3,……,则2036年年底存栏头数为()(参考数据:1.0814≈2.9,1.0815≈3.2,1.0816≈3.4)二、选择题。

共本题共4小题,每小题3分,共12分.在每小题给出的选项中,有多项符合题目要求.全部选对的得3分,部分选对的得2分,错得选的得0分。

三、填空题。

(共4小题,每空4分,满分20分)A .2000B .2900C .3200D .3400A .y -x +1=0B .y +x +1=0C .x -y -2=0D .x +y =09.(3分)直线l :x -y +1=0,则下列直线中与l 平行的是( )A .方程x 2=0表示圆B .点A (0,-1)在直线x +y =-1上C .数列的图象都是一群孤立的点D .数列中的数可随意互换位置10.(3分)下列说法正确的是( )A .a =3B .长轴长为8,短轴长为6C .焦点为(±5,0)D .离心率为7411.(3分)已知椭圆方程x 29+y 216=1,则下列说法正确的是( )√A .首项为7B .公差为-2C .数列{a n }为等差数列D .S n 取得最大值时n =412.(3分)若数列{a n }的通项公式a n =-2n +7,设其前n 项和为S n ,则下列说法正确的是()13.(4分)直线y =x -3在y 轴上的截距是 。

中等职业学校高一下数学期中综合小测试

中等职业学校高一下数学期中综合小测试

中等职业学校高一下数学期中综合小测试一、单项选择题1.过原点且与圆(x-3)2+y2=16相切的动圆圆心轨迹是()A.双曲线B.椭圆C.双曲线的一支D.抛物线2.已知A(4,7),B(-1,2),则直线AB与两坐标轴围成的三角形面积为()A.3B.9C.32D.923.双曲线x2-y2=-4的顶点坐标是()A.(0,±1)B.(0,±2)C.(±1,0)D.(±2,0)4.若方程(2m2+m -3)x +(m2-m )y -4m +1=0表示直线,则( )A.m ≠0B.m ≠32C.m ≠1D.m ≠1且m ≠-325.经过点P (2,-1)的抛物线的标准方程是()A.y2=12x 或y2=4xB.x2=-4yC.y2=12x 或x2=-4yD.y2=-4x6.直线y =x +b 与曲线x有且只有一个交点,则b 的取值范围是( )A.{b |-1<b ≤1}B.{b |-1<b ≤1或bC.{b |-1≤b <1}D.{b |-1≤b <1或b7.双曲线2212516x y -=的焦点坐标是( )A.0)B.0) C.)或(-0)D.(0,08.0),a =5,b =2的双曲线方程是( ) A.221254y x -= B.221254x y -= C.221299y x -= D.221299x y -= 9.以直线y=±x 为渐近线,一个焦点为F (0,2)的双曲线的标准方程为( )A.x22-y22=1B.y22-x22=1C.x24-y24=1D.y24-x24=110.已知圆x2+y2=2和圆x2+y2-2x -1=0,则这两圆的位置关系是( )A.相交B.外切C.内切D.相离11.由直线y =x +1上的一点向圆(x -3)2+y2=1引切线,则切线长的最小值为( )A.1B.2 2C.7D.312.抛物线y =x2上的点到直线2x -y =4的距离最短的点的坐标是( ) A.1124⎛⎫ ⎪⎝⎭, B.(1,1) C.3922⎛⎫ ⎪⎝⎭, D.(2,4)13.直线y =x +m 与双曲线29x -24y =1只有一个交点,则m 的值为( )A.5B.±514.若点A (a ,2),B (6,b )关于点M (4,-1)对称,则a +b 等于( )A.-2B.2C.-4D.615.已知椭圆的短轴长为2,中心与抛物线y2=4x 的顶点重合,椭圆的一个焦点恰好是抛物线的焦点,则椭圆方程为( )A.y22+x2=1B.x22+y2=1C.y24+x2=1D.x24+y2=116.以点(-2,4)为圆心的圆,若有一条直径的两端分别在两坐标轴上,则该圆的方程是( )A.(x +2)2+(y -4)2=10B.(x +2)2+(y -4)2=20C.(x -2)2+(y +4)2=10D.(x -2)2+(y +4)2=2017.有一抛物线型拱桥,当水面离拱顶2米时,水面宽4米,则水面下降1米后,水面宽度为多少米( )C.4.5D.918.椭圆x220 +y2m =1(0<m<20)的两个焦点分别为F1,F2,直线l 过F2且与椭圆交于M ,N 两点,则△F1MN 的周长为( )A.20B.4 5C.8 5D.与m 的值有关19.若A·B>0,则直线Ax +By +C =0的倾斜角的取值范围是( )A.[0,π)B.022πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭,, C.2ππ⎡⎫⎪⎢⎣⎭, D.2ππ⎛⎫ ⎪⎝⎭, 20.经过圆x2+y2=9内的点M (1,2)的最短弦所在的直线方程是( )A.2x -y +4=0B.x +2y -5=0C.x +2y -3=0D.2x -y =0二、填空题 21.已知抛物线y2=4x 与椭圆有公共的焦点F2,求m= .22.直线y=x+b 交抛物线y=12x2于A,B 两点,O 为抛物线的顶点,OA ⊥OB,则实数b 的值为 .23.以椭圆x225+y29=1的右顶点为焦点的抛物线的标准方程为 . 2219x y m +=24.已知等轴双曲线过点(4,3),则其标准方程为 .25.圆x2+y2+6xcos α-6ysin α=0的半径是 .26.+y-2022=0的倾斜角的弧度数为 .27.若点P (a,3)到直线4x-3y +1=0的距离为4,则a= .三、解答题28.求以两条直线l1:3x+2y+1=0,l2:5x-3y-11=0的交点为圆心,且与直线3x+4y-20=0的相切的圆的方程29.已知抛物线的顶点是椭圆x216+y212=1的中心,且与椭圆共焦点,求抛物线的标准方程.30.经过点(0,3),且与双曲线x26-y23=1只有一个公共点的直线有条.31.求抛物线y=-2x2上的点到直线4x -3y +4=0的最小距离.32.已知双曲线的渐近线的方程为y,且和椭圆225x +223y =1共焦点,求双曲线的方程及离心率.33.已知双曲线与椭圆225x +29y =1有公共焦点1F 、2F 它们的离心率之和为145. (1)求双曲线的标准方程及渐近线方程;(2)设点P是双曲线与椭圆的一个交点,求cos∠F1PF2的值.34.设直线2x+3y-8=0与x+y-2=0交于点M.(1)求以点M为圆心,3为半径的圆的方程;(2)动点P在圆M上,O为坐标原点,求|PO|的最大值.35.过点(-1,3)的直线l与圆O:x2+y2-4x-2y-20=0相交于A,B两点,且A,B两点的距离为8.(1)求圆的圆心和半径;(2)求直线l的方程.答案一、单项选择题1.B2.D3.B4.C5.C【提示】设抛物线方程为y2=2px或x2=2py,将点P(2,-1)代入方程中,得p=14或p=-2.故抛物线方程为y2=12x或x2=-4y.6.B【分析】由x=3得x2+y2=1(x≥0),所以,这个曲线是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限,如图,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,-1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得b =.y =x +b 经过点(0,1)时,b =1.当直线y =x +b 经过点(0,-1)时,b =-1,所以此时-1<b ≤1.综上满足只有一个公共点的实数b 的取值范围是:-1<b ≤1或b =4,故选B.7.C 【提示】因为2212516x y -=中a2=25,b2=16,所以c2=a2+b2=41,410),故选C.8.B 【提示】由题意知方程是221254x y -=,故选B. 9.B 【提示】等轴双曲线c =2,∴2a2=4,∴a2=b2=2,∴方程为y2-x2=2.10.A 【提示】圆x2+y2=2和圆x2+y2-2x -1=0的圆心和半径分别为O1(0,0),O2(1,0),r12r22|O1O2|=1,r2-r1=0<1<22r2+r1,所以两圆相交.11.C 【解析】圆心(3,0)到直线x -y +1=0的距离为d =|3+1|2=22,则最小切线长为l 22d r -=8-1=7.12.B 【解析】设点(x0,x20)到直线2x -y -4=0的距离d213x -+x0=1时,d 最大=355,此时点坐标为(1,1).13.D14.A 【提示】⎩⎪⎨⎪⎧a +62=4,2+b 2=-1,得⎩⎪⎨⎪⎧a =2,b =-4,∴a +b =-2. 15.B 【提示】焦点为(1,0),∴c =1,2b =2,∴b =1,∴a2=b2+c2=1+1=2,∴椭圆方程为x22+y2=1.16.B17.B18.C 【提示】椭圆焦点在x 轴上,a =2 5 .由椭圆定义,|MF1|+|MF2|=2a ,|NF1|+|NF2|=2a.C △F1MN =|MF1|+|MN|+|NF1|=|MF1|+|MF2|+|NF2|+|NF1|=4a =8 5 .19.D 【提示】由A·B>0,可知直线斜率k<0.故选D.20.B 【提示】∵过圆内一点的最短弦与该点及圆心的连线垂直,圆心O(0,0),kOM =2,∴所求直线方程为y -2=-12 (x -1),即x +2y -5=0.故选B.二、填空题21.822.223.y2=20x24.=1【解析】设x2-y2=λ,点(4,3)代入得λ=7,∴双曲线的标准方程为=1. 25.3【提示】圆的标准方程为(x +3cos α)2+(y -3sin α)2=9,故圆的半径为3. 26.23π 27.-3或7三、解答题28.(x-1)2+(y+2)2=2529.解:焦点坐标为(±2,0).①当焦点坐标为(2,0)时,p 2=2⇒p =4,∴抛物线的标准方程为y2=8x.②当焦点坐标为(-2,0)时,p 2=2⇒p =4,2277x y -2277x y -∴抛物线的标准方程为y2=-8x.30.431.解:设抛物线上点为(x0,-2x20),则它到直线4x -3y +4=0的距离d =|4x0+6x20+4|5=65(x0+13)2+23,∴当x0=-13时,dmin =23. 32.24x -212y =1,e =233.解:(1)椭圆的焦点(±4,0),则双曲线的焦点也是(±4,0),e 椭圆=45,e 双曲线=145-45=2,∴c =4,4a=2,得a =2,则b24x -212y =1,渐近线方程为y(2)由椭圆、双曲线定义可得1212104PF PF PF PF ⎧+=⎪⎨-=⎪⎩,得1237PF PF ⎧=⎪⎨=⎪⎩或1273PF PF ⎧=⎪⎨=⎪⎩,又∵12F F =2c =8,∴cos ∠F1PF2=222378273+-⨯⨯=-17. 34.解:(1)由题意,联立方程组7解得8即M (-2,4).又∵半径r =3,∴所求圆的方程为(x +2)2+(y -4)2=9.(2)如图所示,|OM|=(0+2)2+(0-4)2=20=2 5.设射线OM 的延长线与⊙M 交于点P*,则|OP|≤|OM|+|MP|=|OP*|=3+25,∴当动点P 与P*重合时,|OP|最大,此时|OP|最大=3+2 5.35.解:(1)由题意得圆的标准方程为(x -2)2+(y -1)2=25,∴圆心坐标(2,1),半径r =5.(2)直线的斜率存在时,设直线l 的方程:y -3=k (x +1),即kx -y +3+k =0.圆心到直线l 的距离d =|2k -1+3+k|k2+1=|3k +2|k2+1, 又∵A ,B 的距离为8,∴8=225-d2,解得d =3,∴|3k+2|k2+1=3,解得k=512.直线的方程为5x-12y+41=0,直线的斜率不存在时,x=-1也满足.综上,所求直线l的方程为5x-12y+41=0或x+1=0.。

高一职高期中考试数学试题

高一职高期中考试数学试题

高一职高期中考试数学试题高一职高期中考试数学试题本次考试共分为选择题和解答题两部分,共计150分。

考试时间为120分钟。

选择题部分(共90分,每小题2分)1. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像经过点(1,2)和(-1,4),则a,b,c的值依次是()。

A. 3,-3,0B. -3,-7,0C. -3,3,3D. -3,1,02. 下列关于复数i的描述中,正确的是()。

A. i^2 = 1B. i^2 = -1C. i^2 = 0D. i^2 = i3. 正方体的一个顶点是一个产生点,一个产生点到原点的距离为r,则正方体的体积为()。

A. r^3B. r^2C. r^4D. r^64. 下列不等式中,正确的是()。

A. √6 < √7B. -1/4 < -1/5C. -5 > -6D. √8 > √95. 在平面直角坐标系上,x轴上的两点A和B的坐标分别是(-3, 0)和(0, 2),则以A、B为顶点的正方形的面积为()。

A. 1 B. 2 C. 3 D. 4解答题部分(共60分)1. 解方程:2x^2 - 5x + 2 = 02. 已知二次函数y = ax^2 + bx + c的图像经过点(-1, 2),且在x = 1处取得最大值3,求a,b,c的值。

3. 一枚硬币中正反两面同时出现的概率均为1/2、两面都为正面的概率是1/4,则该枚硬币出现反面的概率是多少?4. 计算:(3√5 + 2√3)^2 + (√7 - √2)^25. 已知直线l过点A(3, -1)和B(1, 2),与直线y = 2x - 1垂直交于点C,求直线l的方程。

参考答案:选择题部分:1. B2. B3. A4. C5. C解答题部分:1. x = 1/2或x = 22. a = 3, b = -5, c = 43. 1/24. 44 + 6√155. y = -1/2x + 5/2。

自-职业学校高一中专(第二学期)数学期中试卷

自-职业学校高一中专(第二学期)数学期中试卷

职业学校高一中专(第二学期)期中考试卷 高一数学 (考试时间120分钟,满分100分,适用于高一中专班,共10个班) 3分,共36分) .若角α是第一象限的角,则-α是( ) .第一象限角 B .第二象限角 C .第三象限角 D.第四象限角 下列说法正确的是( ) 终边相同的角一定相等 B.锐角一定是第一象限的角 .相等的角终边不一定相同 D.第一象限的角一定是锐角 ·360° + 180° ( k ∈ Z ) 是( ) .锐角 B.钝角 C.象限角 D.界限角 .)30sin(︒-的值是( ) 21 B.21- C.23 D .23- 角α的终边上一点P (-3,4),则cos α=( ) 35- B.35 C.45- D .45 已知0sin 0tan <<αα且,则α是( ) .第一象限 B.第二象限 C .第三象限 D.第四象限 . sin y x =是( ) 奇函数 B.偶函数 C.非奇非偶函数 D .不确定 . 用弧度表示-300°正确的是( ) 23π B.-34π C.-35π D .-67π 正切函数的最小正周期是( ) π B.2π C.3π D.4π 0. 37π是第( )象限角。

.第一象限 B.第二象限 C.第三象限 D.第四象限11. 已知54)sin(=+x π,则下列等式正确的是( )A.53sin =xB. 53sin -=xC. 54sin =xD. 54sin -=x12. 函数32sin y x =+的最大值是( )13. 按逆时针旋转而成的角为 ;按顺时针旋转而成的角为 ;射线没有旋转时的角为 。

14.=︒+︒15cos 15sin 22 。

15. 如果0sin >α(sin α≠1),则α是第 或 象限角,如果0cos <α(c os α≠-1),则α是第 或 象限角。

16. 角度与弧度互换:90度 = 弧度; -8π弧度 =度。

高一职高期中考试数学试题(2份)

高一职高期中考试数学试题(2份)

第一章、第二章一、 选择题(每题3分,共计30分)1、 设}{a M =,则下列正确的是( ) A M a = B M a ∈ C M ∈Φ D M a ⊆2、}{三角形=S ,}{直角三角形=M 则=⋂M S ( )A {三角形}B {直角三角形}C ΦD 以上均不对3、已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃.则m 的值为( ) A 1 B -1 C 1,-1 D 0,1,-14、下列4对命题中,等价的一对命题是( ) A 22:,:b a q b a p == B |||:|,:b a q b a p == C 0:,0,0:===ab q b a p 或 D 0:,00:22=+==b a q b a p 或5、已知}832|),{(},123|),{(=+=-=-=y x y x N y x y x M 则N M ⋂=( )A ( 1,2)B (2,1)C {(1,2)}D {1,2} 6、下列命题中,正确的是 ( )A 如果b a >那么bc ac >B 如果b a >那么22bc ac >C 如果22bc ac >那么b a >D 如果b a >,c>d 那么bd ac >7、设122,)1(22+-=-=x x b x a 则a 与b 的大小关系是( ) A b a > B b a < C b a ≥ D b a ≤ 8、如果0<<b a 那么( )A 22b a < B 1<baC ||||b a <D 33b a <9、若a 、b 为实数,则“0>>b a ”是“22b a >”的( ) A 充分不必要条件 B 必要不充分C 充要条件D 既不充分也不必要条件 10、不等式)0(,02≠≤-a a x x 的解集是( ) A 、}{0 B 、}{a C 、{}a ,0 D 、以上都不是二、 填空题(每空3分,共计45分)11、设|}1|,2{},1,4,2{2+=+-=a A a a U __________,7==a A C u 则。

中职高一上学期数学期中考试模拟试题(一)

中职高一上学期数学期中考试模拟试题(一)

中职高一上学期数学期中考试模拟试题(一)一、单项选择题(本大题共8小题,每小题5分,共40分)1.已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A ∩B 中的元素个数为 ( )A.2B.3C.4D.52.关于x 的不等式mx 2−(m +2)x +m +1>0的解集为R ,则实数m 的取值范围是 ( )A.m >2√33或m <−2√33 B.m <−2√33或m >0 C.m >2√33 D.m <−2√333.已知a>b>0,c<0,则下列不等式一定成立的是 ( )A.b−c c >a−c cB.ac 2<bc 2C.ac>bcD.a>b-c4.已知集合A={0,2,4,6},B={x|3≤x<7},则A ∩B= ( )A.{3,4,5,6}B.{3,4,5}C.{4,5,6}D.{4,6}5.已知集合A={x|x>-1},B={x|x<2},则A ∩(∁R B )= ( )A.{x|x>-1}B.{x|x ≥-1}C.{x|x<-1}D.{x|-1<x ≤2}6.已知集合M={1,3},N={1-a ,3},若M ∪N={1,2,3},则a 的值是 ( )A.-2B.-1C.0D.17.有下关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅⫋{0};⑥0∈{0}.其中不正确的是 ( )A.①③B.②④⑤C.①②⑤⑥D.③④8.满足{1,2}⊆A ⊆{1,2,3,4}的集合A 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分,一题两空,对一空得3分,对两空得5分)9.不等式3x 2+7x −6≥0的解集为 (用区间表示)10.若集合A={x|ax 2−3x +1=0} 中只含有一个元素,则a 值为 ;若A 的真子集个数是3个,则a 的取值范围是11.若不等式x 2−ax +b <0的解集为{x|-1<x<3},则a+b=12.已知集合A={1,2,3,5},B={1,t}(1)A 的真子集的个数为(2)若B ⊆A,则t 的所有可能的取值构成的集合是三、解答题(本大题有3小题,每小题12-15分,共40分,请写出必要的文字说明,证明过程或演算步骤)13.(本小题11分)已知关于x的不等式ax2−4ax+1>0(a∈R)(1)当a=1时,求此不等式的解集;(5分)(2)若此不等式的解集为R,求a的取值范围。

中职学下高一上数学期中检测题

中职学下高一上数学期中检测题

中职学下高一上数学期中检测题一、单项选择题1.在△ABC 中,若∠A=45°,则∠B=( ) A.30°或150° B.30° C.60°或120° D.60°2.△ABC 中,若cosA cosB cosC<0,则下列说法正确的是( ) A.△ABC 是直角三角形 B.△ABC 是锐角三角形 C.△ABC 是钝角三角形 D.△ABC 是等腰直角三角形3.使函数y=2sinx 为减函数的区间是( )A.[-2π,2π]B.[0,2π]C.[2π,π] D.[π,2π]4.1tan151tan15+︒-︒=()A.3B.5.若tanα=2,tanβ=1,则tan (α-β)等于( ) A.-3 B.13 C.2 D.-136.在△ABC 中,若a =1,b = 3 ,∠B =60°,则△ABC 的面积为( ) A .12 B .32 C .1 D . 37.求值:cos2π8-sin2π8等于( ) A.12 B.22 C.32 D.18.在△ABC 中,若a =2,c =2,∠A =30°,则∠C 等于( ) A.30°C.45°或135°D.30°或150°9.在△ABC 中,若∠A =60°,c =1,S △ABC =3,则a 的值为( ) A.13 B.13 C.21 D.2110.在△ABC 中,若sin2A +sin2B =sin2C ,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形11.y =3sinx 的周期为( )A.π3B.π2C.πD.2π 12.函数y =3sin π34x ⎛⎫- ⎪⎝⎭的最小正周期是()A.3πB.2πC.2π3D.π313.在△ABC 中,AB =4,∠A =π3,面积S =则BC 的长为()A.12B.C.28D.14.函数y =3sin24x π⎛⎫- ⎪⎝⎭的最大值是( )A.3B.2C.-3D.-215.求值:2tan22.5°1-tan222.5°等于( )A. 3B.- 3C.1D.-1 16.计算:1-2cos222.5°等于( ) A.22 B.12 C.—22 D.—1217.在△ABC 中,已知cos (A -B )·cosB -sin (A -B )·sinB =0,则△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形18.在△ABC中,b=2,c=4,则△ABC面积的最大值为()A.4B.8C.619.在△ABC中,a=15,b=10,A=60°,则cos2B=()B.C.1 3D.-1 320.△ABC中,S△ABC=A=60°,b+c=10,则a=()A.7D.14二、填空题21.在△ABC中,若sin(A+B-C)=sin(A-B+C),则此三角形的形状是 .22.求值:cos20°cos25°-sin20°sin25°= .23.已知cosα=13,且α∈(,0)2π-,则sin2α= .24.在△ABC 中,已知a2+b2-c2ab =-1,则∠C = . 25.在△ABC 中,已知a=3,cosC=45,S △ABC=323,则b= . 26.如果△ABC 中a =9,b =10,c =12,则△ABC 是 三角形(填“锐角”、“直角”、“钝角”) 27.若sinα+cos α=15,则sin2α= . 28.若sinx +cosx =13,则sin2x = .29.已知f (x )=sin (ωx -ωπ)(ω>0)的最小正周期为π,则f (π12)= . 30.函数y =-3sin 5-4x π⎛⎫ ⎪⎝⎭的周期是 ,值域是 .三、解答题31.在△ABC 中,已知∠A =60°,b =2,S △ABC =3,求a 的值. 32.在△ABC 中,已知AB = 3 ,AC =1,∠B =π6 ,求△ABC 的面积.33.求函数y =3+2sinx (x ∈R )的值域.34.在△ABC 中,若三边之比为4∶5∶6,试判断△ABC 的形状.35.在△ABC 中,已知S △ABC =63,∠A =60°,B +C =10,求a 的值.答案一、单项选择题 1.B 2.C 3.C4.C 【提示】1tan151tan15+︒-︒=tan 45tan151tan 45tan15︒+︒-︒︒=tan (45°+15°)=tan60°故选C. 5.B6.B 【提示】在△ABC 中,由正弦定理得a sin A =bsin B ,∴sinA =a sin B b =12 ,∴∠A =30°.∴∠C =180°-∠A -∠B =90°,∴S △ABC =12 ab sinC =12 ×1×3 ×1=32 . 7.B 8.C 9.B 10.B 11.D12.C 【提示】T =2π3.13.B 【提示】由面积S =AB·ACsinA ,得12×4×AC×sin π3,解得AC =2,BC2=AB2+AC2-2AB·AC·cosA =42+22-2×4×2×12=12,∴BC =14.A15.C 【解析】原式=2tan22.5°1-tan222.5°=tan45°=1.16.C17.A 【提示】cos (A -B +B )=0,cosA =0,∠A =90°. 18.A 【提示】由三角形的面积公式知S =12bcsinA ,因为sinA 的最大值为1,max 124142S =⨯⨯⨯=∴.故选A.19.C 20.C 二、填空题21.等腰或直角三角形 22.22 23.-429 24.120°25.5【提示】∵cosC =45,∠C ∈(0,π),∴sinC =35.∵S △ABC =12absinC =12×3×b×35=332,∴b =5.26.锐角【提示】由题意知三角形中∠C 最大,则22222291012cos 022910a b c C ab +-+-==>⨯⨯,∴C 为锐角,故三角形为锐角三角形.27.-2425【解析】(sinα+cos α)2=1+sin2α=125. 28.【解析】考查“sinx +cosx ”与“sin2x =2sinxcosx ”的关系. ∵(sinx +cosx )2=1+sin2x =19,∴sin2x =-89. 29.1230.2π5 [-3,3] 三、解答题31.解:由S △ABC =12bcsinA 得12×2·c·32=3,c =2.又由a2=b2+c2-2bccosA 得a2=22+22-2×2×2×12=4,又a >0,∴a =2. 32.解:由正弦定理AB sin C =AC sin B 得sin C =32 , ∴∠C =π3 或∠C =2π3 .当∠C =π3 ,∠A =π2 时,S △ABC =12 AC·AB sin A =32 ; 当∠C =2π3 ,∠A =π6 时,S △ABC =12 AC·AB·sin A =34 . 33.解:∵sinx ∈[-1,1],∴2sinx ∈[-2,2],∴3+2sinx ∈[1,5].34.解:应用余弦定理先求出最大角的余弦值,再判断其是锐角、直角,还是钝角.设a =4k ,b =5k ,c =6k (k >0),则由余弦定理得cosC =2222a b c ab+-=222162536245k k k k k+-⨯⨯=18,∴∠C 为锐角,即△ABC 为锐角三角形.35.【解析】解:∵S △ABC =12bcsinA =63, ∴12bcsin60°=63,即bc =24.联立2410bc b c =⎧⎨+=⎩,,解得64b c =⎧⎨=⎩,,或46b c =⎧⎨=⎩,,在△ABC 中,由余弦定理得a2=b2+c2-2bccosA =62+42-2×6×4cos60°=28, ∴a =27.。

中职高一下数学期中综合练习

中职高一下数学期中综合练习

中职高一下数学期中综合练习一、单项选择题1.经过直线a上一点A可以作条直线与a垂直()A.1B.2C.无数D.无法判断2.三个平面最多可将空间分成个部分()A.5B.6C.7D.83.在正方体ABCD-A1B1C1D1中,AB与CC1所成的角为()A.60°B.90°C.45°D.30°4.空间3条平行直线最多可以确定()A.1个平面B.2个平面C.3个平面D.4个平面5.若直线a与直线b不相交,则a与b()A.异面B.平行C.平行或异面D.垂直6.现在有4件不同款式的上衣与3条不同颜色的长裤,若一条长裤与一件上衣配成一套,则不同的选法有()A.7种B.64种C.12种D.81种7.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种8.某班4个小组分别从3处景点中选出1处景点旅游,不同的选择方案种数为()A.C34种B.A34种C.34种D.43种9.一个班级有40人,从中任选2人担任学校卫生纠察队员,选法种数共有()A.780种B.1560种C.1600种D.80种10.如果5位同学分别被安排在五天里的某天值日,一天安排1人,每人值日一天,那么不同的值日安排方案共有()A.A15种B.A55种C.C55种D.55种11.若A、B、C、D、E、F共6位小朋友每人表演一个节目,把6个节目排成节目表,则小朋友A的节目恰好在第三个,小朋友B 又不在第一个的排法有种()A.120B.96C.36D.1812.四名学生与两名老师排成一排拍照,两名老师不能排在一起的不同排法共有()A.720种B.120种C.240种D.480种13.有5名高中毕业生报考了3所高校,若每人必报且只能报1所学校,则不同的报名方式有()A.53种B.35种C.A 35 种D.C 35 种14.若将4封不同的信投入3个不同的邮筒,则不同的投法有( )A.24种B.4种C.81种D.64种15.由1,2,3,4,5组成没有重复数字的四位偶数的个数为( )A.8B.24C.48D.12016.由1,3,5,7这4个数字组成的四位数(没有重复数字)的个数为( )A.6B.24C.81D.256二、填空题17.有一项活动需在3名老师、4名男同学和5名女同学中选人参加.若需老师、男同学、女同学各一人参加,则不同的选法有 种.18.6名同学站成一排,其中甲、乙不站在一起的不同排法有种.19.有不同的红球3个,不同的白球5个,不同的黑球5个,现从中任取不同颜色的球两个,不同的取法种数为. 20.四名男生和三名女生排成一排照相,学生甲必须排在最左边或最右边,有种不同的排法.21.现有4名男生和3名女生共7人,若7名同学排成一排,其中甲不在最左端且乙不在最右端,则所有不同的排法总数为.22.若6个班级各选一处去秋游,有3个景点备选,每班必须选一处,则有种秋游安排方法.23.某次实验中有砝码1克、2克、3克、5克各一个,则可以称种不同的质量.24.某天上午有语文、数学、英语、体育4门课程,要求体育课不能排在上午第一节或第二节,则该天上午课程有种不同的排法.25.有3封不同的信,投入到4个不同的邮筒中,则不同的投法种数有种.三、解答题26.若有3名男生和3名女生站成一排,则女生不站两端的站法有几种?27.某场晚会安排了5个歌唱节目和4个舞蹈节目.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?28.(1)将三个小球放入五个不同的盒子,共有多少种不同的放法?(2)将四个小球放入三个不同的盒子,每个盒子都得有小球,共有多少种不同的放法?29.现要从某医院的4名男医生,5名女医生中选出3名参加社区医疗小组.(1)若恰有一名男医生,则有多少种不同的选法?(2)若至少有一名女医生,则有多少种不同的选法?(3)若医生甲必须参加,则有多少种不同的选法?(4)若男医生乙、女医生丙不能参加,则有多少种不同的选法?答案一、单项选择题1.C2.D3.B4.C5.C6.C【提示】N=4×3=12(种).7.B8.C【提示】每个小组都有3种不同的选择,4个小组不同的选法共有3×3×3×3=34(种).9.A10.B【提示】将5名同学进行全排列,即A55种.11.B12.D13.B 【提示】运用乘法原理.共有35种报名方法14.C 【提示】34=81(种)15.C 【提示】A 12 A 34 =48.16.B二、填空题17.6018.48019.55【提示】分类讨论,当取红球和白球的时候,取法有3×5=15(种);当取红球跟黑球的时候,取法有3×5=15(种);当取白球和黑球的时候,取法有5×5=25(种),共有15+15+25=55(种)20.144021.3720【提示】第一类:乙在最左端,有66A =720种排法,第二类:乙不在最左端,第一步安排乙,有5种方法,第二步排甲,也有5种方法,第三步排其他的5名那个同学,有55A =120种排法.共有不同的排法总数为720+5×5×120=3720种.22.729【提示】N =36=729(种).23.11【提示】C 14 +C 24 +C 34 +C 44 -4=11(种).24.12【提示】A 23 A 22 =12(种).25.64【提示】43=64(种).三、解答题26.144种27.解:(1)插空法:P=C46P55P44=43200.(2)P=P55P44=2880.28.解:(1)53=125.(2)C24·A33=36.29.解:(1)N=C14C25=40(种).(2)N=C15C24+C25C14+C35=30+40+10=80(种). (3)N=C11C28=28(种).(4)N=C37=35(种).。

中职学校数学高一下期中综合小测试

中职学校数学高一下期中综合小测试

中职学校数学高一下期中综合小测试一、单项选择题1.已知集合A={x|-1<x≤3,且x∈Z},则A=()A.{-1,0,1,2,3}B.{0,1,2,3}C.{-1,0,1,2}D.{1,2,3}2.若-1<a<0,0<b<1,则()A.ab2<abB.a2b>bC.ab2>aD.a2b<ab3.若x∈R,则下列不等式一定成立的是()A.x 5< x 2B.5-x>2-xC.x2>0D.(x+1)2>x2+x+14.若C39+C29=Cx10,则x的值为()A.3B.7C.3或7D.3或15.一个班级有40人,从中任选2人担任学校卫生纠察队员,选法种数为()B.1 560C.1 600D.806.已知log2x =-1,则x -2等于( ) A.4 B.2 C.14 D.127.若将分针拨慢20分钟,则分针转过的弧度数应为( ) A.π3 B.-π3 C.23π D.-23π8.(x +y )7的二项展开式中,系数最大的项是( ) A.第2项或第3项 B.第3项或第4项 C.第4项或第5项 D.第5项或第6项 9.已知函数f (x )=230log 0x x x x ⎧≤⎪⎨>⎪⎩,,,那么18f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值为( )B.127C.-27D.-12710.已知数列{an}是等比数列,且a1=18,a4=-1,则{an}的公比为( ) A.2 B.-12 C.-2 D.1211.“向量a 与b 共线”的充要条件是( ) A.向量a 与向量b 方向相同 B.向量a 与向量b 方向相反 C.向量a 与向量b 有一个为零向量 D.以上都不对12.已知一次函数f (x )=kx +2的图象过点(2,0),则k 等于( )A.0 B . 2 C.- 2 D.± 213.当0<a <1时,函数y =logax 和y =(1-a )x 的图象只可能是( )14.一个班级有40人,从中任选2人担任学校卫生纠察队员,选法种数共有()A.780种B.1560种C.1600种D.80种15.下列结论在平行四边形ABCD中成立的是()A.AB CD=B.AB BC=C.AD CB=D.AD BC=16.体育课上男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项:从50米、50×2米、100米中随机抽取一项,恰好抽中实心球和50米的概率是()A.1 3B.1 6C.2 3D.1 917.若角α的终边经过点(4,-3),则cos2α的值为()A.7 25B.-16 25C.-725D.162518.若α∈(π,3π2),则α-π2是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角19.已知log2a =3,则a 的值为( ) A.8 B.6 C.5 D.4 20.函数f (x )=⎩⎪⎨⎪⎧1,x≥1,-1,x≤-1的值域是( )A.1B.-1C.[-1,1]D.{-1,1} 二、填空题21.求值:cos215°-sin215= .22.已知∠A ,∠B ,∠C 是△ABC 的内角,若sinBcosB -sinAcosA =cos A +B +C 2,则△ABC 的形状是 .23.等差数列{n a }中,若1a +2a +3a =12,4a +5a +6a =15,则12S = .24.若角α是锐角,则π-α是第 象限角,π+α是第 象限角,-α是第 象限角,π2-α是第 象限角,π2+α是第 象限角. 25.给出下列说法:①任意一个集合的正确表示方式是唯一的; ②集合P ={x|0≤x≤1}是无限集; ③集合{x ∈N*|x<5}={0,1,2,3,4};④集合{}12(,)与集合{}21(,)表示同一集合. 其中正确说法的序号是 .26.函数f (x )=⎩⎪⎨⎪⎧x2-2x ,x≥0,x2+2x ,x<0与x 轴的交点个数是 .27.函数y=2x +1,x ∈[0,3]的值域是 . 三、解答题28.计算:2A36-C56+0!29.在1,2,3,4,5这五个数字中任取两个,取得的两数之和为偶数的概率是多少?30.某桶装水经营部每天的房租、人工支出等固定成本为200,每桶水的进价为5元,销售单价和日销售量的关系如下面表格表示,请根据所给数据,分析经营部将单价定为多少时获得最大利润.31.已知数列{an}中,a1=1且an +1=1nn a a .(1)求a2,a3,a4,a5的值; (2)猜想{an}的通项公式. 32.已知sin α=-35,-π4<α<0,求cos2α和sin2α.33.等差数列{an}中,a2=13,a4=9. (1)求a1及公差d ;(2)当n 为多少时,前n 项和Sn 开始为负? 34.已知函数f (x )=x2+2x +c 的图像经过坐标原点. (1)求函数f (x )的解析式; (2)解不等式f (x )<0.35.写出从a ,b ,c ,d 中任取两个字母的所有排列.答案一、单项选择题 1.B 2.C 3.B 4.C 5.A 6.A7.A 【解析】逆时针转为正8.C 【提示】观察(x +y )7的二项展开式,系数最大的项,即是二项式系数最大的数,共有8项,∴是第4项或第5项.9.B 【分析】f[f (18)]=f (21log 8)=f (-3)=3-3=127,故选B.10.C 【提示】a4a1=-8,q3=-8,q =-2. 11.D 12.C 13.B 14.A15.D 【提示】画出平行四边形ABCD 可知D 项正确.16.D 【提示】抽中实心球的概率为13,抽中50米的概率为1111.3339⨯=,∴故选D.17.A 18.B19.A 【提示】log2a =323=a ,即a =8.20.D 【提示】该函数f(x)只有1,-1两个值.故选D. 二、填空题 21.3222.等腰或直角三角形【提示】∵sinBcosB -sinAcosA =cos A +B +C2,∴12sin2B -12sin2A =cos90°=0,∴sin2B =sin2A ,∴A =B 或2A +2B =180°,A +B =90°,∴是等腰或直角三角形.23.66 【提示】∵1a +2a +3a =12,4a +5a +6a =15,∴7a +8a +9a =18,10a +11a +12a =21,∴12S =66. 24.二 三 四 一 二 25.②26.3【提示】由⎩⎪⎨⎪⎧x≥0,x2-2x =0和⎩⎪⎨⎪⎧x<0,x2+2x =0可求得符合条件的x为2,0,-2. [2,9] 三、解答题 28.23529.解:设A ={取得的两数之和为偶数},则P (A )=C23+C22C25=410=0.4. 30.11.5元31.(1)a2=12,a3=13,a4=14,a5=15, (2)an =1n32.解:∵-π4<a <0, ∴-π2<2α<0,∴sin2α<0.∴cos2α=1-2sin2α=725,sin2=-242533.解:(1)由a4-a2=2d , 得d =-2, 由a2=a1+d , 得a1=15.另解法:⎩⎪⎨⎪⎧a1+d =13a1+3d =9,得⎩⎪⎨⎪⎧d =-2a1=15. (2)Sn =na1+n (n -1)2d =15n +n (n -1)2×(-2)=-n2+16n , 由题设得n<0或n>16,∴当n =17时,Sn 的值开始为负. 解:(1)∵f(0)=c =0,∴f(x)=x2+2x. (2)由f(x)<0得x2+2x<0,解得-2<x<0. ∴原不等式的解集为{x|-2<x<0}.35.解:所有的排列:ab 、ac 、ad 、bc 、bd 、cd.。

中等职业教育高一期中考数学试卷(含答案)(中职数学)

中等职业教育高一期中考数学试卷(含答案)(中职数学)

浙江省中等职业教育2020学年第一学期期中学业水平测试高一数学试卷考生须知:1. 本卷满分120分,考试时间90分钟.2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或者钢笔分别填写试题卷和答题纸规定的地方。

3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。

4. 考试结束后,只需上交答题卷。

第I 卷(客观题)一、 选择题:本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项种,只有一项是符合题目要求的。

1.下面能.构成集合的是 ( ) A .大于3小于11的偶数 B .校园内比较小的树木 C .高一年级的优秀学生D .某班级跑得快的学生2.已知集合{}0,1A =,则下列关系表示错误..的是( ) A .0A ∈B .{}1A ∈C .A ∅⊆D .{}0,1A ⊆3.集合{0x x >且}2x ≠用区间表示出来( ) A .()0,2B .()0,∞+C .()()0,22,+∞D .()2,+∞4.“两个三角形的面积相等”是“两个三角形全等”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.函数f (x )的图象如图所示,则最大、最小值分别为A .f (32),f (–32) B .f (0),f (32) C .f (0),f (–32)D .f (0),f (3)6.函数{}()210,1,2y x x =+∈,的图像是 ( ) A .一条直线B .一条线段C .一条射线D .三个点7.已知()2125f x x x +=++,则()1f =( ) A .1B .3C .5D .8班级__________姓名__________学号_________试场号________座位号________装 订线8.若实数a ,b 满足条件a b >,则下列不等式一定成立的是( ) A .a b > B .a b ->-C .ac >bcD .11a b +>+9.函数()f x =的定义域为( ) A .(-∞,4)B .[4,+∞)C .(-∞,4]D .(-∞,1)∪(1,4]10.下列函数与y x =表示同一个函数的是 ( )A .y =B .y x =C .2x y x=D .[],0,5y x x =∈11.设()f x 是定义在R 上的偶函数,()12f -=,则()1f =( ) A .1B .2C .1-D .2-12.已知2t a b =+,21s a b =++,则t 和s 的大小关系为( ) A .t s ≤B .t s <C .t s ≥D .t s >13.已知二次函数()2f x x bx c =++过点()1,12-和 ()3,12,则b 的值为( ) A .2B .2-C .1D .1-14.已知集合{}1A x x =>,{}B x x a =>,若A B A =,则a 的取值范围为( )A .[1,)+∞B .(1,)+∞C .1(,]2-∞D .1(,)2-∞15.函数()f x 在R 的单调递增,且()()31f a f a ≥-,则a 的取值范围是( ) A .1[,)2-+∞ B .1[,)2+∞C .1(,]2-∞-D .1(,]2-∞16.已知()f x =的定义域为R ,则实数m 的取值范围是( )A .()0,4B .()(),22,-∞-+∞C .[]22-,D .()2,2-第II 卷(非选择题)二、填空题:本大题共6个小题,每题3分,共18分17.集合{}1,0,1-的子集有_____________个.(填写子集个数......,用数字作答) 18.不等式11222x -≤的整.数.解.的个数为_____________个. (填写..个数..,用数字作答)19.已知函数()f x 用列表法表示为:则()1f f =⎡⎤⎣⎦________.20.不等式组214,110x x x -+<+⎧⎨--≥⎩的解集为________.21.已知集合{}0,,A m m =,且2A ∈,则实数m 的值为___________.22.某班学生共45人,一次摸底考试:数学20人得优,语文15人得优,这两门都不得优的有20人,则这两门都得优的人数为_________.三、解答题:本大题共6小题,共54分,解答应写出文字说明、证明过程或演算步骤。

中职高一数学期中考试卷

中职高一数学期中考试卷

A.1
B.2
11.不等式
4 x
x 1
2
的解集是(

A. ,1 2,
C.3
B. 1, 2
D.4
C. ,1 1, 4
D. 1, 2
12.设全集U {x Z∣x 4 x 3 0} ,集合 A 0,1, 2 ,则集合 ðU A 为( )
A.4, 3, 2, 1
B.3, 2, 1
C.3, 2, 1,3
(1)若 A B 2 ,求实数 a 的值;
(2)若 A B A ,求实数 a 的取值范围; (3)若全集U R , A (ðU B) A ,求实数 a 的取值范围.
试卷第 4页,共 4页
1.D
参考答案:
【分析】根据集合交集的概念运算即可.
【详解】因为集合 A 2, 1,0,1 , B 1,0,1, 2,
解不等式组得1 x 2 ,
因此不等式
4 x
x 1
2
的解集是
1,
2
.
故选:D.
12.B
【分析】先求出全集U ,然后由补集的定义可求得结果.
【详解】因为U {x Z∣x 4 x 3 0} 3, 2, 1, 0,1, 2 ,又 A 0,1, 2 ,
所以 ðU A 3, 2, 1 ,
x1
, x2
.
三、解答题 21.比较下列两组代数式的大小.
(1) x 2 x 3 与 x 1 x 4 ;
(2) x2 y2 1与 2 x y 1 .
22.解下列不等式: (1) x2 5x 6 0 ;
(2) 2 x x 3 0 ;
(3) 4(2x2 2x 1) x 4 x .
所以 A B 1, 0,1 .

中职高一数学第一学期期中考试

中职高一数学第一学期期中考试

高一职高数学试卷(满分100分,考试时间90分钟)班级 姓名 座位一、选择题: 本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .接近于0的数C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,,2244这六个数能组成一个集合2.下列各式中正确的是( )A .φ∈0B .{}φ⊆0C .φ=0D .{}φ⊇03.已知A={1,3,5,7},B={2,3,4,5},则集合A ∪B 为 ( )A .{1,2,3,4,5,7}B .{3,5}C .{1,2,4,7} D.{1,2,4,5,7} 4.设全集U={1,2,3,4,5},M={1,2,4},N={2,3,5} ,则)(N M C U =( ) A.φ B.{2} C.{2,3} D.{1,3,4,5} 5.“1=a 且2=b ”是“3=+b a ”的 ( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件6.设集合A={2>x x },B={51≤≤x x },则B A =( )A. {}1≥x xB.{}52≤<x x C . {}52≤≤x x D .{}2>x x 7、将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( ) A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2-- C.{}0,1,2,3 D.{}1,2,38.若)(21++n m b a ·35212)(b a b a m n =-,则n m +的值为( ) A. 1 B.2 C. 3 D.-39. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1} D.{(3,-1)}10.“x 是整数”是“x 是自然数”的 ( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题:本题共5小题,每小题4分,共20分. 11、用适当的符号填空(1) 0_______N ; (2) {b a ,} {e c b a ,,,} (3) Z Q ; (4) {(2,4)} {(x ,y )|y =2x}12、知全集U =R ,集合A ={x |1≤2x +1<9},则C U A =13、 已知32172313x y x y +=⎧⎨+=⎩,则________x y -=.14、“0=xy ”是“022=+y x ”的 条件15、集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,则k 的取值范围为三.计算题:本题共4小题,每小题10分,共40分 16、解下列不等式组(1)⎪⎩⎪⎨⎧⋅>-<-322,352x x x x (2).234512x x x -≤-≤-17、已知集合U=R ,}03{≤+=x x A ,}01{>-=x x B ,求B A ,B A ,B A C U )(, )()(B C A C U U18、已知全集{}1,2,3,4,5,6U =,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.19、.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.第一学期期中考答案一、选择题CDADA BCBDB二、填空题11、(1)∈(2)⊆(3)⊆(4)⊆ 12、}{40≥<x x x 或 13、414、必要条件 15、2≥k三、解答题16、(1)6>x(2)4-≤x17、依题意可知}1{},3{>=-≤=x x B x x A}1{,}3{≤=->=x x B C x x A C U U}13{>-≤=∴x x x B A 或 φ=B A}1{)(>=x x B A C U ()()R B C A C U U =18、由0862=+-x x 可得4,221==x x所以{}{}2|6802,4A x x x =-+== (1)}6,5,4,3,2{=B A }4{=B A(2)}6,5,3,1{=A C U , ()}6,5,3{=B A C U()B A C U 的所有子集为{}{}{}{}{}{}{}6,5,3,6,5,6,3,5,3,6,5,3,φ19、{}{}5,2,==A C b A U{}35,,2=∴==∴b b A C A U U{}{}5,2,3==A C A U 又5322=-+∴a a 解得24=-=a a 或3b 4-2==∴,或a.。

中职高一上学期期中考试数学试卷(含解析)

中职高一上学期期中考试数学试卷(含解析)

2023 学年中职第一学期期中学业水平测试高一数学试卷本试题卷共三大题,共3页.满分100分,考试时间90分钟.注意事项:1.所有试题均需在答题卡上作答,未在规定区域内答题、在试卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卡上.3.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卡上.一、单项选择题(本大题共15小题,每小题3分,共45分)1.下列对象不能组成集合的是()A .中国古代四大发明B .好看的绘画作品C .中国古代四大名著D .我校全体同学2.下列表示正确的是()A .∅∈2B .N∈-2C .Q∉2D .{}20-∉3.下列不可能是函数图像的是()A .B .C .D .4.不等式组⎩⎨⎧<<-≥≤5331x x x 或在数轴中的表示为()A.B .C .D .5.函数)(x f 的图像如图所示,下列说法错误的是()A .该函数在()93,上单调递增B .该函数在()57--,上单调递减C .()()47->-f f D .()()03f f >6.集合(){}0,0|,>>y x y x 的子集可能是()A .{}2,1B .(){}2,1C .()(){}2,1,1,0D .(){}0,0|,><y x y x 7.某工厂为客户生产某类钢筋,要求长度为200cm ±5cm ,设生产的钢筋长度为x ,那么x 需满足()班级__________姓名__________学号_________试场号________座位号________装订线yx O yx O yxO yxO -50-73xy(第5题图)-493-135○○03-135○○3-135○○0053-13○0○A .2005<-xB .2005≤-x C .5200<-x D .5200≤-x 8.下列函数中,定义域为[)∞+,0的是()A .x y =B .xy 1=C .2+=x y D .xx y 22-=9.设单词“student ”的所有字母组成集合A ,单词“struggle ”的所有字母组成集合B ,则=B A ()A .{}u t s ,,B .{}e u t s ,,,C .{}g e u t s ,,,,D .{}l g n e d u r t s ,,,,,,,,10.已知集合{}421,,=A ,集合{}42,=B ,若A C B = ,则满足条件的集合C 的个数为()A .1B .2C .3D .411.不等式组⎩⎨⎧---21323213<)(<x x x 的解集为()A .)131(,-B .)731(-C .)71(,D .)1(∞+,12.已知关于x 的不等式10+≤≤b x 有3个整数解,则b 的取值范围是()A .1≥b B .2<b C .21<≤b D .21≤≤b 13.若n m >,则下列不等式成立的是()A .nn m 2>+B .nm ->-33C .nm m n ->-D .2n mn >14.下列函数:①x y -=1,②2x y =,③x y -=,④x y =,⑤xy 2=中,奇函数有()A .①④B .②③C .③⑤D .④⑤15.A 地与B 地相距120千米,甲、乙两人从A 地去往B 地.此过程中,路程s (千米)与时间t (小时)的关系如图所示,则下列说法不正确的是()A .甲比乙先到达B 地B .甲的路程s (千米)与时间t (小时)的关系式为t s 40=C .甲、乙在1.5小时时相遇D .乙1.5小时的路程为100千米二、填空题(本大题共5小题,每小题3分,共15分)16.若1)(2-=x x f ,则=)2(f ________.17.已知全集{}0|>=x x U ,集合{}90|<<=x x A ,则UA =________.18.一元二次不等式025102>+-x x 的解集为________.100甲120O 90t (小时)S (千米)321 1.5乙(第15题图)19.已知函数)(x f 在R 上单调递增,若)3()721(f af >-,则a 的取值范围是________.20.设a ,b 为非零实数,集合⎭⎬⎫⎩⎨⎧+==b b a a x x A 2|,则用列举法表示集合A 为________.三、解答题(本大题共5小题,共40分,解答应写出必要的文字说明、演算步骤)21.(本题6分)已知全集{}43210,,,,=U ,集合{}21,=A ,集合{}32,=B ,求(1)B A ;(2)UA .22.(本题7分)比较162++x x 和16-x 的大小.23.(本题8分)数轴上点P 对应实数8,点Q 对应实数x ,若P 、Q 两点的距离大于等于3,求实数x 的取值范围.24.(本题9分)函数)(x f 的图像如图所示.(1)写出该函数的定义域;(1分)(2)求该函数在[]2,4--上的函数解析式;(2分)(3)描述该函数的单调性.(6分)25.(本题10分)某职校计划将一块长40m 、宽30m 的矩形空地建设为学生活动中心,预计将外围布置成文化走廊,中间的矩形作为休闲茶话区,如图所示.请你进行规划设计,当x 在什么范围时,休闲茶话区的面积不小于矩形空地面积的三分之一?第24题图yxO-4-2-32.5140第25题图x x2x2x文化走廊文化走廊文化走廊休闲茶话区30装订线第一学期高一数学期中考试参考答案一、单项选择题(本大题共15小题,每小题3分,共45分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)题号12345678910答案B D C C ABDABD题号1112131415答案ACACB二、填空题(本大题共5小题,每小题3分,共15分)16.317.[)∞+,918.{}5|≠x x 19.()10-∞-,20.{}3,1,1,3--三、解答题(本大题共5小题,共40分,解答应写出必要的文字说明、演算步骤.)21.解:(1){}321,,=B A ………………………………………………………3分(2)UA {}430,,=.…………………………………………………………………6分22.解:()16162--++x x x ………………………………………………………2分022>+=x …………………………………………………………………5分16162->++∴x x x …………………………………………………………7分23.解:法一:由题意得38≥-x ……………………………………………………………2分即3838≥--≤-x x 或………………………………………………………………4分解得115≥≤x x 或……………………………………………………………………6分(][)∞+∞-∴,,115 …………………………………………………………………8分法二:画数轴得到24.解:(1)由图得,定义域为[]5.2,4-.…………………………………………1分(2)32+=x y ………………………………………………………………………3分(3)该函数在[][]5.2,02,4,--上是增函数,在[]0,2-上是减函数.………………9分25.解:由题意得()()304031230440⨯⨯≥--x x ……………………………………………………2分化简得0100252≥+-x x ……………………………………………………………3分解得025≥≤x x 或……………………………………………………………………5分又⎩⎨⎧<<<<30204040x x ……………………………………………………………………7分解得150<<x ………………………………………………………………………8分50≤<∴x ……………………………………………………………………………9分因此,当50≤<x 时,休闲茶话区域的面积不小于矩形空地面积的三分之一.…………………………………………………………………………………………10分。

中职高一期中考试数学试卷

中职高一期中考试数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. 3.14B. √25C. -0.5D. π2. 若方程 2x - 5 = 3 的解为 x,则 x + 2 的值为()A. 5B. 4C. 3D. 23. 在直角坐标系中,点 A(2,-3)关于 x 轴的对称点的坐标是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,3)4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形5. 已知 a + b = 7,a - b = 3,则 a^2 + b^2 的值为()A. 28B. 36C. 49D. 64二、填空题(每题5分,共25分)6. 若 a = -3,则 -a 的值为 ________。

7. 2x + 5 = 19 的解为 x = ________。

8. 在△ABC中,∠A = 45°,∠B = 60°,则∠C 的度数为 ________。

9. 下列等式中正确的是 ________。

10. 已知函数 y = 2x - 3,当 x = 4 时,y 的值为 ________。

三、解答题(每题15分,共45分)11. 解方程:3x - 2 = 2x + 5。

12. 求函数 y = x^2 - 4x + 3 的最大值。

13. 已知等腰三角形底边长为 8,腰长为 10,求该三角形的面积。

四、应用题(每题20分,共40分)14. 某商店进购一批商品,每件进价 100 元,售价 150 元。

如果按每件售价的80% 出售,那么每件商品亏损 20 元。

请问:如果按原价出售,该批商品将亏损多少元?15. 某班级有男生 25 人,女生 30 人。

如果从该班级中随机抽取 6 名学生参加比赛,求抽取到的男生人数不少于 3 人的概率。

答案:一、选择题:1. D2. B3. A4. D5. C二、填空题:6. 37. 38. 75°9. 4x - 2y = 1010. 1三、解答题:11. x = 712. 最大值为 113. 面积为 40四、应用题:14. 亏损 200 元15. 概率为 5/6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年 数学 期中测试卷 (三年制中职一年级 第一学期)
(试卷卷面总分100分,考试时间100分钟)
一、 选择题(共10小题,每题3分,共30分) 1. 设{}a M =,则下列写法正确的是( )。

A .M a = B.M a ∈ C. M a ⊆ D.M a ∉ 2. 设全集U ={x|4≤x ≤10,x ∈N },A ={4,6,8,10} 则C u A = ( )。

A . {5} B.{5, 7} C .{5,7,9} D . {7,9 } 3.“a>0且b>0”是“a *b>0”的( )。

A. 充分不必要条件 B.必要不充分条件 C. 充分且必要条件 D.以上答案都不对 4. 如果a>b,c>d, 那么一定有( )。

A. a>b+c-d
B. a>c+d-b
C. a>b-c+d
D. b>a-c+d 5. 已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则 (C u M )∩N =( )。

A .{}4,3,2
B .{}2
C .{}3
D .{}4,3,2,1,0 6、设全集为R ,集合(]5,1-=A ,则 =A C U ( )。

A .(]1,-∞- B.()+∞,5 C.()+∞⋃--∞,5)1,( D. (]()+∞⋃-∞-,51, 7、已知{}2<=x x A ,则下列写法正确的是( )。

A .A ⊆0 B.{}A ∈0 C.A ∈φ D.{}A ⊆0
8、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则A ∪B ( )。

A .{}30<<=x x A B. {}30≤<=x x B C. {}21<<=x x B D. {}30<<=x x B
9、0652=--x x 是6=x 的( )。

A .充要条件 B.充分不必要条件 C .必要不充分条件 D.不充分不必要条件 10、不等式()()031>--x x 的解集是( )。

A.),1(+∞
B.)3,(-∞ D.),3()1,(+∞⋃-∞
二、填空题(共5小题,每小题2分,共10分)
11、集合{}b a N ,=子集有 个,真子集有 个。

12、元素3-与集合N 之间的关系可以表示为 ;自然数集N 与整数集Z 之间的关系可以表示为 。

13、用描述法表示不等式062<-x 的解集 。

14、用区间表示下列不等式的解集
(1)8362->-x x x ∈ ;(2)012>-x x ∈ 。

15、设a>b,且ab>0,那么a 1
b
1。

三、解答题(共6大题,其中题各8分,题各10分,题各12分,共60分)
16、(8分)比较172+-x x 与152+-x x 的大小。

17、(8分)已知集合A={x ∣06x x 2>--},B={x ∣0<x+a<4},若A ∩B=φ,求实数a 的取值范围。

18、(10分)解下列各不等式(组),并用区间或集合表示解集。

(1)⎩⎨
⎧<->+0
10
4x x (2)0822≥++-x x
19、(10分)当x 为何值时,代数式35-x 的值与代数式 2
7
2-x 的值之差不小于2。

20、(12分)设全集U=R ,集合A ={x ∣x (x-3)>0},B ={x ∣08x 6-x 2≤+},试求CuA ,A ∩B, A ∪B 。

21、(12分)某职业学校计划购买一批电脑,现有甲乙两家销售公司,甲公司的报价是每台5000元,它的优惠条件是购买10台以上,从第11台开始可按报价的70﹪打折;乙公司的报价也是每台5000元,它的优惠条件是无论购买多少台电脑一律按报价的80﹪打折,在电脑的品牌、质量、售后服务条件完全相同前提下,问购买哪家公司的电脑省钱?
参考答案:
一、 选择题
题号 1 2
3
4
5
6
7
8
9
10
答案
B C
A
C
C
D
D
B
C
D
二、填空题 题号 11 12 13 14
15 答案
4;3
-3∉N ; N ⊆Z
{x ∣x <
3,x ∈R} (-∞,2);
(-∞,-1)∪(1,+∞)

三、解答题
16、①当x >0时,172+-x x <1
52+-x x
②当x <0时,172
+-x x >152
+-x x
③当x=0时,172+-x x =152+-x x
17、 {a ∣1≤a ≤2}
18、 (1){x ∣-4<x <1} (2){x ∣-2≤x ≤4}
19、 4
1
-≤x
20、 (1){x ∣0≤x ≤3} (2) {x ∣3<x ≤4}
(3){x ∣x <0或x ≥2}
21、购买30台的时候,价格一样;
购买30台以上甲公司省钱;
购买30台以下乙公司省钱。

相关文档
最新文档