高一数学期中考试试卷及答案

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案

2024年下学期期中考试试卷高一数学(答案在最后)时量:120分钟分值:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2}A =,{,}B xy x A y A =∈∈,则集合B 中元素的个数为()A.4B.3C.2D.12.设,a b ∈R ,则“a b =”是“22a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“a ∃∈R ,210ax +=有实数解”的否定是()A.a ∀∈R ,210ax +≠有实数解 B.a ∃∈R ,210ax +=无实数解C.a ∀∈R ,210ax +=无实数解D.a ∃∈R ,210ax +≠有实数解4.已知集合{1,2}M =,{1,2,4}N =,给出下列四个对应关系:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A.①②B.①③C.②④D.③④5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()A. B.C. D.6.若0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.02a << B.111a b+≤2≤ D.228a b +≤7.已知定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则满足()0xf x <的x 的取值范围是()A.(,2)(2,)-∞-+∞B.(0,2)(2,)+∞ C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞-8.若函数2(21)2(0)()(2)1(0)b x b x f x x b x x -+->⎧=⎨-+--≤⎩,为在R 上的单调增函数,则实数b 的取值范围为()A.1,22⎛⎤⎥⎝⎦ B.1,2⎛⎫+∞⎪⎝⎭C.[]1,2 D.[2,)+∞二、多选题:本题共3题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全选对的得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()bf x x x=+,下列说法正确的是()A.若1b =,则函数()f x 的最小值为2B.若1b =,则函数()f x 在(1,)+∞上单调递增C.若1b =-,则函数()f x 的值域为RD.若1b =-,则函数()f x 是奇函数10.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的部分图象如图所示,则()A.0abc >B.0a b +>C.0a b c ++< D.不等式20cx bx a -+>的解集为112x x ⎧⎫⎨⎬⎩⎭-<<11.定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0x <时,()0f x >.则下列说法正确的是()A.(0)0f = B.()f x 为奇函数C.()f x 在区间[],m n 上有最大值()f n D.()2(21)20f x f x -+->的解集为{31}x x -<<三、填空题,本题共3小题,每小题5分,共15分.12.若36a ≤≤,12b ≤≤,则a b -的范围为________.13.定义在R 上的函数()f x 满足:①()f x 为偶函数;②()f x 在(0,)+∞上单调递减;③(0)1f =,请写出一个满足条件的函数()f x =________.14.对于一个由整数组成的集合A ,A 中所有元素之和称为A 的“小和数”,A 的所有非空子集的“小和数”之和称为A 的“大和数”.已知集合{1,0,1,2,3}B =-,则B 的“小和数”为________,B 的“大和数”为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{3}A x a x a =≤≤+,集合{1B x x =<-或5}x >,全集R U =.(1)若A B =∅ ,求实数a 的取值范围;(2)若命题“x A ∀∈,x B ∈”是真命题,求实数a 的取值范围.16.(15分)已知幂函数()2()253mf x m m x =-+是定义在R 上的偶函数.(1)求()f x 的解析式;(2)在区间[]1,4上,()2f x kx >-恒成立,求实数k 的取值范围.17.(15分)已知关于x 的不等式(2)[(31)]0mx x m ---≥.(1)当2m =时,求关于x 的不等式的解集;(2)当m ∈R 时,求关于x 的不等式的解集.18.(17分)为促进消费,某电商平台推出阶梯式促销活动:第一档:若一次性购买商品金额不超过300元,则不打折;第二档:若一次性购买商品金额超过300元,不超过500元,则超过300元部分打8折;第三档:若一次性购买商品金额超过500元,则超过300元,不超过500元的部分打8折,超过500元的部分打7折.若某顾客一次性购买商品金额为x 元,实际支付金额为y 元.(1)求y 关于x 的函数解析式;(2)若顾客甲、乙购买商品金额分别为a 、b 元,且a 、b 满足关系式45085b a a =++-320(90)a ≥,为享受最大的折扣力度,甲、乙决定拼单一起支付,并约定折扣省下的钱平均分配.当甲、乙购买商品金额之和最小时,甲、乙实际共需要支付多少钱?并分析折扣省下来的钱平均分配,对两人是否公平,并说明理由.(提示:折扣省下的钱=甲购买商品的金额+乙购买商品的金额-甲乙拼单后实际支付的总额)19.(17分)经过函数性质的学习,我们知道:“函数()y f x =的图象关于原点成中心对称图形”的充要条件是“()y f x =是奇函数”.(1)若()f x 为定义在R 上的奇函数,且当0x <时,2()1f x x =+,求()f x 的解析式;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数()y f x =的图象关于点(,0)a 成中心对称图形”的充要条件是“()y f x a =+为奇函数”.若定义域为R 的函数()g x 的图象关于点(1,0)成中心对称图形,且当1x >时,1()1g x x=-.(i )求()g x 的解析式;(ii )若函数()f x 满足:当定义域为[],a b 时值域也是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()tg()(0)h x x t =>在(0,)+∞上存在保值区间,求t 的取值范围.2024年下学期期中考试参考答案高一数学1.B2.A3.C4.D【详解】对于①,1y x =,当2x =时,1N 2y =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110N y =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当2x =时,2N y =∈,故③满足题意;对于④,2y x =,当1x =时,1y N =∈,当2x =时,4N y =∈,故④满足题意. D.5.A6.C 【详解】因为0a >,0b >,当3a =,1b =时,3ab =,1114133a b +=+=,2210a b +=,所以ABC 选项错误.由基本不等式a b +≥22a b+≤=,选C.7.A 【详解】定义在R 上的奇函数()f x 在(,0)-∞上单调递减,故函数在(0,)+∞上单调递减,且(2)0f =,故(2)(2)0f f -=-=,函数在(2,0)-和(2,)+∞上满足()0f x <,在(,2)-∞-和(0,2)上满足()0f x >.()0xf x <,当0x <时,()0f x >,即(,2)x ∈-∞-;当0x >时,()0f x <,即(2,)x ∈+∞.综上所述:(,2)(2,)x ∈-∞-+∞ .故选A.8.C 【详解】21020221b b b ->⎧⎪-⎪≥⎨⎪-≥-⎪⎩,解得12b ≤≤.∴实数b 的取值范围是[]1,2,故选C.9.BCD 10.ACD11.ABD解:因为函数()f x 满足()()()f x f y f x y +=+,所以(0)(0)(0)f f f +=,即2(0)(0)f f =,则(0)0f =;令y x =-,则()()(0)0f x f x f +-==,故()f x 为奇函数;设12,x x ∈R ,且12x x <,则1122122()()()()f x f x x x f x x f x =-+=-+,即1212())()(0f x f x f x x -=->,所以()f x 在R 上是减函数,所以()f x 在区间[],m n 上有最大值()f m ;由2(21)(2)0f x f x -+->,得2(23)(0)f x x f +->,由()f x 在R 上减函数,得2230x x +-<,即(3)(1)0x x +-<,解得31x -<<,所以2(21)(2)0f x f x -+->的解集为{31}x x -<<,故选ABD.12.[1,5]13.21x -+(答案不唯一)14.5,80【详解】由题意可知,B 的“小和数”为(1)01235-++++=,集合B 中一共有5个元素,则一共有52个子集,对于任意一个子集M ,总能找到一个子集M ,使得M M B = ,且无重复,则M 与M 的“小和数”之和为B 的“小和数”,这样的子集对共有54222=个,其中M B =时,M =∅,考虑非空子集,则子集对有421-对,则B 的“大和数”为4(21)5580-⨯+=.故答案为:5;80.15.【详解】(1)因为3a a <+对任意a ∈R 恒成立,所以A ≠∅,又A B =∅ ,则135a a ≥-⎧⎨+≤⎩,解得12a -≤≤;(2)若x A ∀∈,x B ∈是真命题,则有A B ⊆,则31a +<-或5a >,所以4a <-或5a >.16.【详解】(1)因为2()(253)mf x m m x =-+是幂函数,所以22531m m -+=,解得2m =或12,又函数为偶函数,故2m =,2()f x x =;(2)原题可等价转化为220x kx -+>对[1,4]x ∈恒成立,分离参数得2k x x <+,因为对[1,4]x ∈恒成立,则min 2(k x x<+,当0x >时,2x x +≥=当且仅当2x x=即x =时取得最小值.故k <17.【详解】(1)解:当2m =时,不等式可化为(1)(5)0x x --≥解得1x ≤或5x ≥,所以当2m =时,不等式的解集是{1x x ≤或5}x ≥.(2)①当0m =时,原式可化为2(1)0x -+≥,解得1x ≤-;②当0m <时,原式可化为2((31)]0x x m m ---≤,令231m m =-,解得23m =-或1;1)当23m <-时,231m m -<.故原不等式的解为231m x m -≤≤;2)当23m =-时,解得3x =-;3)当203m -<<时,231m m <-,原不等式的解为231x m m≤≤-;③当0m >时,原式可化为2((31)]0x x m m---≥,1)当01m <<时,231m m >-,2x m∴≥或31x m ≤-;2)当1m =时,不等式为2(2)0x -≥,x ∈R ;3)当1m >时,231m m <-,31x m ∴≥-或2x m≤.综上,当23m <-时,原不等式的解集为231x m x m ⎧⎫⎨⎬⎩⎭-≤≤;当23m =-时,不等式的解集为{}3x x =-;当203m -<<时,解集为231x x m m ⎧⎫⎨⎬⎩⎭≤≤-;当0m =时,解集为{}1x x ≤-;当01m <<时,不等式的解集是{2x x m ≥或31}x m ≤-;当1m =时,不等式的解集为R ;当1m >时,解集是{31x x m ≥-或2}x m≤.18.【详解】(1)由题意,当0300x <≤时,y x =;当300500x <≤时,3000.8(300)0.860y x x =+-=+;当500x <时,3000.8(500300)0.7(500)0.7110y x x =+-+-=+.综上,,03000.860,300500 0.7110,500x x y x x x x <≤⎧⎪=+<≤⎨⎪+<⎩.(2)甲乙购买商品的金额之和为4502320(90)85a b a a a +=++≥-.45045023202(85)3201708585a b a a a a +=++=-+++--490230490550≥=⋅+=(元)当且仅当4502(85)85a a -=-即8515a -=±时,原式取得最小值.此时100a =(或70a =,舍去),550450b a =-=(元)因为550500>,则拼单后实付总金额0.7550110495M =⨯+=(元)故折扣省下来的钱为55049555-=(元).则甲乙拼单后,甲实际支付5510072.52-=(元),乙实际支付55450422.52-=(元)而若甲乙不拼单,因为100300<,故甲实际应付100a '=(元);300450500<<,乙应付0.845060420b '=⨯+=(元).因为420元<422.5元,若按照“折扣省下来的钱平均分配”的方式,则乙实付金额b 比不拼单时的实付金额b '还要高,因此该分配方式不公平.(能够答出“乙购买的商品的金额是甲购买商品的金额的4.5倍,则乙应减的价钱应是甲的4.5倍,故不公平”之类的答案的可酌情给分)答:当甲、乙的购物金额之和最小时,甲、乙实际共需要支付495元.若按“折扣省下来的钱平均分配”的方式拼单,则拼单后乙实付422.5元,比不拼单时的实付420元还要高,因此这种方式对乙不公平.19.【详解】(1)()f x 为定义在R 上的奇函数,当0x >时,0x -<,所以()()f x f x =--()2211x x ⎡⎤=--+=--⎣⎦,又()00f =,所以()221,00,01,0x x f x x x x ⎧+<⎪==⎨⎪-->⎩;(2)(i )因为定义域为R 的函数()g x 的图象关于点()1,0成中心对称图形,所以()1y g x =+为奇函数,所以()()11g x g x +=--,即()()2g x g x =--,1x <时,21x ->,所以()()1121122g x g x x x ⎛⎫=--=--=-+ ⎪--⎝⎭.所以()11,111,12x xg x x x ⎧-≥⎪⎪=⎨⎪-+<⎪-⎩;(ii )()()()11,1tg 011,12t x x h x x t t x x ⎧⎛⎫⋅-≥ ⎪⎪⎪⎝⎭==>⎨⎛⎫⎪⋅-+< ⎪⎪-⎝⎭⎩,a )当()0,1x ∈时,()11()11022h x t t t x x ⎛⎫⎛⎫=⋅-+=⋅--> ⎪ --⎝⎭⎝⎭在()0,1单调递增,当()[,]0,1a b ⊆时,则112112t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅--= ⎪⎪-⎝⎭⎩,即方程112t x x ⎛⎫⋅--= ⎪-⎝⎭在()0,1有两个不相等的根,即()220x t x t +--=在()0,1有两个不相等的根,令()()()22,0m x x t x t t =+-->,因为()()0011210m t m t t ⎧=-<⎪⎨=+--=-<⎪⎩,所以()220x t x t +--=不可能在()0,1有两个不相等的根;b )当()1,x ∈+∞时,()()110h x t t x ⎛⎫=⋅-=> ⎪⎝⎭在()1,+∞单调递增,当()[,]1,a b ⊆+∞时,则1111t a a t bb ⎧⎛⎫⋅-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即方程11t x x ⎛⎫⋅-= ⎪⎝⎭在()1,+∞有两个不相等的根,即20x tx t -+=在()1,+∞有两个不相等的根,令()()2,0n x x tx t t =-+>,则有()2110022212n t t t t t n t t t⎧=-+>⎪⎪⎪⎛⎫⎛⎫⎛⎫=-⋅+<⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪>⎪⎩,解得4t >.c )当01a b <<<时,易知()g x 在R 上单调递增,所以()()()tg 0h x x t =>在()0,+∞单调递增,此时11211t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即()()()()()2222211221111111211112111a a a a a t a a a a a b b b t b b b b ⎧---+-====-+⎪⎪----⎨-+-+⎪===-++⎪---⎩令()()()11,011r a a a a =--+<<-,则易知()r a 在()0,1递减,所以()()00r a r <=即0t <,又1b >时,()112241t b b =-++≥=-,当且仅当()111b b -=-,即2b =时取等,以()()110111241t a a t b b ⎧=-+<⎪⎪-⎨⎪=-++≥⎪-⎩,此时无解;t 的范围是()4,+∞.。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

安徽省马鞍山市 2023-2024学年高一上学期期中测试数学试卷[含答案]

安徽省马鞍山市 2023-2024学年高一上学期期中测试数学试卷[含答案]

x2 x 2 ,又 f (m) 18 ,
m 2
m 2
所以 m2 2 18 或 2m 18 ,
解得 m 4 或 m 9 .
故选:C
8.
已知函数
f
x 的定义域为
I
,任取
x,
y
I
,当
x
y 时恒有
f
x y
f x f y1 f y f x
成立,且存
在正数
m
使得
f
m
1
,则
f
2023m


A. 1
B. 0
C. 1
D. 2
【答案】C
【解析】
【分析】令 t
x
y
,判断出函数的奇偶性,再令
x
2m

y
m ,求出
f
2m ,再求出函数的周期,
根据函数的周期求解即可.
【详解】令 t x y ,则
f t
f x f y1 f y f x ,

f
t
f
y x
f f
y f x1 x f y
f
t
3 ,所以集合
A
的子集有:

2 ,
3 ,
2,
3 .
所以集合 A 的子集共有 4 个.
故选:C.
2. 已知 p : x 2 或 x 0 , q : x a ,且 q 是 p 的充分不必要条件,则 a 的取值范围是( )
A. a 2
B. a 0
C. a 0
D. a 0
【答案】D 【解析】
【分析】令
验,得出正确的结果.
【详解】设矩形长宽分别为

上海市闵行区2024-2025学年高一上学期期中考试数学试卷(含解析)

上海市闵行区2024-2025学年高一上学期期中考试数学试卷(含解析)

2024-2025学年上海市闵行区高一(上)期中数学试卷一、单选题:本题共4小题,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.“”是“”的条件.A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件2.不等式,的解集不可能是( )A. B. R C. D.3.已知集合,,则满足的集合S共有个.A. 3B. 4C. 7D. 84.设集合,,,,其中a,,下列说法正确的是( )A. 对任意a,是的子集,对任意b,不是的子集B. 对任意a,是的子集,存在b,使得是的子集C. 对任意a,使得不是的子集,对任意b,不是的子集D. 对任意a,使得不是的子集,存在b,使得不是的子集二、填空题:本题共12小题,共54分。

5.已知全集为R,集合,则______.6.集合,则集合______.7.若,则的最小值为______.8.若“”是“”的充分条件,则实数m的取值范围是______.9.已知,,则的取值范围是______.10.若集合有且仅有一个元素,则实数______.11.用反证法证明命题:“若,则或”的第一步应该先假设______.12.一元二次不等式的解集是,则______.13.关于x的不等式的解集M有下列结论,其中正确的是______.①M可以是;②M可以是R;③M可以是;④M可以是14.已知关于x的一元二次方程的两个实根分别为和,且,则实数______.15.若不等式的解集为,则实数a的取值范围是______.16.不等式有多种解法,其中之一是在同一直角坐标系中作出,的图像,然后求解,请类比求解以下问题:设a,,,若对任意,都有,则的取值范围是______.三、解答题:本题共5小题,共78分。

解答应写出文字说明,证明过程或演算步骤。

17.本小题14分求下列不等式解集.18.本小题14分已知集合,,全集当时,求,;若,求实数a的取值范围.19.本小题14分一家新兴的医疗器械公司为了进一步增加市场竞争力,计划应用新技术生产一种新型的医疗器械;已知生产该产品的每年固定成本为300万元,最大产能为100台,每生产x台需另投入成本万元,且由市场调研知,该产品每台的售价为200万元时,本年度内生产的该产品当年能全部销售完.求年利润万元关于年产量x台的函数解析式利润=销售收入-成本;当该产品的年产量为多少时,公司所获利润最大?最大利润是多少?20.本小题18分已知二次函数若关于x的方程的两个实数根,满足,求实数t的值;若对任意都有成立,求实数t的取值范围;若关于x的方程在区间上有且仅有一个实数根,求实数t的取值范围.21.本小题18分在平面直角坐标系中,两点、的“曼哈顿距离”定义为,记为如,点、的“曼哈顿距离”为9,记为动点P在直线上,点,若,求点P的横坐标x的取值范围;动点P在直线上,动点Q在函数图像上,求的最小值;动点Q在函数的图像上,点,的最大值记为如,当点P的坐标为时,求的最小值,并求此时点P的坐标.答案和解析1.【答案】D【解析】本题考查必要条件,充分条件及充要条件的判定,属基础题.结合充分条件和必要条件的定义进行判断.解:因为,,所以“”是“”的充分不必要条件.2.【答案】D【解析】解:当,时,不等式,的解集是;当,时,不等式,的解集是R;当时,不等式,的解集是;当时,不等式,的解集是不等式,的解集不可能是故选当,时,不等式,的解集是;当,时,不等式,的解集是R;当时,不等式,的解集是;当时,不等式,的解集是本题考查一元一次不等式的解法,是基础题.解题时要认真审题,仔细解答.3.【答案】D【解析】解:因为集合,,所以,所以,,因为,所以S可以为,,,,,,,,共8个.故选:根据题意可得集合B,再结合子集的概念可列举出集合S的所有可能情况.本题考查子集的应用,考查学生的逻辑思维能力,属中档题.4.【答案】B【解析】解:对于集合,,可得当,即,可得,即有,可得对任意a,是的子集;当时,,,可得是的子集,故A错误,B正确;当时,,且,可得不是的子集.综上可得,对任意a,是的子集,存在b,使得是的子集,故C错误,D错误.故选:运用集合的子集的概念,令,推得,可得对任意a,是的子集;再由,,求得,,即可判断B正确,A,C,D错误.本题考查集合的关系的判断,注意运用二次不等式的解法,以及任意和存在性问题的解法,考查判断和推理能力,属于基础题.5.【答案】【解析】解:全集为R,集合,故答案为:利用补集的定义直接求解.本题考查集合的运算和补集的定义,考查运算求解能力,是基础题.6.【答案】【解析】解:集合,又Z是整数集,故答案为:利用交集的概念计算即可.本题主要考查集合的基本运算,属于基础题.7.【答案】4【解析】解:因为,所以,当且仅当,即时,等号成立,所以的最小值为故答案为:4直接利用基本不等式,即可得解.本题考查基本不等式的应用,考查运算求解能力,属于基础题.8.【答案】【解析】解:是的充分条件,,实数m的取值范围是,故答案为:利用充要条件的定义求解即可.本题考查了充要条件的应用,属于基础题.9.【答案】【解析】解:,,又,,故的取值范围为故答案为:根据已知条件,结合不等式的可加性,即可求解.本题主要考查不等式的性质,属于基础题.10.【答案】0或【解析】解:因为集合A中有且仅有一个元素,即方程有一个根或者两个相等的实数根,当时,方程仅有一个实数根,满足题意;当时.,解得,综上,或故答案为:0或由题意得方程有一个根或者两个相等的实数根,然后结合方程根的存在条件可求.本题主要考查了元素与集合关系的应用,属于基础题.11.【答案】且【解析】解:用反证法证明“若,则或”时,第一步应先假设“且”.故答案为:且直接利用反证法的步骤,即可得到答案.本题考查反证法的应用,考查命题的否定,是基础题.12.【答案】0【解析】解:由题意可知的两个根分别是,且,所以,解得,,所以故答案为:利用三个二次关系计算即可.本题考查了不等式的解集与对应方程关系的应用问题,是基础题.13.【答案】②④【解析】解:对于①:假设结论成立,则,解得,则不等式为,解得,与解集是矛盾,故①错误;对于②:当,时,不等式恒成立,则解集是R,故②正确;对于③:当时,不等式,则解集不可能为,故③错误;对于④:假设结论成立,则,解得,此时不等式为,解得,符合题意,故④正确.故答案为:②④.在假设结论成立时求出a,b值进行判断①④,举特例判断②③.本题主要考查了一元二次不等式的解法,属于基础题.14.【答案】【解析】解:关于x的一元二次方程的两个实根分别为和,,,,解得或,当时,一元二次方程无解,舍去.故故答案为:利用韦达定理得到二次方程两个根之间的关系,再由已知,可得p的值.本题主要考查了韦达定理的应用,属于基础题.15.【答案】【解析】解:由题意可知,不等式对任意的恒成立,由三角不等式可得,则,即,解得,因此,实数a的取值范围是故答案为:利用三角不等式得到,再解绝对值不等式即可.本题主要考查绝对值不等式的性质,考查计算能力,属于基础题.16.【答案】【解析】解:类比图像法解不等式,画出和,若对任意都有,则应为增函数,所以两个函数图像应如下图所示:由图像得,解得,其中,,所以,当且仅当时等号成立,故的范围为故答案为:类比图像法,画出和的图像,根据图像列出方程即可.本题主要考查不等式的求解,考查计算能力,属于中档题.17.【答案】解:由,所以不等式解集为;由,则或,所以或,故不等式解集为【解析】将分式不等式化为求解集即可;由公式法求绝对值不等式的解集.本题主要考查了一元二次不等式的解法,属于基础题.18.【答案】解:当时,,所以,由,知,当时,,解得;当时,,解得,综上所述,实数a的取值范围为【解析】把代入,可得集合A,再由并集和交集的运算法则,得解;易知,再分和两种情况,列出关于a的不等式组,解之即可.本题考查集合的运算,熟练掌握集合的关系与运算是解题的关键,考查逻辑推理能力和运算能力,属于基础题.19.【答案】解:由题意可得:当时,,当时,,故;①若,,由二次函数的性质可知,在上单调递增,在上单调递减,所以当时,万元,②若,当且仅当时,即时,万元.所以该产品的年产量为60台时,公司所获利润最大,最大利润是1680万元.【解析】分和两种情况,两种情况,结合题意分析求解;分和两种情况,根据二次函数性质结合双勾函数单调性计算最值,比较得到答案.本题考查了函数在生活中的实际运用,也考查了二次函数的性质、利用基本不等式求函数的最值,属于中档题.20.【答案】解:因为方程,即,且方程的两根为和,所以,解得或,又因为,所以,化简得,解得或舍去,所以由题意得对恒成立,则对恒成立,即对恒成立,设,则当且仅当,即时等号成立,所以,即,所以t的取值范围是当,即时,经检验满足题意;当,即或时,由,得,解得,经检验不合题意;综上知,t的取值范围是或【解析】利用一元二次方程的韦达定理及判别式计算即可;分离参数利用换元法结合基本不等式计算即可;分类讨论方程根的情况结合二次函数根的分布计算即可.本题考查了不等式的解法与应用问题,也考查了运算求解能力,是中档题.21.【答案】解:由已知,则概率“曼哈顿”定义得,,,当时,成立,解得;当时,,解得,当时,,解得,综上所述点P的横坐标x的取值范围为设出动点,,则,,,当时,,此时,当时,,此时,当时,,此时,,,综合得,当,时取等号,的最小值为设,则,若存在实数a,b,使得,则对任意成立,取,得,取,则,,解得,取,,是上是偶函数,当时,若,,若,,当且仅当时,取等号,存在实数a,且,,使得最小值为,点【解析】利用“曼哈顿距离”定义,分类讨论去绝对值解不等式即可;设出动点,,利用曼哈顿距离的定义列出二元函数,将它视为以为参数,为自变量的函数,分类讨论求其最值即可;先取特值确定出最小值,再验证有实数a,b即可.本题考查新定义、两点间距离公式、函数的奇偶性等基础知识,考查运算求解能力,是难题.。

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

北京市延庆区2024-2025学年高一上学期期中考试数学试卷含解析

延庆区2024-2025学年第一学期期中试卷高一数学(答案在最后)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2,1,0,1B =--,则A B = ()A.{}0,1 B.{}1,0- C.{}2,1,0,1,2-- D.{}1,0,1-【答案】D 【解析】【分析】根据给定条件,利用交集的定义求解即得.【详解】集合{}1,0,1,2A =-,{}2,1,0,1B =--,所以{}1,0,1A B ⋂=-.故选:D2.若集合[]3,1A =-,()2,3B =-,则A B = ()A.(]2,1- B.[)2,1- C.(]3,3- D.[)3,3-【答案】D 【解析】【分析】根据条件,利用集合的运算,即可求解.【详解】因为[]3,1A =-,()2,3B =-,所以A B = [)3,3-,故选:D.3.已知全集{}N 6U x x =∈≤且{}25A x U x =∈≤,则集合U A ð中的元素有()A.2个B.4个C.5个D.7个【答案】B 【解析】【分析】利用列举法表示集合U ,解不等式化简集合A ,再求出U A ð即可得解.【详解】依题意,{0,1,2,3,4,5,6}U =,解不等式25x ≤,得x ≤≤,则{0,1,2}A =,所以{3,4,5,6}U A =ð,集合U A ð中的元素有4个.故选:B4.已知集合A 满足{}1A ⊆{}1,2,3,4,则A 有()A.2个 B.4个C.5个D.7个【答案】D 【解析】【分析】根据给定条件,求出集合{}2,3,4的真子集个数即可得解.【详解】集合A 满足{}1A⊆{}1,2,3,4,则集合A 可视为集合{1}与集合{}2,3,4的每个真子集的并集,而集合{}2,3,4的真子集个数为3217-=,所以A 有7个.故选:D5.若22P a a =-和24Q a =-,则P 和Q 的大小关系为()A.P Q >B.P Q< C.P Q≥ D.P Q≤【答案】C 【解析】【分析】根据条件,通过作差法,得到2(2)P Q a -=-,即可求解.【详解】因为22P a a =-,24Q a =-,所以2222(24)44(2)0P Q a a a a a a -=---=-+=-≥,当且仅当2a =时取等号,所以P Q ≥,故选:C.6.设,,a b c ∈R ,且a b <,c d <,则()A.22a b <B.d c a b> C.ac bd< D.33a b <【答案】D 【解析】【分析】举例说明判断ABC ;利用不等式的性质判断D.【详解】对于A ,取2,2a b =-=,满足a b <,而224a b ==,A 错误;对于B ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而21d ca b=-<-=,B 错误;对于C ,取2,1,1,4a b c d =-=-==满足,a b c d <<,而24ac bd =->-=,C 错误;对于D ,由不等式性质知,由a b <,得33a b <,D 正确.故选:D7.下列函数中,既是偶函数又在区间(),0-∞上单调递增的是()A.21y x =B.1y x =+C.2y x =-,(),0x ∈-∞D.y x=【答案】A 【解析】【分析】利用奇偶函数的判断方法及基本函数的单调性,对各个选项逐一分析判断,即可求解.【详解】对于选项A ,因为221y x x-==,定义域为(,0)(0,)-∞+∞ ,关于原点对称,又2211()()()f x f x x x -===-,所以21y x=是偶函数,又由幂函数的性质知21y x =在区间()0,∞+上单调递减,所以21y x =在区间(),0-∞上单调递增,故选项A 正确,对于选项B ,因为1y x =+图象不关于y 轴对称,即1y x =+不是偶函数,所以选项B 错误,对于选项C ,因为2y x =-,(),0x ∈-∞的定义域不关于原点对称,即2y x =-,(),0x ∈-∞是非奇非偶函数,所以选项C 错误,对于选项D ,当(),0x ∈-∞时,y x x ==-在区间(),0-∞上单调递减,所以选项D 错误,故选:A.8.已知函数()f x 的定义域为R ,则“()f x 为奇函数”是“(0)=0f ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:因函数的定义域是,故“是奇函数”是“”的充分条件;反之,若(0)0f =,则函数不一定是奇函数,“f (x )为奇函数”不是必要条件.应选A.考点:充分必要条件.9.已知函数2()2f x x ax =++有两个零点,在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,则实数a 的取值范围是()A.(,)-∞-⋃+∞B.(,3)(3,)-∞-⋃+∞C.(,4](3,)-∞-+∞D.(,4][2,)-∞-+∞ 【答案】C 【解析】【分析】求出函数()f x 的单调区间,再结合集合的包含关系及零点存在性定理列式求解即得.【详解】函数2()2f x x ax =++在(,]2a -∞-上单调递减,在[,)2a-+∞上单调递增,由在区间(1,2)-上是单调的,且在该区间中有且只有一个零点,得(,](1,2)2a ∞---⊆且(1)0(2)0f f ->⎧⎨<⎩或[,)(1,22)a--+∞⊆且(1)0(2)0f f -<⎧⎨>⎩,则2230620a a a ⎧-≥⎪⎪->⎨⎪+<⎪⎩或1230620aa a ⎧-≤⎪⎪-<⎨⎪+>⎪⎩,解得4a ≤-或3a >,所以实数a 的取值范围是(,4](3,)-∞-+∞ .故选:C10.x ∀∈R ,设()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,则()f x 的最大值为()A.1B.2C.3D.4【答案】B 【解析】【分析】作出函数()f x 的图象,利用图象求出其最大值.【详解】在同一坐标系内作出直线41y x =+,1y x =+,24y x =-+,由()f x 取41y x =+,1y x =+,24y x =-+三个函数值中的最小值,得()f x 的图象为下图中实线构成的折线图,则()f x 的最大值即为()f x 的图象最高点对应的纵坐标值,观察图象知,()f x 的图象最高点是直线1y x =+与24y x =-+的交点,由124y x y x =+⎧⎨=-+⎩,得12x y =⎧⎨=⎩,因此()f x 的图象最高点是(1,2),所以()f x 的最大值为2.故选:B第II 卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.函数()124f x x =+______.【答案】(2,)-+∞【解析】【分析】利用函数有意义列式求出定义域.【详解】依题意,240x +>,解得2x >-,所以函数()124f x x =+的定义域是(2,)-+∞.故答案为:(2,)-+∞12.已知奇函数()f x 满足()()53f f -<-,则()5f ______()3f .【答案】大于【解析】【分析】利用奇函数的性质,结合不等式的性质求解即得.【详解】由奇函数()f x 满足()()53f f -<-,得()()53f f -<-,所以()()53f f >.故答案为:大于13.已知(],A a =-∞,(),3B =-∞,且x A ∈是x B ∈的必要不充分条件,则a 的取值范围是______【答案】3a ≥【解析】【分析】根据条件得到BA ,再利用集合间的关系,即可求解.【详解】因为x A ∈是x B ∈的必要不充分条件,则B A ,又(],A a =-∞,(),3B =-∞,所以3a ≥,故答案为:3a ≥.14.已知0x <,则812y x x=++的最大值是______,当且仅当x =______时,等号成立.【答案】①.7-②.2-【解析】【分析】根据给定条件,借助配凑的方法,利用基本不等式求出最大值及对应x 的值.【详解】由0x <,得0x ->,则81(2)17y x x =--+≤---,当且仅当82x x-=-,即2x =-时取等号,所以当2x =-时,812y x x=++取得最大值7-.故答案为:7-;2-15.已知函数2()2||1f x x x =--,给出下列四个结论:①函数()f x 是偶函数;②函数()f x 的增区间为[1,)+∞;③不等式()1f x x <-的解集是(1,3)-;④当3x >-时,令3()()g x f x x =+,则()g x 的最小值为4-.其中所有正确结论的序号是______.【答案】①④【解析】【分析】利用偶函数的定义判断①;求出函数的单调递增区间判断②;分段求出不等式的解集判断③;利用基本不等式分段求出最小值判断④.【详解】函数2()2||1f x x x =--的定义域为R ,对于①,22()()2||12||1()f x x x x x f x -=----=--=,函数()f x 是偶函数,①正确;对于②,2221,0()21,0x x x f x x x x ⎧+-≤=⎨-->⎩,函数()f x 的增区间为[1,0],[1,)-+∞,②错误;对于③,不等式()1f x x <-,则20211x x x x ≤⎧⎨+-<-⎩或20211x x x x >⎧⎨--<-⎩,解得10x -<<或03x <<,所以不等式()1f x x <-的解集是(1,0)(0,3)- ,③错误;对于④,依题意,2221,303()21,03x x x x g x x x x x ⎧+--<≤⎪⎪+=⎨--⎪>⎪+⎩,当30x -<≤时,2()(3)4443g x x x =++-≥=+,当且仅当233x x +=+,即3x =-时取等号;当0x >时,14()(3)88283x g x x =++-≥=+,当且仅当1433x x +=+,即3x =时取等号,而84)2)]0--=-+=>,即84->,所以()g x的最小值为4-,④正确.故所有正确结论的序号是①④.故答案为:①④【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.三、解答题:本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.求下列方程(组)的解集..:(1)2560x x +-=(2)3ax =(3)10x +-=(4)2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩【答案】(1){6,1}-(2)当0a =时,解集为∅;当0a ≠时,方程解集为3a 禳镲睚镲铪.(3){3-(4){(0,1),(2,0)}-【解析】【分析】(1)解一元二次方程即可得解集.(2)对a 分类讨论即可得方程的解集.(3(0)t t =≥,把原方程化为一元二次方程,结合t 的取值范围即可得到原方程的解集.(4)利用代入消元法即可得到方程组的解集.【小问1详解】由2560x x +-=得,(6)(1)0x x +-=,解得126,1x x =-=,故方程的解集为{6,1}-.【小问2详解】当0a =时,方程无解,解集为∅,当0a ≠时,解方程得3x a =,方程解集为3a ⎧⎫⎨⎬⎩⎭.【小问3详解】(0)t t =≥,则方程可化为2210t t +-=,解方程得,1211t t =-+=-,22(13x t ==-=-{3-.【小问4详解】由2214112x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩得,2240x x +=,解得120,2x x ==-,方程组的解为1101x y =⎧⎨=⎩,2220x y =-⎧⎨=⎩,故方程组解集为{(0,1),(2,0)}-.17.求下列不等式(组)的解集..:(1)2430x x -+≥(2)23210x x -++>(3)2112x x +≥+(4)221132340x x x ⎧+<⎪⎨⎪-+>⎩【答案】(1){|1x x ≤或}3x ≥(2)1|13x x ⎧⎫-<<⎨⎬⎩⎭(3){|2x x <-或 (4){}|21x x -<<【解析】【分析】(1)根据条件,因式分解得到(3)(1)0x x --≥,再利用一元二次不等式的解法,即可求解;(2)根据条件,变形得到23210x x --<,再因式分解得(31)(1)0x x +-<,即可求解;(3)先变形成102x x -≥+,再等价于(1)(2)0x x -+≥且2x ≠-,即可求解;(4)先利用绝对值不等式的解法,求2113x +<的解,再求22340x x -+>的解,再求交集,即可求解.【小问1详解】由2430x x -+≥,得到(3)(1)0x x --≥,所以1x ≤或3x ≥,故不等式2430x x -+≥的解集为{|1x x ≤或}3x ≥.【小问2详解】由23210x x -++>,即23210x x --<,得到(31)(1)0x x +-<,所以113-<<x ,故不等式23210x x -++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭.【小问3详解】由2112x x +≥+,得到102x x -≥+,等价于(1)(2)0x x -+≥且2x ≠-,所以2x <-或1x ≥,故不等式2112x x +≥+的解集为{|2x x <-或}1≥x .【小问4详解】由2113x +<,得到3213x -<+<,即2<<1x -,对22340x x -+>,因为9442230∆=-⨯⨯=-<,所以22340x x -+>的解集为R ,故不等式组221132340x x x ⎧+<⎪⎨⎪-+>⎩的解集为{}|21x x -<<.18.已知关于x 的方程220x x m +-=,m ∈R .(1)当1m =时,若方程的两根为1x 与2x ,求下列各式的值:①2212x x +;②12||x x -;③1222x x +;(2)若该方程的两根同号,求实数m 的取值范围.【答案】(1)①6;②;③4;(2)10m -<<.【解析】【分析】(1)把1m =代入,利用韦达定理列式,再逐一变形计算各个式子的值.(2)利用判别式及韦达定理列出不等式组求解.【小问1详解】当1m =时,方程2210x x +-=,224(1)80∆=-⨯-=>,则12122,1x x x x +=-=-,①222121212()26x x x x x x =-++=;②12||x x ==-=;③1212122()224x x x x x x ++==.【小问2详解】由方程的两根同号,得1212Δ440200m x x x x m =+>⎧⎪+=-<⎨⎪=->⎩,解得10m -<<,所以实数m 的取值范围是10m -<<.19.已知函数()21f x m x=+过点()1,2-.(1)求函数()f x 的解析式及定义域;(2)判断函数()f x 的奇偶性并证明;(3)令()()1g x f x =-,求()g x 的解析式,并证明()g x 的图像关于1x =对称.【答案】(1)()211f x x=+,定义域为{}|0x x ≠(2)偶函数,证明见解析(3)()211(1)(1)g x x x =+≠-,证明见解析【解析】【分析】(1)根据条件可得1m =,即可得()211f x x=+,由解析式可直接求出定义域,即可求解;(2)利用奇偶函数的判断方法,即可求解;(3)利用()211f x x=+,即可得()211(1)(1)g x x x =+≠-,再任取一点(,)P x y ,通过证明其关于1x =对称的点也在()g x 的图象上,即可求解.【小问1详解】因为函数()21f x m x =+过点()1,2-,则21m =+,得到1m =,所以()211f x x =+,定义域为{}|0x x ≠.【小问2详解】函数()f x 为偶函数,证明如下,因为()211f x x =+的定义域为{}|0x x ≠,关于原点对称,又()221111()()f x f x x x -=+=+=-,所以()f x 为偶函数.【小问3详解】因为()()2111(1)(1)g x f x x x =-=+≠-,设(,)P x y 是()g x 图象上任意一点,(,)P x y 关于1x =的对称点为(2,)P x y '-,因为()211(1)(1)g x x x =+≠-,所以()2221112111()(21)(1)(1)g x g x x x x -=+=+=+=----,即点(2,)P x y '-也在()g x 图象上,所以()g x 的图像关于1x =对称.20.已知函数()223f x x mx =++.(1)当1m =,[]2,2x ∈-时,求函数()f x 的值域;(2)若函数()f x 在[]22-,上是单调函数,求实数m 的取值范围;(3)当2m =时,比较()0f 与()()226f a a a -+-∈R 的次小.【答案】(1)[2,11](2)(,2][2,)-∞-+∞ (3)()2(0)26f f a a <-+-【解析】【分析】(1)利用二次函数的对称轴可求函数的单调性,求出最大值和最小值即可得到函数的值域.(2)讨论函数的单调性,利用定义域和对称轴的关系可求得参数的取值范围.(3)计算226a a -+-的取值范围,利用二次函数的单调性和对称轴可比较大小.【小问1详解】当1m =时,()223f x x x =++,对称轴为直线1x =-,()f x 在(2,1)--上为减函数,在(1,2)-上为增函数,min max ()(1)1232,()(2)44311f x f f x f =-=-+===++=,故函数()f x 的值域为[2,11].【小问2详解】函数()223f x x mx =++,对称轴为直线x m =-,当函数()f x 在[]22-,上是单调增函数时,2m -≤-,2m ≥,当函数()f x 在[]22-,上是单调减函数时,2m -≥,2m ≤-,综上得,实数m 的取值范围为(,2][2,)-∞-+∞ .【小问3详解】当2m =时,()243f x x x =++,对称轴为直线2x =-,()f x 在(,2)-∞-上为减函数,在(2,)-+∞上为增函数,且()0(4)f f =-,∵2226(1)55a a a -+-=---≤-,∴()226(5)(4)(0)f a a f f f -+-≥->-=,故()2(0)26f f a a <-+-.21.设集合(){}123,,,R,1,2,3k A a a x x x x k ==∈=,对于集合A 中的任意元素()123,,a x x x =和()123,,b y y y =及实数λ,定义:当且仅当()1,2,3i i x y i ==时a b =()112233,,a b x y x y x y +=+++;()123,,a x x x λλλλ=.若A 的子集{}123,,B a a a =满足:当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,则称B 为A 的完美子集.(1)集合()()(){}11,0,0,0,2,0,0,0,3B =,()()(){}21,2,3,2,3,4,3,4,5B =,分别判断这两个集合是否为A 的完美子集,并说明理由;(2)集合()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,若B 不是A 的完美子集,求m 的值.【答案】(1)1B 是A 的完美子集,2B 不是A 的完美子集,理由见解析;(2)12m =.【解析】【分析】(1)根据完美子集定义去计算验证是否当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=即可得解;(2)先计算112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,接着由()1122330,0,0a a a λλλ++=得方程()()123042m λλλ+-=+,解该方程得12m =或1230λλλ+=+,再结合元素互异性分类讨论12m =和1230λλλ+=+这两种情况即可得解.【小问1详解】1B 是A 的完美子集,2B 不是A 的完美子集,理由如下:对于()()(){}11,0,0,0,2,0,0,0,3B =,因为()()()1231,0,0,0,2,0,0,0,3a a a ===,所以()()()()112233123123,0,00,2,00,0,3,2,3a a a λλλλλλλλλ++=+=+,所以当且仅当1230λλλ===时,()1122330,0,0a a a λλλ++=,所以1B 是A 的完美子集;对于()()(){}21,2,3,2,3,4,3,4,5B =,因为()()()1231,2,3,2,3,4,3,4,5a a a ===,所以()()()112233*********,2,32,3,43,4,5a a a λλλλλλλλλλλλ=++++()123123123,2323344,5λλλλλλλλλ=++++++,令1231231321232302*********λλλλλλλλλλλλ++=⎧⎪++=⇒==-⎨⎪++=⎩,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当132222λλλ==-=-时,()1122330,0,0a a a λλλ++=,所以2B 不是A 的完美子集.【小问2详解】因为()()(){}2,,2,,2,2,,2,2B m m m m m m m m m =---,所以()()()1232,,2,,2,2,,2,2a m m m a m m m a m m m =-=--=,所以112233a a a λλλ++()()()()1231231232,2,2222m m m m m m m m m λλλλλλλλλ=++++++---,因为B 不是A 的完美子集,所以存在()()123,,0,0,0λλλ≠,使得1122330a a a λλλ+=+,即存在()()123,,0,0,0λλλ≠使得()()()123123123202202220m m m m m m m m m λλλλλλλλλ⎧++=⎪++-=⎨⎪-+-+=⎩,解方程组得()()123042m λλλ+-=+,由集合互异性可得2m m ≠且22m m ≠-,故0m ≠且2m ≠-,所以解()()123042m λλλ+-=+得12m =或1230λλλ+=+,且由12320m m m λλλ++=得12320λλλ++=,若12m =,则有123123123110221302233022λλλλλλλλλ⎧++=⎪⎪⎪+-=⇒⎨⎪⎪--+=⎪⎩1235573λλλ=-=-,所以123,,λλλ存在无数组解使得()1122330,0,0a a a λλλ++=,如当12355573λλλ=--==时,()1122330,0,0a a a λλλ++=,所以B 不是A 的完美子集,符合题意;当1230λλλ+=+且12m ≠时,则由12320λλλ++=得1230,λλλ==-,所以由()123022m m m λλλ+-=+得()320m λ--=,又2m ≠-得30λ=,故20λ=,不符合题意;综上m 的值为12.【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”,明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”,归纳“举例”提供的解题方法,归纳“举例”提供的分类情况;(3)类比新定义中的概念、原理、方法去解决题中需要解决的问题.。

2023-2024学年度上学期高一数学期中考试[含答案]

2023-2024学年度上学期高一数学期中考试[含答案]

又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0

x
f
0 (x)
0

x
0
,所以 0
x
2 或 2
x
0

综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到

故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2

f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1

所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0

f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(

, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R

湖北省武汉市部分学校2024-2025学年高一上学期11月期中考试数学试题含答案

湖北省武汉市部分学校2024-2025学年高一上学期11月期中考试数学试题含答案

2024~2025学年度第一学期武汉市部分学校高一年级期中调研考试数学试卷(答案在最后)武汉市教育科学研究院命制2024.11.13本试题卷共4页,19题,全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1,0,1,2,3}{A =-},220}{|B x x x =-<,则A B = A.{0,1,2}B.{1}C.{0,1}D.(0,2)2.命题p :[0,1]x ∀∈,20x x +的否定是A.0[0,1]x ∃∈,200x x +> B.[0,1]x ∀∈,20x x +>C.0[0,1]x ∃∈,200x x + D.[0,1]x ∀∈,20x x +3.下列关于幂函数2()f x x -=的判断:①定义域为(0,)+∞,②值域为R ;③是偶函数;④在(0,)+∞上单调递减.其中正确的个数是A.4B.3C.2D.14.下列不等式中成立的是A.若0a b >>,则22ac bc > B.若a b >,则33a b >C.若0a b <<,则22a ab b << D.若a b <且0ab ≠,则11a b<5.已知函数2()f x 的定义域为[1,2],则函数(21)f x +的定义域为A.1,12⎡⎤⎢⎥⎣⎦B.30,2⎡⎤⎢⎥⎣⎦C.[1,2]D.[1,4]6.已知函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.若111()123f x x x x =+++++存在对称中心(,)a b ,则2a b +=A.-4B.-3C.3D.47.已知函数()f x 是定义在R 上的偶函数,12,[0,)x x ∀∈+∞,且12x x ≠,恒有122212))1((f x f x x x ->--.若(1)1f =,则不等式2()2f x x <-的解集为A.(,1)-∞ B.(1,)+∞C.(,1)(1,)-∞-+∞ D.(1,1)-8.已知0a <,关于x 的方程22246aa x x x+=-+在[1,2)上有实数解,则a 的取值范围为A.[3,2]-- B.[3,2)--C.[3,-D.[3,-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某智能手机生产厂家对其旗下的某款手机的续航能力进行了一轮测试(一轮测试时长为6小时),得到了剩余电量y (单位:百分比)与测试时间t (单位:h)的函数图象如图所示,则下列判断中正确的有A.测试结束时,该手机剩余电量为85%B.该手机在前5h 内电量始终在匀速下降C.该手机在0h~3h 内电量下降的速度比3h~5h 内下降的速度更快D.该手机在5h~6h 进行了充电操作10.已知函数|1|,0()1,0x x f x x x+⎧⎪=⎨>⎪⎩,关于x 的方程()0f x k -=,下列判断中正确的是A.1k =时方程()0f x k -=有3个不同的实数根B.方程()0f x k -=至少有2个不同的实数根C.若方程()0f x k -=有3个不同的实数根,则k 的取值范围为(0,1]D.若方程()0f x k -=有3个不同的实数根1x ,2x ,3x ,则123x x x ++的取值范围为[)1,-+∞11.已知正数,a b 满足321a b+=,则下列结论中正确的是A.24abB.5ab +C.2a b-的最小值为1- D.b 与2a -可以相等三、填空题:本题共3小题,每小题5分,共15分.12.已知函数2,0()2,0x x f x x ⎧=⎨<⎩,则((1))f f -=________.13.已知函数32()f x x x=+,若()f a =()f a f -+=________.14.对于任意实数,a b ,定义,min{,},a a b a b b a b ⎧=⎨>⎩,当实数,x y 变化时,令228min ,8yt x y x y =++,则t 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知集合{|21}A x a x a =+,2{|430}B x x x =-+ .(1)当12a =时,求A B ,R B A ð;(2)若“x A ∈”是“x B ∈”成立的充分条件,求实数a 的取值范围.16.(本小题15分)已知函数1()2f x x x=-.(1)判断函数()f x 的奇偶性并证明;(2)讨论函数()f x 在区间(0,)+∞上的单调性并证明.17.(本小题15分)(1)对于正实数,,,a b c d ,求证:2()()a b c d --;(2)已知函数()M t =1)的结论,求函数()M t 的最小值,并求出此时对应的t 的值.18.(本小题17分)在日常生活中,经济学家们通常将函数()f x 的边际函数()M f x 定义为()(1)()M f x f x f x =+-.现已知某高科技企业每月生产某种特殊设备最多11台,根据以往经验:生产x 台(111x ,*x ∈N )这种特殊设备的月收入函数为2281()70R x x x =++(单位:千万元),其月成本函数为126()14C x x x=+(单位:千万元).求:(1)月收入函数()R x 的最小值及此时x 的值;(2)月成本函数()C x 的边际函数()M C x 的定义域及最大值(精确到0.01千万元);(3)生产x 台这种特殊设备的月利润()p x 的最小值.(月利润=月收入-月成本)19.(本小题17分)对于定义在R 上的函数()f x ,若其在区间[,]()p q p q >上存在最小值m 和最大值M ,且满足p m M q < ,则称()f x 是区间[,]p q 上的“聚集函数”.现给定函数22()24x a f x ax =-+.(1)当2a =时,求函数()f x 在[1,4]-上的最大值和最小值,并判断()f x 是否是“聚集函数”;(2)若函数()f x 是[1,4]-上的“聚集函数”,求实数a 的取值范围;(3)已知s a t <<,若函数()f x 是[,]s t 上的“聚集函数”,求t s -的最大值.数学答案一、选择题1234567891011BACBBADBACDACDABD二、填空题12.413.三、解答题15.解:(1)当12a =时,312A x x ⎧⎫=≤≤⎨⎬⎩⎭,由20}{3|4B x x x =-+≤可得:13}{|B x x =≤≤因此[1,3]A B = ,R 3,32B A ⎛⎤= ⎥⎝⎦ð·······················································································6分(2)由题意可得A B ⊆当A =∅时,21a a >+,∴1a >当A ≠∅时,12113a a a ≤⎧⎪≥⎨⎪+≤⎩,解得112a ≤≤综上所述,a 的取值范围1,2⎡⎫+∞⎪⎢⎣⎭.························································································13分16.解:(1)函数()f x 是奇函数,下面给出证明:可知函数定义域为(,0)(0,)-∞+∞ ,关于原点对称.对于任意(,0)(0,)x ∈-∞+∞ ,有1()2()f x x f x x-=-+=-,故为奇函数.·······································6分(2)函数()f x 在区间(0,)+∞内单调递增,证明如下:任取12,(0,)x x ∈+∞,且12x x <,则21212121212112122))()1111((222()x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫-=---=-+-=-+ ⎪ ⎝-⎪⎭⎝⎭2112)12(x x x x ⎛⎫=-++ ⎪⎝⎭∵210x x ->,12120x x +>∴21)()(f x f x >∴()f x 在(0,)+∞上单调递增.······························································································15分17.(1)证明:∵2()()a b c d ----(()ac bd ac bd bc ad =+--+--20bc ad =+-=-≥∴原不等式得证.(当且仅当bc ad =即a cb d=时取到等号)···············································································6分(2)解:由t 满足430110t t t -≥⎧⇒≥⎨-≥⎩,此时(43)(1)320t t t ---=->∵431t t ->->,∴()0M t >2=1=由(1)可知:222233()(21)(1)44M t t t ⎡⎤⎛⎫=≥----= ⎪⎢⎥⎝⎭⎣⎦,所以3()2M t ≥,当且仅当2231421t t --=,即1312t =时取到等号.综上所述:当1312t =时,()M t 的最小值为32.·······································································15分18.解:(1)2281()7070187088R x x x =++≥=+=当且仅当2281x x =即3x =时取到等号.即()R x 的最小值为88千万元,此时3x =.(2)由()(1)()M C x C x C x =+-,可知定义域为110x ≤≤,*N x ∈.∴126126126()14(1)14141(1)M C x x x x x x x⎛⎫=++-+=- ⎪++⎝⎭,110x ≤≤,*N x ∈.由函数单调性可知:()M C x 在110x ≤≤,*N x ∈上单调递增.∴当10x =时,max 126707()1412.85111055M C x =-=≈⨯(千万元),···············································10分(3)2228112699()()()70141452p x R x C x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=++-+=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴29()73p x x x ⎛⎫=+-+ ⎪⎝⎭,111x ≤≤,*N x ∈.令9()7g x x x=+-,∵(1)3g =,1(2)2g =,1(5)5g =,1(6)2g =∴min 76()(5) 3.0425p x p ===(千万元),此时5x =.································································17分19.解:(1)当2a =时,221()21(2)122x f x x x =-+=--因此()f x 在[1,4]-上的最小值为-1,最大值为72.因为71,[1,4]2⎡⎤-⊆-⎢⎥⎣⎦,所以函数()f x 是“聚集函数”.·······························································4分(2)()f x 在[1,4]-上的最大值为(1)f -与(4)f 中的较大者,因此221(1)442(4)4844a f a a f a ⎧-=++≤⎪⎪⎨⎪=-+≤⎪⎩解得82a -≤≤-+∵[82[1,4]--+⊆-.因此对称轴[1,4]x a =∈-,即221()()24a f x x a =--在[1,4]-上的最小值214a -≥-,解得22a -≤≤.综上所述,a的取值范围是[8-.·················································································10分(3)∵221()()24a f x x a =--,()f x 的对称轴(,)x a s t =∈∴2min ()4a y f a ==-,下面讨论()f x 的最大值.①若2s t a +≤,由抛物线图像可知,22max ()24s a y f s as ==-+∴min max s y y t ≤<≤,设L t s =-,即要求L 的最大值.222222max min11(2)()24422s a a L y y as s as a s a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭,∵2s t a +≥,∴022t s La s --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.②若2s ta +≥,由抛物线图像可知,22max ()24t a y f t at ==-+∴min max s y y t ≤<≤,设L t s =-,有()222222max min112()24422t a a L y y at t at a t a ⎛⎫≥-=-+--=-+=- ⎪⎝⎭∵2s t a +≤,∴022t s L t a --≥=>,代入上式,得2122L L ⎛⎫≥ ⎪⎝⎭,故8L ≤.综上可知L t s =-的最大值为8,当且仅当82()t s s t a f a s -=⎧⎪+⎪=⎨⎪=⎪⎩时取到等号,即228442a ta s a s t ⎧-=⎪⎪⎪=-⎨⎪=+⎪⎪⎩,消去,s t 可得:2282a a =-,解得2a =-±即22 6a t s ⎧=-+⎪⎪=+⎨⎪=-+⎪⎩或226a t s ⎧=--⎪⎪=-⎨⎪=--⎪⎩时取到.因此t s -的最大值为8.······································································································17分。

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)

南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)

2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。

第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

2024-2025学年银川一中高一数学上学期期中考试卷附答案解析

2024-2025学年银川一中高一数学上学期期中考试卷附答案解析

银川一中2024/2025学年度(上)高一期中考试数 学 试 卷命题教师:朱建锋一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知集合{}{}2(,)21,(,)23,A x y y x x B x y y x C A B ==-+==-=⋂∣∣,则C 的真子集的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩得2440x x -+=有一解,即C 有一个元素,即可求解.【详解】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩,整理得2440x x -+=,解得2x =,则{(2,1)}C =,故C 的真子集的个数为1.故选:B.2. 已知点(),27a 在幂函数()()()2,m f x a x a m =-∈R 的图象上,则a m +=( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】直接由幂函数的定义列方程组即可求解.【详解】由题意2136273m a a a m a m -==⎧⎧⇒⇒+=⎨⎨==⎩⎩.故选:C.3. 函数||x y x x=+的图象是( ).A. B. C. D.【答案】C【解析】【分析】将函数表达式化简成分段函数形式即可判断.【详解】1,01,0x x xy x x x x +>⎧=+=⎨-<⎩,对比选项可知,只有C 符合题意.故选:C.4. 函数()f x =的单调递减区间是( )A. []1,0- B. []0,1 C. [)2+∞, D. (]2-∞,【答案】A【解析】【分析】求得()f x 的定义域,利用复合函数的单调性,结合二次函数单调性可得答案.【详解】函数()f x =中,220x x --≥,解得20x -≤≤,又22y x x =--的开口向下,对称轴方程为1x =-,函数22yx x =--在[1,0]-上单调递减,在[2,1]--上单调递增,又y =在[0,1]上单调递增,因此函数()f x =在[1,0]-上单调递减,在[2,1]--上单调递增,所以函数()f x =的单调递减区间是[1,0]-.故选:A5. 已知a ,b ,c ,d 均为实数,则下列命题正确的是( )A. 若a b >,c d >,则a b c d+>+ B. 若22a b >,则a b -<-C. 若0c a b >>>,则a b c a c b >-- D. 若0a b >>且0m >,则a m a b m b+>+【答案】C【解析】【分析】由不等式的性质及特例逐项判断即可.【详解】选项A ,取1a =,0b =,2c =,1d =,则a b c d +<+,A 错误;选项B ,当1a =-,0b =时,22a b >,但a b ->-,不成立,B 错误;选项C ,当0c a b >>>时,()()a b a c b b c a ac bc a b c a c b >⇔->-⇔>⇔>--,C 正确;选项D ,根据糖水不等式可知0b m b a m a +>>+,再根据倒数不等式可得a m a b m b +<+,D 错误.故选:C .6. 函数()y f x =为定义在R 上的减函数,若0a ≠,则( )A. ()()2f a f a > B. ()()2f a f a >C. ()()2f a a f a +< D. ()()21f a a f a +>+【答案】C【解析】【分析】根据()f x 是定义域R 上的减函数,且0a ≠,然后比较a 与2a 的大小关系,从而得出选项A 错误;比较2a 与a 的大小即可得出选项B 错误;可得出2a a a +>,从而得出选项C 正确;比较2,1a a a ++大小即可判断D.【详解】()y f x = 是定义在R 上的减函数,0a ≠,a 与2a 的大小关系不能确定,从而()(),2f a f a 关系不确定,故A 错误;2(1)-=-a a a a ,1a >时,2a a >;01a <<时,2a a <,故()()2,f a f a 的关系不确定,故B 错误;220a a a a -=+>,2a a a ∴+>,()2()f a a f a ∴+<,故C 正确.()()221111a a a a a a +--=-=+-,1a >时,21a a a +>+;01a <<时,21a a a +<+,故()()2,1f a a f a ++关系不确定,D 错误,故选:C .7. 已知函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩在(),1m m +上单调递增,则实数m 的取值范围为( )A. (][),21,-∞-+∞ B. []2,1-C. (][),12,-∞-⋃+∞ D. []1,2-【答案】A【解析】【分析】作出分段函数的函数图象,由图象得到单调区间,建立不等式,得出m 取值范围.【详解】画出分段函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩的图象,如图所示,所以要使函数()f x 在(),1m m +上单调递增,则1m ≥或11m +≤-,解得1m ≥或2m ≤-,所以实数m 的取值范围为(][),21,-∞-+∞ .故选:A8. 定义{}max ,,a b c 为,,a b c 中的最大值,设()28max ,,63h x x x x ⎧⎫=-⎨⎬⎩⎭,则()h x 的最小值为().A. 649 B. 4 C. 0 D. 4811【答案】D【解析】【分析】分别画出28,,63y x y x y x ===-的图象,即可得函数ℎ(x )的图象,根据图象分析最值.【详解】分别画出28,,63y x y x y x ===-的图象,则函数ℎ(x )的图象为图中实线部分.由图知:函数ℎ(x )的最低点为A ,由836y x y x ⎧=⎪⎨⎪=-⎩ ,解得18114811x y ⎧=⎪⎪⎨⎪=⎪⎩,即1848,1111A ⎛⎫ ⎪⎝⎭.所以ℎ(x )的最小值为4811.故选:D.二、多选题:本题共4小题,共20分.在每小题给出的选项中,有多项符合题目要求.9. 下列说法中正确的有()A. 命题0:p x ∃∈R ,200220x x ++<”则命题p 的否定是2,220∀∈++≥R x x x B. “11x y>”是“x y <”的必要不充分条件C. 命题“2,0x x ∀∈>Z ”是真命题D. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件【答案】AD【解析】【分析】利用特称量词命题否定求解选项A ;利用不等式的性质确定选项B ;利用全称量词命题的真假判断选项C;利用一元二次方程根与系数的关系确定选项D.【详解】对于A ,命题p 的否定是2220x x x ∀∈++≥R ,,故A 正确;对于B ,由11x y>可知由两种情况,①0xy >且y x >;②0y x <<,故11x y >不能推出x y <,由x y <也不能推出11x y>,所以11x y>是x y <的既不充分也不必要条件,故B 错误;对于C ,当x =0时,20x =,故C 错误;对于D ,关于x 的方程220x x m -+=有一正一负根,则4400m m ->⎧⎨<⎩,解得0m <.所以"0m <"是"关于x 的方程220x x m -+=有一正一负根"的充要条件,故D 正确.故选:AD.的10.已知函数)1fx +=+,则( )A. ()()21f x x x =-∈R B. ()f x 的最小值为0C. ()23f x -定义域为[)2,+∞D. 1f x ⎛⎫ ⎪⎝⎭的值域为()1,-+∞【答案】BC【解析】【分析】根据给定条件,利用配凑法求出函数()f x 的解析式,再逐项判断即得答案.详解】由)211)1f x +=+=+-11+≥,所以()()211f x x x =-≥,故A 错误;当1x ≥时,()210f x x =-≥,因此()f x 的最小值为0,故B 正确;在函数()23f x -中,231x -≥,即2x ≥,所以函数()23f x -的定义域为[)2,+∞,故C 正确;2111f x x⎛⎫=- ⎪⎝⎭,由11x ≥,即01x <≤,所以[)211,x ∞∈+,所以1f x ⎛⎫ ⎪⎝⎭值域为[)0,∞+,故D 错误.故选:BC.11. 已知函数()328x f x x -=-,则( )A. ()f x 的定义域为()(),44,-∞⋃+∞ B. ()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C. ()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称D. 若()f x 在(),1a a +上单调递减,则4a ≥【答案】ABC【解析】【分析】求出函数的定义域和值域可判断A 、B ;根据图象的平移法可判断C ;根据函数的单调性解不等式的【的可判断D【详解】由280x -≠得4x ≠,所以()f x 的定义域为()(),44,-∞⋃+∞,A 正确;由()341112828228x x f x x x x --+===+---及1028x ≠-,可得()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,B 正确;()11228f x x =+-的图象可由奇函数12y x=的图象向右平移4个单位,再向上平移12个单位得到,所以()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称,C 正确;()f x 在(),1a a +上单调递减,则4a ≥或14a +≤,即4a ≥或3a ≤ ,D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数()f x 为R 上的偶函数,当0x >时,2()23f x x x =+-,则0x <时,()f x =____________.【答案】223x x --【解析】【分析】根据题意,当0x <时,0x ->,由函数的解析式求出()f x -的表达式,结合奇偶性分析可得答案.详解】解:根据题意,当0x <时,0x ->,则22()()2()323f x x x x x -=-+--=--,又由函数()f x 为R 上的偶函数,则2()()23f x f x x x =-=--.则0x <时,2()23f x x x =--.故答案为:223x x --.13. 已知函数1,0()(1)(2),0x x f x f x f x x +≤⎧=⎨--->⎩,则(3)f 的值等于________【答案】1-【解析】【分析】根据分段函数的表达式直接代入即可.【【详解】由分段函数可知,(2)(3(1))f f f =-,而(1)(2(0))f f f =-,∴(3)(2)(1)(1)(0)(1)(0)1f f f f f f f =-=--=-=-.故答案为:1-.【点睛】本题考查分段函数求值的问题,属于基础题.14. 若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是____________(用区间表示)【答案】[]10,14【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故答案为:[]10,14四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. (1)求函数()()52(1)1x x y x x ++=>-+的最小值;(2)已知0x >,0y >且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围.【答案】(1)9;(2)16m ≤【解析】【分析】(1)对函数解析式变形,利用基本不等式求解最值;(2)先常数代换变形,再利用基本不等式求解最值;【详解】(1)由1x >-,得10x +>,因此1(5)(2[()4][(1))11]1x x x y x x x +++++=+=++2(1)5(1)44155911x x x x x ++++==+++≥+=++,当且仅当411x x +=+,即1x =时取等号,所以原函数的最小值为9.(2)由191x y+=,则()199101016x y x y x y x y y x ⎛⎫+=++=++≥+=⎪⎝⎭.当且仅当169x y x y y x +=⎧⎪⎨=⎪⎩,即412x y =⎧⎨=⎩时取到最小值16.若x y m +≥恒成立,则16m ≤.16. 已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)画出这个函数的图象,并解不等式()2f x <;(2)若直线y k =(k 为常数)与函数()f x 的图象有两个公共点,直接写出k的范围.【答案】(1)图象见解析,{|x x <4}x >(2)0k <或14k <<【解析】【分析】(1)根据解析式画出图像,结合图像即可求解不等式;(2)由图像即可求解.【小问1详解】根据分段函数的解析式,画出函数的图象,当1x ≤-时,11x +≤,所以()2f x <恒成立,当12x -<≤时,22x x <⇔<<,所以1x -<<当2x >时,624x x -+<⇒>,所以4x >,综上可知,x <或4x >,所以不等式的解集为{x x <或4}x >;【小问2详解】如图,y k =与()y f x =有2个交点,则0k <或14k <<.17. 已知函数()f x ax b =+是R 上的奇函数,且(1)2f =.(1)若函数2()()h x x m f x =+⋅在区间[2,)+∞递增,求实数m 的取值范围;(2)设2()21(0)g x kx kx k =++≠,若对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,求实数k 的取值范围.【答案】(1)[)2,-+∞;(2)(][),13,-∞-+∞ .【解析】【分析】(1)利用奇函数求出()f x ,再利用二次函数单调性求出m 的范围.(2)分别求出函数()f x 在[1,1]-上的值域、函数()g x 在区间[1,2]-上值域,利用集合的包含关系列式求解即得.【小问1详解】由函数()f x ax b =+是R 上的奇函数,且(1)2f =,得(0)0(1)2f b f a b ==⎧⎨=+=⎩,解得20a b =⎧⎨=⎩,由函数2()2h x x mx =+在区间[2,)+∞上单调递增,得2m -≤,解得2m ≥-,所以实数m 的取值范围是[)2,-+∞.【小问2详解】对于()2f x x =,当[1,1]x ∈-,()f x 的值域为[]22-,,由对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,得函数()f x 在区间[1,1]-的值域为()g x 在区间[1,2]-上值域的子集,2()21(0)g x kx kx k =++≠的对称轴为1x =-,当0k >时,函数()g x 在区间[1,2]-上单调递增,()g x 的值域为[]1,18k k -+,由[][]2,21,18k k -⊆-+,得21218k k -≥-⎧⎨≤+⎩,解得3k ≥;当0k <时,函数()g x 在区间[1,2]-上单调递减,()g x 的值域为[]18,1k k +-,由[][]2,218,1k k -⊆+-,得21821k k -≥+⎧⎨≤-⎩,解得1k ≤-,所以实数k 的取值范围(][),13,∞∞--⋃+.18. 已知函数()31x f x x x =++.(1)证明:函数()f x 是奇函数;(2)用定义证明:函数()f x 在()0,∞+上是增函数;(3)若关于x 的不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,求实数a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)[]0,1【解析】【分析】(1)根据函数奇偶性的定义和判定方法,即可可证;(2)根据函数单调性的定义和判定方法,即可得证;(3)根据题意,得到函数()f x 为定义域R 上的奇函数,且为单调递增函数,不等式转化为231ax ax ax +≥-对于任意实数x 恒成立,分0a =和0a ≠,结合二次函数的性质,列出不等式组,即可求解.【小问1详解】证明:由函数()31x f x x x =++,可得其定义域为R ,关于原点对称,又由()()3(3)11x x f x x x f x x x -=--=-+=--++,所以函数()f x 为定义域R 上的奇函数.【小问2详解】证明:当(0,)x ∈+∞时,()133111x f x x x x x =+=+-++,任取12,(0,)x x ∈+∞,且12x x <,可得()()1212121221111131(31)3()(1111f x f x x x x x x x x x -=+--+-=-+-++++()()()()121212212113()()[3]1111x x x x x x x x x x -=-+=-⋅+++++因为12,(0,)x x ∈+∞,且12x x <,可得120x x -<,()()21110x x ++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上是增函数.【小问3详解】因为函数()f x 为定义域R 上的奇函数,且在(0,+∞)上是增函数,所以函数()f x 在(),0∞-上也是增函数,又因为()00f =,所以函数()f x 在R 上是增函数,又由()()2310f ax ax f ax ++-≥,可得()()231(1)f ax x f ax f ax α+≥--=-,因为不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,即不等式()23(1)f ax ax f ax +≥-对于任意实数x 恒成立,可得不等式231ax ax ax +≥-对于任意实数x 恒成立,即不等式2210ax ax ++≥对于任意实数x 恒成立,当0a =时,不等式即为10≥恒成立,符合题意;当0a ≠时,则满足()20Δ240a a a >⎧⎪⎨=-≤⎪⎩,解得01a <≤,综上可得,01a ≤≤,即实数a 的取值范围[0,1].19. 设函数()y f x =的定义域为M ,且区间I M ⊆.若函数()y f x x =+在区间I 上单调递增,则称函数()f x 在区间I 上具有性质A ;若函数()y f x x =-在区间I 上单调递增,则称函数()f x 在区间I 上具有性质B .(1)试证明:“函数()f x 在区间I 上具有性质B ”是“函数()f x 位区间I 上单调递增”的充分不必要条件;(2)若函数()k f x x=在区间[)2,+∞上具有性质A ,求实数k 的取值范围;(3)若函数()32f x x x =+在区间[],1a a +上同时具有性质A 和性质B ,求实数a 的取值范围.【答案】(1)证明见解析(2){}4k k ≤(3){1a a ≤-∣或a ≥【解析】【分析】(1)根据题意结合单调性的定义以及充分、必要条件分析判断;(2)分析可知()()k g x f x x x x =+=+在区间[)2,+∞上单调递增,结合单调性的定义分析求解;(3)分析可知13y x x ⎛⎫=+⎪⎝⎭在区间[],1+a a 上单调递增,3y x x =+在区间[],1+a a 上单调递增,结合对勾函数单调性分析求解.【小问1详解】若函数()f x 在区间I 上具有性质B ,对任意12,x x I ∈且12x x <,由条件可知()()2211f x x f x x ->-变形可得()()21210f x f x x x ->->,即()()210f x f x ->,所以()f x 在区间I 上单调递增,即充分性成立;若函数()f x 位区间I 上单调递增,如()f x x =在任意区间I 上单调递增,但()0f x x -=,故不符合性质B ,即必要性不成立;所以“()f x 在区间I 上具有性质B ”是“()f x 在区间I 上单调递增”的充分不必要条件.【小问2详解】若具有性质A ,即可知()()k g x f x x x x=+=+在区间[)2,+∞上单调递增.对任意[)12,2,x x ∈+∞,且12x x <,则()()()()1212212121120x x k x x k k g x g x x x x x x x --⎛⎫-=+-+=> ⎪⎝⎭,因为122x x ≤<,则12120,40x x x x ->,可得12k x x <恒成立,则4k ≤,所以实数k 的取值范围是{}4k k ≤.【小问3详解】由条件可知,()f x 具有性质A ,即()13y f x x x x ⎛⎫=+=+ ⎪⎝⎭在区间[],1+a a 上单调递增;由条件可知,()f x 具有性质B ,即()3y f x x x x =-=+在区间[],1+a a 上单调递增;由对勾函数可知:13y x x ⎛⎫=+ ⎪⎝⎭的增区间为(][),1,1,∞∞--+,3y x x =+的增区间为(),,∞∞-+,要使得条件成立,需要1a +≤或a ≥所以实数a 的取值范围是{1a a ≤-∣或a ≥.。

宝鸡市2023级2023~2024学年高一第一学期期中考试数学[含答案]

宝鸡市2023级2023~2024学年高一第一学期期中考试数学[含答案]

A. 0
B. 8
C. 16
D. 20
【答案】ACD
【解析】
【分析】求出函数的对称轴,结合函数的单调性,得到不等式解出即可.
【详解】函数
f
(x)
x2
mx
1 的对称轴为
x
m 2

若函数
f
(x)
x2
mx
1 在区间 [3, 8] 上单调,则
m 2
3

m 2
8 ,解得 m
6或
m
16 .
故选:ACD.
10.
y f x
y g x
3, 3
x 0,3
8. 已知
是奇函数,
是偶函数,它们的定义域都是
,且它们在
上的图
象如图所示,则不等式 f xg x 0 的解集为( )
A.
x
3
x
2

1
x
0
1

x
2
C.
x
3
x
1 或 1
x
0
1

x
2
B. x 2 x 1或 0 x 1或 2 x 3 D. x 3 x 2 或 1 x 0 或 0 x 2
因为 a b ,所以 a b 0 ,因为 b c ,所以
cb
0

a b c b 0
所以
,故 C 正确;
当 a 2 , b 1, c 0 时,满足 a b c ,不满足 a c b c ,故 D 错误.
故选:C.
5. 函数 f ( x) 4x x2 ( x 2)0 的 定义域为(
A. ab ac
B. a2 c2
a b c b 0

重庆市教育集团2024-2025学年高一上学期期中考试数学试题含答案

重庆市教育集团2024-2025学年高一上学期期中考试数学试题含答案

重庆2024-2025学年度上期期中考试高2027届数学试题(答案在最后)本试卷分为I 卷和Ⅱ卷,考试时间120分钟,满分150分.请将答案工整地书写在答题卡上.一、单选题:本题共8个小题,每小题5分,共40分.在每个小题所给出的四个选项中,只有一个选项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.若函数 ீॄ 的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,那么函数 ீॄ 的图象可能是()A. B.C. D.【答案】C 【解析】【分析】根据各选项一一判断其定义域与值域,即可得解.【详解】对于A :函数的定义域为{}|01x x ≤≤,但是值域不是{}|01y y ≤≤,故A 错误;对于B :函数的定义域不是{}|01x x ≤≤,值域为{}|01y y ≤≤,故B 错误;对于C :函数的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,故C 正确;对于D :不满足函数的定义,不是一个函数的图象,故D 错误.故选:C3.集合{010}A x x =∈≤<Z∣有()个非空子集.A.512B.511C.1024D.1023【答案】D 【解析】【分析】确定集合A 中含有的元素个数,即可求得答案.【详解】集合{}{010}0,1,2,3,4,5,6,7,8,9A x x =∈≤<=Z∣含有10个元素,故其有10211023-=个非空子集,故选:D4.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取1x =-、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取1x =-,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B .5.“321x ≤+”的一个充分不必要条件是()A.102x <<B.112x -<≤C.1x <-或12x ≥D.1x >【答案】D 【解析】【分析】求出不等式321x ≤+的解,逐个选项判断,即可得答案.【详解】解321x ≤+,即3201x -≤+,即1201x x -≤+,即()()211010x x x ⎧-+≥⎨+≠⎩,解得12x ≥或1x <-,由于102x <<,112x -<≤均推不出12x ≥或1x <-,故A ,B 选项不合题意;C 中条件和“321x ≤+”等价,不合题意,1x >时,一定有12x ≥或1x <-成立,反之不成立,故1x >是“321x ≤+”的一个充分不必要条件,故选:D6.已知正实数x ,y 满足122x y+=,则2x y +的最小值为()A.1B.2C.4D.8【答案】C 【解析】【分析】利用基本不等式“1”的妙用即可求解.【详解】因为x ,y 为正实数,且122x y+=,所以()11222222422y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22x y ==时取等号.故选:C7.若函数()f x 的定义域为[0,3],则函数()221()1f xg x x -=-的定义域为()A.(1,1)(1,8]- B.[1,1)(1,8]- C.[2,1)(1,1)(1,2]--⋃-⋃ D.[2,1)(1,2]-- 【答案】D 【解析】【分析】根据定义域满足的不等式关系,即可列不等式组求解.【详解】由于函数()f x 的定义域为[0,3],所以()221()1f xg x x -=-的定义域需要满足:2201310x x ⎧≤-≤⎨-≠⎩,解得12x <≤或21x -≤<-,故定义域为:[2,1)(1,2]-- 故选:D8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共3个小题,每小题6分,共18分.每个小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列选项中表示正确的是()A.∅⊆∅B.R Qð C.0=∅D.{1,2,3}{3,2,1}=【答案】ABD 【解析】【分析】根据空集的性质判断A ,根据补集的定义及元素与集合的关系判断B ,根据空集的定义判断C ,根据集合相等的定义判断D.【详解】因为∅是任何集合的子集,所以∅⊆∅,A 正确;为无理数,又R Q ðR Q ð,B 正确;0是一个元素,∅为不含任何元素的集合,C 错误;集合{1,2,3}与集合{3,2,1}的元素相同,所以{1,2,3}{3,2,1}=,D 正确;故选:ABD.10.下列说法正确的是()A.若a b >,则11b b a a +>+B.函数()f x =()g x =是相同函数C.函数1()f x x=的单调减区间是(,0)(0,)-∞+∞ D.若4x y +=,则22x y +的最小值是8【答案】BD 【解析】【分析】举反例说明A 是错误的;求两个函数的定义域,判断B 的真假;辨析函数单调区间的写法说明C 是错误的;利用基本(均值)不等式求22x y +的最小值,判断D 的真假.【详解】对A :令3a =-,4b =-,则满足a b >,但不满足11b b a a +>+,故A 错误;对B :由210x -≥⇒11x -≤≤,由1010x x -≥⎧⎨+≥⎩⇒11x -≤≤,所以两个函数的定义域都是[]1,1-,且此时()g x ===,与()f x 解析式相同,所以它们表示同一个函数,故B 正确;对C :函数1()f x x=的单调减区间是(,0)-∞,(0,)+∞,两个单调区间不能用“ ”连接,故C 错误;对D :由4x y +=⇒()216x y +=⇒22621x y xy ++=⇒()22216xy x y =-+,又因为222x y xy +≥(当且仅当x y =时取“=”)所以()2222216xy x y xy =-+≤+⇒22x y +≥8(当且仅当2x y ==时取“=”).故D 正确.故选:BD11.不等式202320242025()(1)(2)0x a x x ---<(其中a ∈R )的解集可以是()A.{02x x <<且}1x ≠ B.{12}xx <<∣C.∅ D.{1x x <或12x <<或}3x >【答案】ABC 【解析】【分析】A 选项,0a =时满足要求;B 选项,1a =时满足要求;C 选项,2a =满足要求;D 选项,由于解集中出现了3x >,故3a =,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;【详解】A 选项,若0a =,202320242025(1)(2)0x x x --<,由穿针引线法可知,不等式解集为{02x x <<且}1x ≠,A 正确;B 选项,当1a =时,24047025(1)(2)0x x --<,解得12x <<,B 正确;C 选项,当2a =时,42024048(1)(2)0x x --<,解集为∅,C 正确;D 选项,由于解集中出现了3x >,故3a =,此时202320242025(3)(1)(2)0x x x ---<,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;故选:ABC三、填空题:本题共3个小题,每个小题5分,共15分.12.已知函数()f x 满足:2()2()21f x f x x x +-=+-,则(2)f =_______;()f x =_______.【答案】①.13②.22133x x --【解析】【分析】由已知条件可得到关于(),()f x f x -的方程组,由此可解得()f x 的解析式,再令2x =,即可求得(2)f .【详解】由已知可得,()()22()2()21()2()21f x f x x x f x f x x x ⎧+-=+-⎪⎨-+=-+--⎪⎩,解得()22133f x x x =--,则()211242333f =⨯--=.故答案为:13;22133x x --.13.国庆节期间,重庆复旦中学全体学生进行了选修课报名,据统计,高一某班共45名同学在语文类、数学类和物理类三类选修课具有报名意向,其中有21人想报名语文类选修课,有29人想报名数学类选修课,有28人想报名物理类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,没有三类选修课都想报名的同学,则只想报名物理选修课的同学有_______人.【答案】5【解析】【分析】设只想报名物理选修课的同学有x 人,求得同时想报名语文和物理选修课的有13x -人,只想报名语文选修课的同学有2x -人,只想报名数学选修课的同学有4人,由题意画出Venn 图,再由该班共有人数,列出方程,即可求解.【详解】设只想报名物理选修课的同学有x 人,因为有28人想报名物理类选修课,所以同时想报名语文和物理选修课的有281513x x --=-人,因为有21人想报名语文类选修课,则只想报名语文选修课的同学有()2110132x x ---=-人,因为有29人想报名数学类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,则只想报名数学选修课的同学有2910154--=人,又没有三类选修课都想报名的同学,由题意画出Venn 图,如图所示:因为该班共45名同学,所以2131541045x x x -+-++++=,解得5x =,所以只想报名物理选修课的同学有5人.故答案为:5.14.已知函数26()1x ax f x x ++=+,a 为实数,若对于(0,),()2x f x ∀∈+∞≥恒成立,则实数a 的取值范围是_______.【答案】[)2-+∞,【解析】【分析】可以把问题转化成二次函数在(0,)+∞上大于等于0的问题来解决.结合函数与y 轴的交点,则0∆≤或对称轴在x 轴或x 轴左侧,即可求出a 的取值范围.【详解】由2621x ax x ++≥+,0x >得()2621x ax x ++≥+⇒()2240x a x +-+≥,0x >.设()()224g x x a x =+-+,0x >.因为()040g =>,所以()0g x ≥,0x >⇔0∆≤或202a --≤.由0∆≤⇒()22160a --≤⇒26a -≤≤;由202a --≤⇒2a ≥.所以a 的取值范围为:[][)[)2,62,2,-⋃+∞=-+∞.故答案为:[)2-+∞,四、解答题:本小题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合{N05},{03},{||11}A x x B x x C x x =∈<<=<<=-<∣∣∣.(1)求集合,A B B C ;(2)求()R A C ð.【答案】(1){}1,2A B = ;{}|03B C x x ⋃=<<(2)()()0,11,2U 【解析】【分析】(1)根据交集和并集的概念,即可求解;(2)根据补集和交集的概念,即可求解.【小问1详解】集合{}{N05}1,2,3,4A x x =∈<<=∣,{03}B x x =<<∣,不等式11x -<,即111x -<-<,解得02x <<,集合{}|02C x x =<<,所以{}1,2A B = ,{}|03B C x x ⋃=<<.【小问2详解】{}1,2,3,4A =,则()()()()()R ,11,22,33,44,A =-∞+∞ ð,所以()()()R 0,11,2A C ⋂= ð.16.已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)求()1f ,()()2ff -的值;(2)画出这个函数的图象,并写出()f x 的最大值;(3)解不等式()2f x <.【答案】(1)()11f =,()()20ff -=;(2)图象见解析,最大值为4(3){|2x x <}4x >【解析】【分析】(1)根据自变量的取值,代入分段函数解析式即可;(2)根据图象最高点即可写出最大值;(3)对x 范围讨论,解出之后求并集即可.【小问1详解】由已知得,()2111f ==,()2220f -=-+=,则()()()200ff f -==【小问2详解】由图象可知,最大值为4.【小问3详解】当1x ≤-时,由()2f x <可得,22x +<,解得0x <,所以1x ≤-;当12x -<≤时,由()2f x <可得,22x <,解得22x -<<,所以12x -<<当2x >时,由()2f x <可得,62x -+<,解得4x >,所以4x >.综上所述,2x <或4x >不等式()2f x <的解集为{|2x x <}4x >.17.已知二次函数()f x 过坐标原点,有(1)(3)f f -=,且()f x 在R 上的值域为(,1]-∞.(1)求函数()f x 的解析式;(2)求解关于x 的不等式2()a ax f x ->,其中a 为实数.【答案】(1)()()211f x x =--+;(2)答案见解析.【解析】【分析】(1)由条件可设其解析式为()()211f x a x =-+,再由条件求a 可得结论;(2)不等式可化为()()20x x a -->,分别在2a >,2a =,2a <条件下求不等式的解集.【小问1详解】因为(1)(3)f f -=,所以二次函数()f x 的图象为对称轴为1x =的抛物线,因为()f x 在R 上的值域为(,1]-∞,所以二次函数的图象为开口向下的抛物线,且顶点纵坐标为1,所以可设其解析式为()()211f x a x =-+,且0a <,因为二次函数()f x 的图象过坐标原点,所以()20110a -+=,所以1a =-,所以()()211f x x =--+,【小问2详解】不等式2()a ax f x ->,可化为222a ax x x ->-+,即()()20x x a -->,当2a >时,x a >或2x <,当2a =时,2x ≠,当2a <时,x a <或2x >,所以当2a >时,不等式2()a ax f x ->的解集为{x x a >或}2x <,当2a =时,不等式2()a ax f x ->的解集为{}2x x ≠,当2a <时,不等式2()a ax f x ->的解集为{2x x >或}x a <.18.已知函数2(),(2)5a f x x f x=+=(1)求实数a 值;(2)判断函数()f x 在(1,)+∞上的单调性,并用单调性的定义证明;(3)求函数()f x 的单调区间.【答案】(1)2a =(2)单调递增,证明见解析(3)增区间是()1,+∞,单调递减区间是(),0-∞和()0,1【解析】【分析】(1)代入()2f ,即可求解;(2)根据函数单调性的定义,作差()()12f x f x -,即可证明;(3)根据(2)的过程和结果,再分区间讨论.【小问1详解】由条件可知,()2452a f =+=,得2a =;【小问2详解】()22f x x x=+,设121x x <<,()()222212121212122222f x f x x x x x x x x x ⎛⎫-=+--=-+- ⎪⎝⎭,()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,因为121x x <<,所以120x x -<,122x x +>,且121x x >,则12202x x <<,所以121220x x x x +->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(1,)+∞上单调递增;【小问3详解】由(2)可知,()()12f x f x -()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,当1201x x <<<时,120x x -<,1202x x <+<,1201x x <<,则1222x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(0,1)上单调递减,当120x x <<,120x x -<,120x x +<,120x x >,则1220x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(,0)-∞上单调递减,综上可知,函数的增区间是()1,+∞,单调递减区间是(),0-∞和()0,1.19.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,24⎛⎤-- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,换元后结合二次函数的图象,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,所以k x =-,令20,2t x t =≥=-,所以22k t t =--在[)0,t ∈+∞上有两个不等实跟,函数()22p x t t =--在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,()()19012,24p p p ⎛⎫==-=- ⎪⎝⎭,故实数k 的取值范围是9,24⎛⎤-- ⎥⎝⎦.。

山东省青岛市黄岛区2024-2025学年高一上学期11月期中考试数学试题含答案

山东省青岛市黄岛区2024-2025学年高一上学期11月期中考试数学试题含答案

2024-2025学年度第一学期期中考试高一数学(答案在最后)2024.11本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,请将答题卡上交.一、单项选择题:本大题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3A =,{}12B x x =-<<,则A B ⋂为()A.∅B.{}0 C.{}1 D.{}0,1【答案】D 【解析】【分析】由集合交集的运算定义即可得结果.【详解】{}0,1A B = 故选:D2.下列各组函数与()f x x =表示同一函数的是()A.()f x =B.()2x f x x=C.()f x =D.()2f x =【答案】C 【解析】【分析】利用函数的定义逐项判断.【详解】解:()f x x =的定义域为R ,()f x x ==,解析式不同,故不是同一函数,故A 错误;B.()2x f x x =的定义域为{}|0x x ≠,两函数定义域不同,故B 错误;()f x x ==的定义域为R ,故C 正确;()2f x =的定义域为{}|0x x ≥,故D 错误.故选:C3.下列命题为真命题的是()A.若0a b >>,则22ac bc >B.若0a b >>,则22a b >C.若0a b <<,则22a ab b <<D.若0a b <<,则11a b<【答案】B 【解析】【分析】通过举反例排除A,C 两项,利用不等式的性质进行推理,可以排除D 项,证得B 项.【详解】对于A,当0c =时,显然22ac bc >不成立,故A 错误;对于B ,由0a b >>,利用不等式的性质易得22a b >,故B 正确;对于C ,当0a b <<时,取2,1a b =-=-,则242a ab =>=,故C 错误;对于D ,当0a b <<时,0ab >,由不等式的性质,可得11b a<,故D 错误.故选:B.4.在周长为定值P 的扇形中,面积最大时扇形的半径为()A.P 2B.3P C.4P D.5P 【答案】C 【解析】【分析】用半径表示出面积,结合函数知识得结论.【详解】设扇形半径为r ,则扇形面积为22211(2)()22416P P S r P r r rP r =-=-+=--+,所以4Pr =时,S 取得最大值.故选:C5.命题:2p x ∀>,210x ->,则命题p 的否定形式是()A.2x ∀>,210x -≤B.2x ∀≤,210x ->C.2x ∃>,210x -≤D.2x ∃≤,210x -≤【答案】C 【解析】【分析】根据全称量词命题的否定为存在量词命题即可得到结论.【详解】命题:2p x ∀>,210x ->,为全称量词命题,则该命题的否定为:2x ∃>,210x -≤.故选:C .6.某中学的学生积极参加美育活动,其中有98%的学生喜欢美术或音乐,76%的学生喜欢美术,83%的学生喜欢音乐,则该中学既喜欢美术又喜欢音乐的学生数占该校学生总数的比例为()A.61%B.62%C.76%D.83%【答案】A 【解析】【分析】根据集合的交集的定义求解.【详解】由题意既喜欢美术又喜欢音乐的学生数占该校学生总数的比例为:76%83%98%61%+-=,故选:A 7.“函数()f x =(),1-∞上单调递减”是“0a <”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用幂函数及复合函数的单调性结合充分、必要条件的定义判定即可.【详解】先判定充分性,若()f x =(),1∞-上单调递减,由幂函数及复合函数的单调性可知,则00111a a a<⎧⎪⇒>≥-⎨-≥⎪⎩,满足充分性;再判定必要性,可举反例,若2a =-,则1y ax =+单调递减,此时()f x =的定义域为1,2⎛⎤-∞ ⎥⎝⎦,此时()f x 在1,2⎛⎤-∞ ⎥⎝⎦上单调递减,不满足必要性,综上“函数()f x =(),1∞-上单调递减”是“0a <”的充分不必要条件.故选:B8.用()(){}max ,f x g x 表示()f x ,()g x 中的最大者,用()(){}min ,f x g x 表示()f x ,()g x 中的最小者,若函数(){}231min max ,,h x x xx ⎧⎫=⎨⎩⎭在()0,a 上有最大值,则()A.()h x 是奇函数B.()h x 在()0,a 上最大值是2C.()h x 的值域是()[],10,1-∞-⋃D.a 的取值范围是()1,+∞【答案】D 【解析】【分析】在同一坐标系中作出函数231,,y x y x y x===的图象,进而得到函数ℎ的图象,利用图象分别判断四个选项即可.【详解】ℎ定义域(,0)(0,)-∞+∞ ,在同一坐标系中分别作出函数231,,y x y x y x===的图象,取2y x =与3y x =的图象中较高的曲线段,再与1y x=的图象对比取较低的曲线段,得到函数ℎ的图象,如图所示,因为图象不关于坐标原点对称,所以ℎ不是奇函数,故A 错误;因为ℎ在()0,a 上有最大值,所以1a >,故D 正确,且ℎ在()0,a 上最大值是1,故B 错误;由图象知ℎ的值域是(),0(0,1]∞-⋃,故C 错误;故选:D .【点睛】方法点睛:在研究函数()(){}max ,y f x g x =和函数y =()(){}min ,f x g x 的性质时,通常先画出函数图象,利用数形结合分析函数性质.二、多项选择题:本大题共3小题.每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,选错的得0分.9.下列函数既是偶函数又在()0,∞+上单调递增的是()A.()1f x x=B.()f x x =C.()2f x x = D.()f x =【答案】BC 【解析】【分析】根据偶函数定义和单调性概念判断即可.【详解】因为函数()f x =[0,)+∞,所以函数()f x =函数()1f x x=的定义域是(,0)(0,)-∞+∞ ,又()11()f x f x x x -==-=--,所以函数()1f x x=为奇函数;函数()f x x =的定义域为(,)-∞+∞,且()()f x x x f x -=-==,所以函数()f x x =为偶函数,又因为(0,)x ∈+∞时,()f x x x ==在(0,)+∞上单调递增;函数()2f x x =的定义域为(,)-∞+∞,且()22()()f x x x f x -=-==,所以函数()2f x x =为偶函数,()2f x x =在(0,)+∞上单调递增.故选:BC.10.定义()()11x y x y ⊗=-+,则()A.x y y x ⊗=⊗B.928x x ⊗≤C.()()x y z x y z ⊗⊗=⊗⊗D.若x ,y 都是正数,()2x y xy -⊗=+,则11944x y +≥【答案】BD 【解析】【分析】根据新定义进行去体验判断AC ,用新定义转化为结合二次函数性质判断B ,用新定义转化后,利用基本不等式判断D.【详解】选项A ,1)(1)1,(1)(1)1x y x y x y xy y x y x x y xy ⊗=-+=-+-⊗=-+=+--(,只有x y =时,两者才相等,A 错;选项B ,221992(1)(12)212()488x x x x x x x ⊗=-+=-++=--+≤,当且仅当14x =时等号成立,B 正确;选项C ,()123[(11)(12)]303(10)(13)4⊗⊗=-+⊗=⊗=-+=,()123(11)(123)04⊗⊗=-+⊗=≠,C 错;选项D ,()(1)(1)12x y x y x y xy xy -⊗=++=+++=+,则1x y +=,又0,0x y >>,所以1111559()(444444x y x y x y x y y x +=++=++≥+=,当且仅当4x y y x =,即21,33x y ==时等号成立,D 正确.故选:BD【点睛】关键点点睛:本题考查新定义,解题关键是利用新定义把问题进行转化,一是直接利用新定义进行运算,二是进行转化转化为函数知识求解,转化为基本不等式问题求解等.11.定义域为的函数()f x ,同时满足:①当0x y +=时,()()0f x f y +=;②[],1,1x y ∀∈-,当0x y +>时,()()0f x f y +>;③()()2f x f x =-.则()A.()f x 是奇函数B.()f x 在1,2上单调递减C.函数=的图像关于点1,0中心对称D.()()()()01230f f f f +++=【答案】ABD 【解析】【分析】根据题意,结合函数的单调性、奇偶性、对称性,依次分析选项是否正确,即可得答案.【详解】对于A ,因为()f x 的定义域为R ,且当0x y +=时有()()0f x f y +=,即()()0f x f x +-=,所以()f x 是奇函数,故A 正确;对于B 、C ,因为()(2)f x f x =-,所以()f x 关于1x =对称,故C 错误,因为对[],1,1x y ∀∈-,当0x y +>即x y >-时,()()0f x f y +>,即()()f x f y >-,结合奇函数的性质可得()()f x f y >-,所以当[]1,1x ∈-时,()f x 为增函数,结合()f x 关于1x =对称的条件可知,当[]1,2x ∈时,()f x 为减函数,故B 正确;对于D ,结合①,令0x y ==可得(0)(0)0f f +=,所以(0)0f =,因为()f x 关于1x =对称,所以(2)0f =,结合③,因为()(2)f x f x =-,令3x =可得(3)(1)(1)f f f =-=-结合奇偶性可得()(2)f x f x =-,所以(3)(1)f f =,所以(1)(1)f f -=,解得(1)0f =,所以(3)(1)0f f ==,即(0)(1)(2)(3)0f f f f +++=,故D 正确,故选:ABD .三、填空题:本大题共3小题,每小题5分,共15分.12.已知集合{}{}30,0,,1m m ⊆,则实数m 的取值集合为______.【答案】{}1-【解析】【分析】利用集合间的基本关系及集合元素的互异性计算即可.【详解】因为{}{}30,0,,1mm ⊆,所以01m m ≠⎧⎨≠⎩,则31m m m =⇒=-,所以实数m 的取值集合为{}1-.故答案为:{}1-13.已知函数()f x 是定义域为R 的奇函数,当0x ≤时,()()1f x x x =-.则当0x >时,函数()f x 的解析式为______.【答案】()()1(0)f x x x x =+>【解析】【分析】根据奇函数的定义求解.【详解】0x >时,0x -<,()(1)f x x x -=-+,所以()()(1)f x f x x x =--=+.故答案为:()()1(0)f x x x x =+>.14.已知a ,b ,c ,d ,e ,f ,g ,h 是在集合{}7,5,3,2,2,4,6,13----中的不同数,则()()22a b c d e fg h +++++++的最小值为______.【答案】34【解析】【分析】记,a b c d M e f g h N +++=+++=,根据条件将所求式子表示为()22432M -+,先分析4M =的可行性,然后确定出最小值即可.【详解】不妨设,a b c d M e f g h N +++=+++=,因为7532246138a b c d e f g h +++++++=----++++=,所以8M N +=,所以()()()()222222282432a b c d e f M g N M h M M =+++++++==-+-++,若要()22432M -+值最小,则4M =,下面分析4M =的可能性:当4M =时,则a b c d ,,,四个数全为偶数,或全为奇数,或两奇两偶,若四个数全为偶数,则和的结果为224610-+++=,不满足要求;若四个数全为奇数,则和的结果为753132---+=-,不满足要求;若四个数两奇两偶,其中两个奇数之和可能为{}12,10,6,8,8,10---,两个偶数之和可能为{}0,2,4,6,8,10,此时两奇两偶的四个数之和不可能等于4,所以4M =不成立,所以当32263M a b c d =+++=--++=时,此时()22432M -+取值最小,最小值为34,故答案为:34.【点睛】关键点点睛:解答本题的关键点有两个,一方面是对所给表达式能利用已知关系进行化简变形,将双变量转化为单变量;另一方面是对于二次函数取最小值的可行性分析,此处无法直接确定4M =成立.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合{}1A x a x a =≤≤+,{}2340B x x x =--≤.(1)若2a =,求()R A B ð;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【答案】(1)(){R 34A B x x ⋂=<≤ð或}12x -≤<.(2)[]1,3-【解析】【分析】(1)确定集合,A B ,由交集、补集运算即可;(2)由条件确定A B ≠⊂,构造不等式组求解即可.【小问1详解】由2a =可得:=2≤≤3,所以{R 2A x x =<ð或}3x >,又{}{}234014B x x x x x =--≤=-≤≤,所以(){R 34A B x x ⋂=<≤ð或}12x -≤<.【小问2详解】因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ≠⊂,所以141a a +≤⎧⎨≥-⎩解得:13a -≤≤,所以实数a 的取值范围是[]1,3-16.若关于x 的不等式210ax bx +->的解集是112x x ⎧⎫<<⎨⎬⎩⎭.(1)求a ,b ;(2)求不等式12a b axx +>+的解集.【答案】(1)2a =-,3b =.(2){}1x x >-【解析】【分析】(1)由题意可知,1,12为方程210+-=ax bx 的两根,且0a <,由根与系数的关系即可求出答案.(2)将,a b 的值代入不等式,解不等式即可.【小问1详解】由题意可知,1,12为方程210+-=ax bx 的两根,且0a <,所以1121112b aa ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩,解得:23ab =-⎧⎨=⎩.【小问2详解】由(1)可得不等式为1212xx x ->=-+,所以()211110111x x x x x x x x +++++==>+++,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,所以10x +>,解得:1x >-.所以不等式的解集为:{}1x x >-.17.如图,居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为2200m 的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为24200/m 元;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为2210/m 元;再在四个空角(图中四个三角形)上铺草坪,造价为280/m 元.设总造价为S (单位:元),AD 长为x (单位:m)(1)请用x 表示DQ 的长;(2)请写出S 关于x 的函数关系式;(3)若总造价S 不超过138000元,求x 的取值范围.【答案】(1)504x Q x D =+(0x <<(2)(224000004000380000S x x x =++<<,(3)【解析】【分析】(1)设DQ y =,根据十字形地域的面积得出,x y 的关系式,即可求解;(2)由(1)可求得DQ ,从而可求出各个图形的的面积,将花坛、地坪、草坪的各个区域造价相加,求得总造价,即可求解;.(3)根据不等式求解可求得x 的取值范围.【小问1详解】设DQ y =,因为两个相同的矩形ABCD 和EFGH 构成的面积为2200m ,所以可得24200xy x +=,解之可得504x y x =-,且0y >所以(5004D x x x Q -<<=,【小问2详解】由(1)知504x Q x D =-,所以221150224DQH x S DQ x ⎛⎫==- ⎪⎝⎭矩形ADQM 的面积为2505044x x xy x x ⎛⎫=-=- ⎪⎝⎭正方形MNPQ 为2x ,所以2221504200450210480424x x S x x ⎛⎫⎛⎫=+⨯-⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭2222400000420042000210400010x x x x =+-+-+(224000004000380000x x x =++<<,.【小问3详解】由(2)知(224000004000380000S x x x =++<<,,若总造价不超过138000元,即22400000400038000138000S x x =++≤化简可得2210025x x+≤,即()()4222251002050x x x x -+=--≤,解之可得x ≤≤,所以x的取值范围.18.已知函数()4f x x a a x=--+,[]1,4x ∈.(1)若1a =,试判断()f x 的单调性并用定义法证明;(2)若()1,4a ∈,求函数()f x 的最大值的表达式()M a .【答案】(1)()f x 在区间[1,4]上单调递增;(2)()73,1,2724,,42a M a a a ⎧⎛⎤∈ ⎪⎥⎪⎝⎦=⎨⎛⎫⎪-∈ ⎪⎪⎝⎭⎩【解析】【分析】(1)利用定义法证明函数单调性;(2)先化简函数4,(,4]()42,[1,]x x a x f x a x x a x ⎧-∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩,再利用单调性分别求()f x 在区间[1,]a 和(,4]a 上的最大值,取较大者即可.由于42y a x x ⎛⎫=-+ ⎪⎝⎭在区间[1,2]上单调递增,在区间[2,4]上单调递减,需对区间[1,]a 中的a 分类讨论.【小问1详解】()f x 在区间[1,4]上单调递增,证明如下:若1a =,因为[]1,4x ∈,所以()44f x x a a x x x=--+=-,12,[1,4]x x ∀∈,且12x x <,有1212121212212144114()()()()()4()()(1)f x f x x x x x x x x x x x x x -=---=-+-=-+.因为12[1,4]x x ∈,,且12x x <,所以120x x >,120x x -<.于是12214()(1)0x x x x -+<,即12()()f x f x <.故()f x 在区间[1,4]上单调递增;【小问2详解】若()1,4a ∈,则()4f x x a a x =--+4,(,4]42,[1,]x x a x a x x a x ⎧-∈⎪⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩,先判断42y a x x ⎛⎫=-+⎪⎝⎭在[1,4]上的单调性,由于1212124422y y a x a x x x ⎛⎫⎛⎫-=-+-++ ⎪ ⎝⎭⎝⎭212144x x x x =+--()211241x x x x ⎛⎫=-- ⎪⎝⎭()1221124x x x x x x ⎛⎫-=- ⎪⎝⎭,当12,[1,2]x x ∀∈,且12x x <时,1204x x <<,210x x ->,所以()12211240x x x x x x ⎛⎫--< ⎪⎝⎭,即12y y <,故42y a x x ⎛⎫=-+ ⎪⎝⎭在区间[1,2]上单调递增;当12,[2,4]x x ∀∈,且12x x <时,12416x x <<,210x x ->,所以()12211240x x x x x x ⎛⎫-->⎪⎝⎭,即12y y >,故42y a x x ⎛⎫=-+ ⎪⎝⎭在区间[2,4]上单调递减;综上,42y a x x ⎛⎫=-+ ⎪⎝⎭在区间[1,2]上单调递增,在区间[2,4]上单调递减.①当(,4]x a ∈时,由(1)知,()f x 在区间(,4]a 上单调递增,所以()max (4)3f x f ==;②当[1,]x a ∈时,(i )若(]1,2a ∈,则4()2f x a x x ⎛⎫=-+ ⎪⎝⎭在[1,]a 上单调递增,所以()max 44()2032f x f a a a ==-≤-=<,所以函数()f x 的最大值()3M a =;(ii )若72,2a ⎛⎤∈ ⎥⎝⎦,则4()2f x a x x ⎛⎫=-+ ⎪⎝⎭在[1,2]上单调递增,在[2,)a 上单调递减,所以()max (2)243f x f a ==-≤,所以函数()f x 的最大值()3M a =;(iii )若7,42a ⎛⎫∈ ⎪⎝⎭,则4()2f x a x x ⎛⎫=-+ ⎪⎝⎭在[1,2]上单调递增,在[2,)a 上单调递减,所以()max (2)243f x f a ==->,所以函数()f x 的最大值()24M a a =-;综上()73,1,2724,,42a M a a a ⎧⎛⎤∈ ⎪⎥⎪⎝⎦=⎨⎛⎫⎪-∈ ⎪⎪⎝⎭⎩.19.定义:x 表示实数x 到与它最近整数的距离.(1)求0.14,3.14,0.86-的值;(2)求证:()Z x n x n +=∈;(3)给定正整数r ,函数(){}min ,f x x rx =,用{}min ,a b 表示a ,b 中的最小者.(ⅰ)若r 为奇数,求证:()f x 的最大值为12;(ⅱ)若r 为偶数,求()f x 的最大值.【答案】(1)||0.14||0.14=;||3.14||0.14=;||0.86||0.14-=.(2)证明见解析(3)(ⅰ)证明见解析(ⅱ)2(1)r r +.【解析】【分析】(1)对于第一问,根据x 的定义,直接计算实数到与其最近整数的距离.(2)第二问要证明||||||||(Z)x n x n +=∈,需要根据整数n 与x 的关系,结合定义来证明.(3)第三问中,对于r 为奇数和偶数的情况分别讨论()f x 的最大值.需要分析||||x 和||||rx 的取值情况,根据min{,}a b 的定义来求解.【小问1详解】对于||0.14||,0.14到最近整数0的距离为|0.140|0.14-=,所以||0.14||0.14=.对于||3.14||,3.14到最近整数3的距离为|3.143|0.14-=,所以||3.14||0.14=.对于||0.86||-,0.86-到最近整数1-的距离为|0.86(1)||0.861|0.14---=-+=,所以||0.86||0.14-=.【小问2详解】设x m a =+,其中m ∈Z ,01a ≤<.当m ∈Z 时,()x n m n a +=++.如果00.5a ≤<,则||||x a =;如果0.51a ≤<,则||||1x a =-.对于x n +,如果00.5a ≤<,()x n m n a +=++到最近整数m n +的距离为a ,即||||x n a +=;如果0.51a ≤<,()x n m n a +=++到最近整数1m n ++的距离为1a -,即||||1x n a +=-.所以||||||||x n x +=成立.【小问3详解】由(2)可知()Z x n x n +=∈;则可取[]0,1x ∈即可.(ⅰ)若r 为奇数,则21,r k k =+∈N ,令12x =,则()1121,22rx k k k =+=+∈N ,可得1||||2x =,111||||||||||||222rx k =+==,所以1122f ⎛⎫= ⎪⎝⎭;考虑()f x 的定义,()f x 取||||x 和||||rx 中的较小值,显然对任意x ∈R ,1||||2x ≤,则1||||2rx ≤,可得()12f x ≤;综上所述:()f x 的最大值为12;(ⅱ)不妨取112,()min{||||,||1||}022r f ===,1121()min{||||,||||}3333f ==,2241()min{||||,||||}5555f ==,551(min{||||,||||}121261210f ==.猜想(){}2,min ,r f x x rx ==最大值为13.不妨取114,()min{||||,||2||}022r f ===,1141()min{||||,||||}3333f ==,2282()min{||||,||||}5555f ==,551(min{||||,||||}121231220f ==.猜想(){}4,min ,r f x x rx ==最大值为25.继续猜想当r 为偶数时,(){}min ,f x x rx =最大值为2(1)r r +.当r 为偶数时,2r 为正整数,注意到2min ,min ,2(1)2(1)2(1)2(1)22(1)2(1)r r r r r r r f r r r r r r ⎧⎫⎛⎫⎧⎫==-=⎨⎬⎨⎬ ⎪++++++⎝⎭⎩⎭⎩⎭.下证().2(1)r f x r ≤+假设存在0x ,使得()0.2(1)r f x r >+0[0,1]x ∈.则()00.2(1)r x f x r ≥>+从而()()()()22002,1,.21212121r r r r r x rx r r r r ⎛⎫⎛⎫+∈-∈⋅ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭又()()()()222,2122121221r r r r r r r r r r r +=-=+++++,且*N 2r ∈.则0||||2(1)r rx r <+与()002(1)r rx f x r ≥>+矛盾,因此假设不成立.则当r 为偶数时,(){}min ,f x x rx =最大值为2(1)r r +.。

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

浙江省宁波2024-2025学年高一上学期期中考试数学试卷含解析

宁波2024年度第一学期期中高一数学试卷(答案在最后)(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,4,7M =,{}4,6,7N =,则M N = ()A.{}1,2,4,6,7B.{}1,2,6C.{}4,7 D.{}2,4【答案】C 【解析】【分析】利用集合的交集运算即可得解.【详解】因为{}1,2,4,7M =,{}4,6,7N =,所以M N = {}4,7.故选:C.2.命题“N n ∀∈,22Z n n ++∈”的否定为()A.N n ∀∈,22Z n n ++∉B.N n ∀∉,22Z n n ++∉C.N n ∃∈,22Z n n ++∈D.N n ∃∈,22Zn n ++∉【答案】D 【解析】【分析】利用量词命题的否定方法即可得解.【详解】因为量词命题的否定方法为:改量词,否结论,所以命题“N n ∀∈,22Z n n ++∈”的否定为N n ∃∈,22Z n n ++∉.故选:D.3.已知0.23a =,0.33b =,0.22c =,则()A.b a c >>B.a b c >>C.b c a >>D.a c b >>【答案】A 【解析】【分析】利用指数函数的单调性与幂函数的单调性即可判断得解.【详解】因为3x y =为单调递增函数,所以0.30.233>,则b a >,因为0.2y x =为增函数,所以0.20.232>,则a c >,综上,b a c >>.故选:A.4.已知正实数a ,b 满足2a b +=,则312a b+的最小值为()A.272B.14C.15D.27【答案】A 【解析】【分析】利用基本不等式“1”的妙用即可得解.【详解】因正实数a ,b 满足2a b +=,所以31213121312127()15152222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当312b a a b=,即24,33a b ==时取等号,所以312a b+的最小值为272.故选:A 5.函数3(e)x f xx =的图象大致为()A. B.C. D.【答案】D 【解析】【分析】先利用奇偶函数的定义判断得()f x 的奇偶性排除AB ,再利用指数函数的性质分析得()f x 的正负情况,从而排除C ,由此得解.【详解】对于3()ex xf x =,其定义域为R ,又33()()e ex xx xf x f x ---==-=-,则()f x 是奇函数,排除AB ,当0x >时,30x >,e e 0x x =>,所以()0f x >,排除C ,又选项D 的图象满足上述性质,故D 正确.故选:D.6.设m ∈R ,“12m <-”是“方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要【答案】C 【解析】【分析】举反例说明充分性,利用二次方程根的分布说明必要性,从而得解.【详解】当12m <-时,取3m =-,则方程22(3)40m x m x -++=为2940x +=,显然无解,即充分性不成立;当方程22(3)40m x m x -++=在区间(2,)+∞上有两个不等实根时,则()22222Δ344032242(3)40m m m m x m m m ⎧>⎪=+-⨯>⎪⎪⎨+=>⎪⎪⎪-++>⎩,即0315********m m m m m m ≠⎧⎪⎪-<<⎪⎪⎨-<<<<⎪⎪⎪-⎪⎩或或,则3152m -<<-,此时12m <-成立,即必要性成立;所以前者是后者的必要不充分,故C 正确.故选:C.7.中国5G 技术领先世界,其数学原理之一便是香农公式:2log 1S C W N⎛⎫=+⎪⎝⎭,它表示:在受噪音干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫信噪比.按照香农公式,若不改变带宽W ,将信噪比SN从2000提升至10000,则C 大约增加了(lg 20.3010)≈()A .18%B.21% C.23% D.25%【答案】B 【解析】【分析】由已知公式,将信噪比SN看作整体,分别取2000,10000求出相应的C 值,再利用对数运算性质与换底公式变形即可得解.【详解】由题意,将信噪比SN从2000提升至10000,则最大信息传递速率C 从()12log 12000C W =+增加至()22log 110000C W =+,所以2212212210001log log 10001log 20012001log 2001log 2001C C W W C W --==3100011000010lglg lg10.3012001200020.2121%lg 2001lg 2000lg 2lg100.3013-=≈==≈=++.故选:B.8.已知函数()f x 为R 上的奇函数,当0x ≥时,2()2f x x x =-,若函数()g x 满足(),0()(),0f x x g x f x x ≥⎧=⎨-<⎩,且(())0g f x a -=有8个不同的解,则实数a 的取值范围为()A.1a <-B.10a -<<C.01a <<D.1a >【答案】B 【解析】【分析】先利用函数的奇偶性与题设条件得到()f x 与()g x 的解析式,设()t f x =,作出函数()g t 的图象,数形结合,分类讨论函数1a <-、10a -<<与0a >三种情况,得到对应情况下(())0g f x a -=的解的个数,从而得解.【详解】因为函数()f x 为R 上的奇函数,当0x ≥时 ,令0x <,则0x ->,则()22f x x x -=+,又()()22f x f x x x=--=--所以()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩,则()222,02,0x x x g x x x x ⎧-≥=⎨+<⎩,设()t f x =,作出函数()g t 的图象,对于A ,当1a <-时,函数()g t a =没有实数根,不满足题意;对于B ,当10a -<<时,函数()g t a =有四个根1234,,,t t t t ,其中1(2,1)t ∈--,2(1,0)t ∈-,3(0,1)t ∈,4(1,2)t ∈;作出()f x 与1y t =、2y t =、3y t =与4=y t 的图象,如图,显然几个函数恰有8个交点,则(())0g f x a -=有8个不同的解,故B 正确;对于CD ,当0a >时,函数()g t a =有两个根12,t t ,其中1(,2)t ∈-∞-,2(2,)t ∈+∞,与选项B 同理可知()f x 与1y t =、2y t =各有一个交点,则(())0g f x a -=只有2个不同的解,不满足题意,故CD 错误.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a ,b ,c 为实数,且0a b >>,则下列不等式正确的是()A.11a b< B.11a cb c<--C.ac bc > D.22a b c c >【答案】AD 【解析】【分析】根据不等式的性质,作差逐一判断即可.【详解】因为0a b >>,选项A :110b aa b ab --=<,所以11a b<,故A 说法正确;选项B :()()11b aa cbc a c b c --=----,当a b c >>或c a b >>时,()()0b aa cbc -<--,即11a c b c<--;当a c b >>时,()()0b a a c b c ->--,即11a c b c>--,故B 说法错误;选项C :当0c =时,ac bc =,故C 说法错误;选项D :因为210c >,所以22a b c c >,故D 说法正确;故选:AD10.已知函数)()lg 1f x x =-+,则下列说法正确的是()A.()f x 的值域为RB.(1)f x +关于原点对称C.()f x 在(1,)+∞上单调递增D.()f x 在[1,1]x m m ∈-+上的最大值、最小值分别为M 、N ,则0M N +=【答案】ABD 【解析】【分析】利用作差法,结合对数函数的性质判断A ,构造函数())lg k x x =,研究()k x 的性质判断B ,利用()k x 的单调性与奇偶性判断CD ,从而得解.【详解】对于A ,()2222110x x x -+--=>,所以()222210x x x -+>-≥1x >-,10x -+>恒成立,所以()f x 的定义域为R ,且当x 趋于无穷大时,1y x =+接近于0,当x 趋于无穷小时,1y x =+=趋于无穷大,所以()f x 的值域为R ,故A 正确;对于B ,因为))(1)lg (1)1lgf x x x +=-++=,令())lgk x x =,则()(1)f x k x +=,易知()k x 的定义域为R ,又()()))lglglg10k x k x x x -+=+==,所以()k x 为奇函数,关于原点对称,即(1)f x +关于原点对称,故B 正确;对于C ,因为())1gk x x =-=在()0,∞+上递减,而将()k x 的图象向右平移一个单位可得()f x 的图象,所以()f x 在(1,)+∞上单调递减,故C 错误;对于D ,因为()k x 在()0,∞+上递减,且())1gk x x =为奇函数,则()00k =,())k x x =-∴在(),-∞+∞上为减函数,而将()k x 的图象向右平移一个单位可得()f x 的图象,()f x ∴在(),-∞+∞上为减函数,即()f x 在[1,1]m m -+上单调递减,则()()()()110M N f m f m k m k m +=-++=-+=,故D 正确.故选:ABD.11.已知函数()f x 满足:对于,x y ∈R ,都有()()()(1)(1)f x y f x f y f x f y -=+++,且(0)(2)f f ¹,则以下选项正确的是()A.(0)0f = B.(1)0f =C.(1)(1)0f x f x ++-= D.(4)()f x f x +=【答案】BCD 【解析】【分析】利用赋值法,结合条件分析得()()1,0f f 的值,从而判断AB ,利用赋值法,结合AB 中的结论、抽象函数的奇偶性和周期性的判定方法判断CD ,从而得解.【详解】对于B :令0x y ==,则()()()22001,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦令1x y ==,则()()()22012,f f f ⎡⎤⎡⎤=+⎣⎦⎣⎦所以()()2202,f f ⎡⎤⎡⎤=⎣⎦⎣⎦因为()()02f f ≠,所以()()02f f =-,令1,0x y ==,则()()()()()110210f f f f f =+=,故B 正确;对于A :由选项B 可得()()200f f ⎡⎤=⎣⎦,所以()00f =或()01f =,若()00f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,所以()20f =,这与()()02f f ≠矛盾,舍去;若()01f =,则()()()220120f f f ⎡⎤⎡⎤=+=⎣⎦⎣⎦,解得()21f =±,因为()()02f f ≠,所以()21f =-,()01f =,故A 错误;对于C :令0x =,则()()()()()011f y f f y f f y -=++,因为 ,()01f =,所以()()f y f y -=,所以()f x 为偶函数,令1x =,则()()()()()()11211f y f f y f f y f y -=++=-+,即()()11f x f x -=-+,所以(1)(1)0f x f x ++-=,故C 正确;对于D :由选项C 知()()11f x f x -=-+,所以()()2f x f x -=-+,又()f x 为偶函数,所以()()()2f x f x f x =-=-+,即 t ,所以 t 䁝 t ,故D 正确.故选:BCD.【点睛】方法点睛:抽象函数求值问题,一般是通过赋值法,即在已知等式中让自变量取特殊值求得一些特殊的函数值,解题时注意所要求函数值的变量值与已知的量之间的关系,通过赋值还可能得出函数的奇偶性、周期性,这样对规律性求值起到决定性的作用.三、填空题:本题共3小题,每小题5分,共15分.12.函数3()log (31)f x x =+的定义域为______.【答案】13x x ⎧⎫-⎨⎬⎩⎭【解析】【分析】根据对数式的意义即可求解.【详解】要使函数有意义,则13103x x +>⇒>-,所以函数的定义域为13x x ⎧⎫-⎨⎬⎩⎭.故答案为:13x x ⎧⎫-⎨⎬⎩⎭.13.定义()f x x =⎡⎤⎢⎥(其中⎡⎤⎢⎥x 表示不小于x 的最小整数)为“向上取整函数”.例如 1.11-=-⎡⎤⎢⎥,2.13=⎡⎤⎢⎥,44=⎡⎤⎢⎥.以下描述正确的是______.(请填写序号)①若()2024f x =,则(2023,2024]x ∈,②若27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥,则(2,4]x ∈,③()f x x =⎡⎤⎢⎥是R 上的奇函数,④()f x 在R 上单调递增.【答案】①②【解析】【分析】利用对“向上取整函数”定义的理解,结合定义域与二次不等式的求解可判断①②,举反例,结合函数奇偶性与单调性的定义可判断③④,从而得解.【详解】因为⎡⎤⎢⎥x 表示不小于x 的最小整数,则有x x ≥⎡⎤⎢⎥且1x x -<⎡⎤⎢⎥,即1x x x -<⎡⎤⎡⎤⎢⎥⎢≤⎥,对于①,()2024f x x ==⎡⎤⎢⎥,则20232024x <≤,即(2023,2024]x ∈,故①正确;对于②,令t x =⎡⎤⎢⎥,则不等式可化为27120t t -+≤,解得34t ≤≤,又t x =⎡⎤⎢⎥为整数,则3t =或4t =,当3t =时,即3x =⎡⎤⎢⎥,则23x <≤;当4t =时,即4x =⎡⎤⎢⎥,则34x <≤,所以24x <≤,则(2,4]x ∈,故②正确;对于③,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.5)0(0.5)f f -=≠-,则()f x x =⎡⎤⎢⎥不是R 上的奇函数,故③错误;对于④,因为()f x x =⎡⎤⎢⎥,则(0.5)1f =,(0.6)1f =,即(0.5)(0.6)f f =,所以()f x 在R 上不单调递增,故④错误.故答案为:①②.14.已知a ,b 满足2221a ab b +-=,则232a ab -的最小值为______【答案】2【解析】【分析】变形给定等式,换元2a b m +=,用m 表示,a b ,再代入,利用基本不等式求出最小值.【详解】由2221a ab b +-=,得(2)()1a b a b +-=,令2a b m +=,则1a b m-=,解得233m a m =+,8322()33m a b a a b m-=+-=+,因此22228116132(32)()()(10)(1022333399m m a ab a a b m m m m -=-=++=++≥+=,当且仅当2216m m=,即24m =时取等号,所以232a ab -的最小值为2.故答案为:2【点睛】关键点点睛:将2221a ab b +-=变形为(2)()1a b a b +-=,令2a b m +=,再表示出,a b 是求出最小值的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(110232ln 2024+-(2)()()24525log 5log 0.2log 2log 0.5++【答案】(1)152(2)14【解析】【分析】(1)根据根式与指数式的互化将根式化为同底的指数式,再结合对数运算性质和指数幂性质即可计算得解.(2)根据对数性质、运算法则和换底公式即可计算求解.【小问1详解】原式()()111125253424211115221222222⨯+⨯=⨯+-=-=-=.【小问2详解】原式225511log 5log 0.2log 2log 0.522⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭225525log 5log log 2log log log ⎛=++= ⎝11lg5lg 2122lg 2lg5lg 2lg54=⨯=⨯=.16.已知集合{}121A x m x m =+≤≤-,11|288x B x -⎧⎫⎨⎬⎩⎭=≤≤.(1)求B ;(2)若A B ⊆,求实数m 的取值范围.【答案】(1){}|24B x x =-≤≤(2)5,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用指数函数的单调性解不等式,从而化简集合B ;(2)利用集合间的包含关系,分类讨论A =∅与A ≠∅两种情况,得到关于m 的不等式(组),解之即可得解.【小问1详解】由11288x -≤≤,得313222x --≤≤,所以313x -≤-≤,解得24x -≤≤,所以{}|24B x x =-≤≤.【小问2详解】因为A B ⊆,{}121A x m x m =+≤≤-,当A =∅时,121m m +>-,得2m <,满足条件;当A ≠∅时,2m ≥且21214m m -≤+⎧⎨-≤⎩,解得522m ≤≤;综上所述,m 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与使用肥料x (单位:千克)满足如下关系:210(3),02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,肥料成本投入为11x 元,其他成本投入(如培育管理、施肥等人工费)25x 元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?【答案】(1)220036600,02()2000200036,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩;(2)当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.【解析】【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案.(2)结合二次函数的最值以及对勾函数求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【小问1详解】依题意,2200(3)36,02()20()251120()3610020(10036,251x x x f x W x x x W x x x x x ⎧+-≤≤⎪=--=-=⎨--<≤⎪+⎩220036600,022*********,251x x x x x x ⎧-+≤≤⎪=⎨--<≤⎪+⎩.【小问2详解】当02x ≤≤时,2()20036600f x x x =-+,则当2x =时,()f x 取得最大值(2)1328f =;当25x <≤时,500()203636(1)20364[9(1)]112000f x x x x x =--+=-++++令1(3,6]x t +=∈,5005009(1)91x t x t ++=++,函数5009t t y +=在(3,6]上单调递减,当6t =时,min 4123y =,此时5x =,()f x 取得最大值4460(5)3f =,而446013283<,因此当5x =时,max 4460()3f x =,所以当使用肥料为5千克时,该水果树单株利润最大,最大利润是44603元.18.已知函数()42x xa f x -=为奇函数,(1)求a 的值;(2)判断()f x 的单调性,并用单调性定义加以证明;(3)求关于x 的不等式()22(4)0f x x f x ++-<的解集.【答案】(1)1a =(2)()f x 在R 上单调递增,证明见解析(3){}41x x -<<【解析】【分析】(1)利用奇函数的性质()00f =求得a ,再进行检验即可得解;(2)利用函数单调性的定义,结合作差法与指数函数的性质即可得解;(3)利用()f x 的奇偶性与单调性,将问题转化为224x x x +<-,从而得解.【小问1详解】因为()42x x a f x -=为奇函数,且定义域为R ,所以()00f =,则00402a -=,解得1a =,此时()411222x x x x f x -==-,则()()112222x x x x f x f x --⎛⎫-=-=--=- ⎪⎝⎭,即()f x 为奇函数,所以1a =.【小问2详解】()f x 在R 上单调递增,证明如下:任取12,R x x ∈,且12x x <,则12220x x -<,12220x x ⋅>则()()1222211112111122222222x x x x x x x x f x f x ⎛⎫-=---=-+- ⎪⎝⎭()12121212122212222102222x x x x x x x x x x -⎛⎫=-+=-+< ⎪⋅⋅⎝⎭,所以()()12f x f x <,故()f x 在R 上单调递增.【小问3详解】因为()22(4)0f x x f x ++-<,所以()()22(4)4f x x f x f x +<--=-,则224x x x +<-,即2340x x +-<,解得41x -<<,所以()22(4)0f x x f x ++-<的解集为{}41x x -<<.19.已知函数3()f x x a a x=--+,(R)a ∈,(1)若1a =,求关于x 的方程()1f x =的解;(2)若关于x 的方程2()f x a =有三个不同的正实数根1x ,2x ,3x 且123x x x <<,(i )求a 的取值范围;(ii )证明:1333x x x >.【答案】(1)11322x =+(2)(i)732⎛ ⎝;(ii )证明见解析【解析】【分析】(1)根据题意得由31x x-=,分类讨论1x ≥与1x <两种情况去掉绝对值即可得解;(2)(i )分段讨论()f x 的解析式,结合对勾函数的性质分析得()f x 的单调性,进而得到关于a 的不等式,解之即可得解;(ii )利用(i )中结论,分析得123x x =与3x 关于a 的表达式,进而得解.【小问1详解】当1a =时,3()11f x x x =--+,则由()1f x =,得31x x -=,当1x ≥时,则31x x -=,即230x x --=,解得11322x =+或11322x =-(舍去);当1x <时,则31x x -=,即230x x -+=,无实数解,综上,11322x =+.【小问2详解】(i )因为3()f x x a a x=--+,当x a ≤时,33()2f x x a a a x x x ⎛⎫=-+-+=-+ ⎪⎝⎭,当x a >时,33()f x x a a x x x=--+=-,由对勾函数的性质可知,32y a x x ⎛⎫=-+⎪⎝⎭在(上单调递增,在)+∞上单调递减,易知3y x x =-在()0,∞+上单调递增,当)0a a ≤≠时,则32y a x x ⎛⎫=-+ ⎪⎝⎭在()0,a 上单调递增,3y x x =-在(),a +∞上单调递增,又当x a =时,332a x x x x ⎛⎫-+=- ⎪⎝⎭,所以()f x 在()0,∞+上单调递增,故方程2()f x a =不可能存在3个不同正实根,所以a ≥32y a x x ⎛⎫=-+ ⎪⎝⎭在(上单调递增,在)a 上单调递减,3y x x=-在(),a +∞上单调递增,故2322a a a a a <<-⎛⎫-+ ⎪⎝⎭,解得732a <<即a 的取值范围为2⎛ ⎝;(ii )12x x 、是方程322a x x a ⎛⎫-+= ⎪⎝⎭,即22230x a x a ⎛⎫--+= ⎪⎝⎭的两个根,故123x x =,3x 是方程32x x a -=的较大根,即2230x x a--=的较大根,则31x a =+且在区间732⎛+ ⎝上单调递减,所以1233333x x x x ⎛=>=.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。

湖北省宜昌市协作体2024-2025学年高一上学期期中考试数学试题含答案

湖北省宜昌市协作体2024-2025学年高一上学期期中考试数学试题含答案

宜昌市协作体高一期中考试数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“20,560x x x ∃>-+=”的否定是()A.20,560x x x ∀-+≠B.20,560x x x ∃>-+≠C.20,560x x x ∃-+≠D.20,560x x x ∀>-+≠2.已知集合{}3,1202A x x B xx ⎧⎫=<=->⎨⎬⎩⎭∣,则()A.12A B x x ⎧⎫⋃=<⎨⎬⎩⎭ B.A B ⋂=∅C.12A B x x ⎧⎫⋂=<⎨⎬⎩⎭D.A B ⋃=R3.函数y x=的定义域为()A.[]1,0- B.(](),10,∞∞--⋃+C.][(),10,∞∞--⋃+ D.[)1,0-4.设奇函数()f x 的定义域为[]5,5-,当[]5,0x ∈-时,函数()f x 的图象如图所示,则不等式()0f x <的解集为()A.()5,2--B.()0,2C.()()5,20,2--⋃ D.()()2,02,5-⋃5.下列选项中的两个函数表示同一函数的是()A.()2f x x -=与()2g x x=-B.()2f x x =与()22x g x x=C.()f x =与()πg x x =-D.()0,0,1,0x f x x =⎧=⎨≠⎩与()00,0,,0x g x x x =⎧=⎨≠⎩6.红灯笼,象征着阖家团圆,红红火火,挂灯笼是我国的一种传统文化.小明在春节前购进一种红灯笼,灯笼每对的进价为30元,若该灯笼每对售价50元时,每天可售出100对,售价每提高1元,则每天少售出1对.市场监管部门规定其销售单价不得高于每对68元,则该种灯笼一天获得的最大利润为()A.2816元B.3116元C.3276元D.3600元7.对于实数x ,规定[]x 表示不大于x 的最大整数,如[][]π3, 2.13=-=-,那么不等式[]24[]1670x x -+<成立的一个充分不必要条件是()A.[]1,3x ∈ B.17,22x ⎛⎫∈⎪⎝⎭C.[)1,4x ∈ D.[]0,4x ∈8.已知定义在[)0,∞+上的函数()f x 满足对[)1212,0,,x x x x ∞∀∈+≠,都有()()21212f x f x x x ->-,若()12024f =,则不等式()()202421013f x x ->-的解集为()A.()2023,∞+ B.()2024,∞+ C.()2025,∞+ D.()1012,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列所给命题中,是真命题的是()A.若a b >,则2a b >B.对2,10x x x ∀∈-+>RC.a ∃∈R ,使得()21f x ax x x=+-是奇函数D.偶数不能被3整除10.已知关于x 的不等式260x x a -+的解集中最多有1个整数,则整数a 的值可以是()A.8B.9C.10D.1111.若()(),11x f x f x ∀∈+=-R ,当1x 时,()24f x x x =-,则下列说法正确的是()A.()f x 的图象关于直线1x =对称B.()f x 的单调递增区间是()()0,12,∞⋃+C.()f x 的最小值为4-D.方程()0f x =的解集为()2,4-三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}21,2,1,A B k ⎧⎫==⎨⎬⎩⎭,若A B ⊆,则实数k 的值为__________.13.已知()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式为()f x =__________.14.2x a a +对任意的[]1,4x ∈恒成立,则实数a 的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合{26},{22}A xx B x m x m =-<<=-<<+∣∣.(1)若x B ∈成立的一个必要条件是x A ∈,求实数m 的取值范围;(2)若A B ⋂=∅,求实数m 的取值范围.16.(本小题满分15分)三叉戟是希腊神话中海神波塞冬的武器,而函数()2bf x ax x=+的图象恰如其形,因而得名三叉戟函数,因为牛顿最早研究了这个函数的图象,所以也称它为牛顿三叉戟.已知函数()2bf x ax x=+的图象经过点()2,8,且()20f -=.(1)求函数()f x 的解析式;(2)用定义法证明:()f x 在(),0∞-上单调递减.17.(本小题满分15分)为宣传村镇特点,助力乡村振兴,设计专业的大学生小王应某村委会要求,设计一个长为y 米,宽为x 米的矩形广告牌,使得该广告牌的面积等于一个长为()45x y ++米,宽为1米的矩形的面积.(1)求y 关于x 的函数;(2)若村委会要求广告牌的面积最小,小王应如何设计该广告牌?18.(本小题满分17分)设二次函数()()()223,f x ax b x a b =+-+∈R .(1)若关于x 的不等式()0f x >的解集为{}1xx ≠∣,求,a b 的值;(2)若()13f =,①0,0a b >>,求12aa b+的最小值,并指出取最小值时,a b 的值;②求函数()f x 在区间[]1,3上的最小值.19.(本小题满分17分)若函数()f x 在区间[],a b 上的值域恰为11,b a⎡⎤⎢⎥⎣⎦,则称区间[],a b 为()f x 的一个“倒域区间”.已知定义在[]2,2-上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)若关于x 的方程()g x mx m =--在()0,2上恰有两个不相等的根,求m 的取值范围;(3)求函数()g x 在定义域内的所有“倒域区间”.宜昌市协作体高一期中考试•数学参考答案、提示及评分细则1.D因为20,560x x x ∃>-+=,所以其否定为20,560x x x ∀>-+≠.故选D.2.C 因为集合{}31,12022A x x B xx x x ⎧⎫⎧⎫=<=->=<⎨⎬⎨⎬⎩⎭⎩⎭∣,所以13,22A B x x A B x x ⎧⎫⎧⎫⋂=<⋃=<⎨⎨⎬⎩⎭⎩⎭.故选C.3.B 由20,0x x x ⎧+⎨≠⎩解得0x >或1x -.故选B.4.D因为函数()f x 是奇函数,所以()f x 在[]5,5-上的图象关于坐标原点对称,由()f x 在[]5,0x ∈-上的图象,知它在[]0,5上的图象如图所示,则不等式()0f x <的解集为()()2,02,5-⋃.故选D.5.D 由同一个函数的定义域相同可排除A ,B ;由同一函数的解析式相同可排除C.故选D.6.B 设红灯笼每对售价提高x 元,一天获得利润为y 元.由题意得()()225030*********(40)3y x x x x x =+--=-++=--+600.因为销售单价不高于每对68元,所以18x ,所以当18x =时,即该种灯笼的销售单价为68元时,一天获得利润最大,最大值为3116元.故选B.7.A由[]24[]1670x x -+<,得[]()[]()21270x x --<,解得[]1722x <<,因此[]1x =或[]2x =或[]3x =,又因为[]x 表示不大于x 的最大整数,所以14x <.只有选项A 满足要求.故选A.8.C 因为()()21212f x f x x x ->-,所以()()221121220f x x f x x x x ⎡⎤⎡⎤---⎣⎦⎣⎦>-,不妨设210x x >,则210x x ->,所以()()2211220f x x f x x ⎡⎤⎡⎤--->⎣⎦⎣⎦.令()()2g x f x x =-,则()g x 为[)0,∞+上的增函数,因为()()202421013f x x ->-,所以()()2024220242022f x x --->,因为()12024f =,所以()()1122022g f =-=,所以()()20241g x g ->,所以2025x >,即不等式的解集为()2025,∞+.故选C.9.BC 对于A ,1123>成立,但21123⎛⎫> ⎪⎝⎭不成立,A 错误;对于22133B,10244x x x ⎛⎫-+=-+> ⎪⎝⎭,B 正确;对于C ,当0a =时,()1f x x x=-是奇函数,C 正确;对于D ,6是偶数,能被3整除,D 错误.故选BC.10.BCD设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的不等式260x x a -+的解集中最多有1个整数时,需满足()30f 或()()20,30,f f ⎧>⎪⎨<⎪⎩即9a 或222620,3630,a a ⎧-⨯+>⎨-⨯+<⎩解得8a >,又因为,a ∈Z 所以9a =或10或11满足题意.故选BCD.11.AC 由()(),11x f x f x ∀∈+=-R 可知()(),2x f x f x ∀∈=-R ,可知()f x 关于直线1x =对称.当1x 时,()224(2)4f x x x x =-=--,当1x <时,()2221,2(22)44x f x x x ->-=---=-,所以()f x =224,1,4,1,x x x x x ⎧-⎨-<⎩作出()f x 的图象,所以()f x 的单调递增区间是()0,1和()()min 2,,()4,0f x f x ∞+=-=的解集为{}2,4-,故AC 正确,BD 错误.故选AC.12.1 集合{}21,2,1,,,A B A B k ⎧⎫==⊆∴⎨⎬⎩⎭由子集的概念可知22k =,解得1k =.13.32x +或34x --设()()0f x kx b k =+≠,由题意可知()()()298f f x k kx b b k x kb b x =++=++=+,所以29,8,k kb b ⎧=⎨+=⎩解得3,2k b =⎧⎨=⎩或3,4,k b =-⎧⎨=-⎩所以()32f x x =+或()34f x x =--.14.][(),21,∞∞--⋃+2x a a -+,2a a +,设()[]1,4f x x =∈,可知()f x 在[]1,4上单调递减,所以()max 8()124f x f ====,所以22a a +,解得2a -或1a ,故实数a 的取值范围为][(),21,∞∞--⋃+.15.解:(1)x A ∈ 是x B ∈的一个必要条件,B A ∴⊆,显然B ≠∅,26m ∴+,且22m --,解得04m ,即m 的取值范围为{}04mm ∣.(2)若A B ⋂=∅,26m ∴-,或22m +-,解得8m ,或4m -,即m 的取值范围为{4m m -∣,或8}m .16.(1)解:由题意可知48,240,2b a b a ⎧+=⎪⎪⎨⎪-=⎪⎩解得1,8a b ==,故()()280f x x x x=+≠.(2)证明:()12,,0x x ∞∀∈-,且12x x <,则()()222212121212128888f x f x x x x x x x x x ⎛⎫-=+-+=-+- ⎪⎝⎭()()()211212128x x x x x x x x -=-++()()1212128x x x x x x ⎡⎤=-+-⎢⎥⎣⎦()121212128x x x x x x x x -⎡⎤=⋅+-⎣⎦.由()12,,0x x ∞∈-且12x x <,得1212120,0,0x x x x x x >-<+<,所以()121212120,80x x x x x x x x -<+-<,所以()1212121280x x x x x x x x -⎡⎤⋅+->⎣⎦,则()()120f x f x ->,即()()12f x f x >,故()f x 在(),0∞-上单调递减.17.解:(1)由题意可知,()450,0xy x y x y =++>>,所以()145x y x -=+,又0,450y x >+>,所以1x >,所以()4511x y x x +=>-.(2)法一:由455xy x y =+++,得50xy --,51-(舍去),所以25xy ,当且仅当5,102x y ==时,取得等号.故小王设计的广告牌是长为10米,宽为52米的矩形,满足村委会要求.法二:()24594113132511x x s xy x x x +===-+++=--,当且仅当()9411x x -=-,即52x =时等号成立,此时10y =,故小王设计的广告牌是长为10米,宽为52米的矩形,满足村委会要求.18.解:(1)由()0f x >的解集为{}1xx ≠∣,得方程()0f x =有两个相等的根1,且0a >,由根与系数的关系可得311,211,ab a ⎧⨯=⎪⎪⎨-⎪+=-⎪⎩解得30,4.a b =>⎧⎨=-⎩(2)由()13f =得2a b +=,①0,0a b >>,所以()1211212222a a b a a b a b a b a b+=⋅⋅++=++1522+=当且仅当22b a a b =,即24,33a b ==时取等号,故当24,33a b ==时,12a a b +取得最小值是52.②由于2a b +=,得2a b =-,则()23f x ax ax =-+,函数()23f x ax ax =-+的图象的对称轴为12x =,当0a >时,()f x 在区间[]1,3上单调递增,则()f x 的最小值为()13f =;当0a <时,()f x 在区间[]1,3上单调递减,则()f x 的最小值为()363f a =+.19.解:(1)当[)2,0x ∈-时,则(]0,2x -∈,由奇函数的定义可得()()()22()22g x g x x x x x ⎡⎤=--=---+-=+⎣⎦,所以()222,02,2,20.x x x g x x x x ⎧-+=⎨+-<⎩.(2)方程()g x mx m =--即()220x m x m -+-=,设()()22,02h x x m x m x =-+-<<,由题意知()()200,230,Δ(2)40,202,2h m h m m m m ⎧=->⎪=->⎪⎪⎨=++>⎪+⎪<<⎪⎩解得40m <<.(3)因为()g x 在区间[],a b 上的值域恰为11,b a⎡⎤⎢⎥⎣⎦,其中a b ≠且0,0a b ≠≠,所以,11,a b b a<⎧⎪⎨<⎪⎩则,0,a b ab <⎧⎨>⎩所以02a b <<或20a b -<<.①当02a b <<时,因为函数()g x 在[]0,1上单调递增,在[]1,2上单调递减,故当[]0,2x ∈时,()max ()11g x g ==,则11a,所以12a <,所以12a b <,则()()2212,12,12,g b b b bg a a a a a b ⎧=-+=⎪⎪⎪=-+=⎨⎪<⎪⎪⎩解得1,1,2a b =⎧⎪⎨+=⎪⎩所以()g x 在[]1,2内的“倒域区间”为151,2⎡+⎢⎥⎣⎦;②当20a b -<<时,()g x 在[]2,1--上单调递减,在[]1,0-上单调递增,故当[]2,0x ∈-时,()min ()11g x g =-=-,所以11b-,所以21b -<-,所以21a b -<-,则()()2212,12,21,g a a a ag b b b b a b ⎧=+=⎪⎪⎪=+=⎨⎪-<-⎪⎪⎩解得15,21,a b ⎧=-⎪⎨⎪=-⎩所以()g x 在[]2,1--内的“倒域区间”为15,12⎡⎤---⎢⎥⎣⎦.综上所述,函数()g x 在定义域内的“倒域区间”为151,2⎡+⎢⎥⎣⎦和15,12⎡⎤---⎢⎥⎣⎦.。

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

塘沽一中2024—2025学年度第一学期高一年级期中考试数学学科试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间100分钟,试卷共4页。

卷Ⅰ答案用2B 铅笔填涂在答题纸上对应区域,卷Ⅱ答案用黑色字迹的笔答在答题纸规定区域内。

第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知集合,,则( )A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.如果a ,b ,c ,,则正确的是( )A.若,则B.若,,则C.若,则D.若,,则4.设a ,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,且在上单调递减的是( )A. B. C. D.6.已知,,,则( )A. B. C. D.7.已知函数的部分图象如下图所示,则的解析式可能为( ){}|2A x x =<}2,1,0,1,{,23B =--()R A B = ð{}3{}2;3}0,1,2,3{}2,1,{0,1,2--0x ∃>2310x x -->0x ∀>2310x x --≤0x ∀≤2310x x --≤0x ∃>2310x x --≤0x ∃≤2310x x --≤R d ∈a b >11a b<a b >c d >a c b d ->-22ac bc >a b>a b >c d >ac bd>R b ∈22a b =1133ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()0,+∞2y x =1y x =+231y x =+21y x =32log 3a =0.23b =23log 2c =a b c>>b a c >>c b a>>b c a>>()f x ()f xA. B. C. D.8.函数的零点所在区间为( )A. B. C. D.9.已知国内某人工智能机器人制造厂在2023年机器人产量为300万台,根据市场调研和发展前景得知各行各业对人工智能机器人的需求日益增加,为满足市场需求,该工厂决定以后每一年的生产量都比上一年提高,那么该工厂到哪一年人工智能机器人的产量才能达到900万台(参考数据:,)( )A.2029年B.2030年C.2031年D.2032年10.设正实数x ,y 满足,则( )A.的最大值是B.的最小值为4C.最小值为2D.最小值为211.对任意的函数,都有,,且当时,,若关于x 的方程;在区间内恰有10个不等实根,则实数a 的取值范围是( )A. B. C. D.12.已知函数的定义域是,对,都有,且当时,,且,则下列说法中正确的个数为( )①②函数在上单调递增③④满足不等式的x 的取值范围为()e e 43x xf x x --=-()e e 34x xf x x--=-()e e 48x xf x x -+=-()1x f x x =-()1ln 3xf x x ⎛⎫=- ⎪⎝⎭()0,1()1,2()2,e ()e,320%lg 20.30≈lg 30.48≈22x y +=xy 14112x y+224x y +212x y x+R x ∈()f x ()()f x f x -=()()2f x f x =+[]1,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭()log 0a f x x -=[]10,10-()3,5()5,7[]5,7[]3,5()f x ()0,+∞x ∀()0,y ∈+∞()()()f x y f x f y ⋅=+1x >()0f x >113f ⎛⎫=- ⎪⎝⎭()10f =()f x ()0,+∞()()()()1111123202220230232022220222023f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()22f x f x --≥92,4⎛⎤ ⎥⎝⎦A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每小题5分,双空题答对一个给3分,共30分)13.已知函数,则函数的定义域为____________.14.____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期中考试试卷及答案(考试时间:120分钟)一、 选择题(10⨯5分)1. 下列四个集合中,是空集的是( )A . }33|{=+x xB . },,|),{(22R y x x y y x ∈-=C . }0|{2≤x xD . },01|{2R x x x x ∈=+- 2. 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A . 0个B . 1个C . 2个D . 3个 3. 若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形4. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f5. 下列函数中,在区间()0,1上是增函数的是( ) A . x y = B . x y -=3C . xy 1=D . 42+-=x y 6. 判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷343()f x x x =-,3()1F x x x =-; ⑸21)52()(-=x x f ,52)(2-=x x f .A . ⑴、⑵B . ⑵、⑶C . ⑷D . ⑶、⑸ 7 . 以下说法正确的是( ).A.正数的n 次方根是正数B.负数的n 次方根是负数C.0的n 次方根是0(其中n>1且n ∈N *) D .负数没有n 次方根8. 若n<m<0,则-等于( ).A.2mB.2nC.-2mD.-2n9. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A . 1B . 1或32 C . 1,32或3 D . 310. 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、 填空题(5⨯5分)d d 0 t 0 t O A .d d 0 t 0 t O B .d d 0 t 0 t O C .d d 0 t 0 t O D .11. 计算:3253210322)0.527(--+= . 12. 设非空集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇, 则实数k 的取值范围是 .13. 函数422--=x x y 的定义域 .14.指数函数y =f (x )的图象过点(-1,12),则f [f (2)]=________.15. 若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________.三、解答题(75分)16.(本题满分15分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用定义加以证明.17.求函数3x-11(=x f x +)的定义域.(10分)18. 已知函数y=(a>0,且a ≠1)在[0,2]上有最小值8,求实数a 的值.(12分)19.(本题满分15分)已知函数1()(01)x f x a a a -=>≠且(1)若函数()y f x =的图象经过P (3,4)点,求a 的值; (2)比较1(lg)( 2.1)100f f -与大小,并写出比较过程; (3)若(lg )100f a =,求a 的值.20. 设f (x )=,若0<a ≤1,求1()a f a +的值. (12分)21. (1).(1)计算:214303125.016)81(064.0++---(2). 若10x =3,10y =4,计算102x-y 的值(11分)参考答案一、选择题1. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0)2. A (1)最小的数应该是 ,(2)反例: ,但(3)当 ,(4)元素的互异性3. D 元素的互异性 ;4. D 3(2)(2),212f f =--<-<- 5. A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6. C (1)定义域不同;(2)定义域不同;(3)对应法则不同;(4)定义域相同,且对应法则相同;(5)定义域不同; 7. C 正数的偶次方根中有负数,A 错,负数的奇次方根是负数,偶次方根不存在,所以B 、D 错. 8. C 原式=-=|m+n|-|m-n|,∵n<m<0,∴m+n<0,m-n>0,∴原式=-(m+n )-(m-n )=-2m.9. D 该分段函数的三段各自的值域为(][)[),1,0,4,4,-∞+∞,而[)30,4∈∴2()3,3,12,f x x x x ===±-<<而∴ 3x =;10. B 刚刚开始时,离学校最远,取最大值,先跑步,图象下降得快!二、填空题11.9291 2. [-1, 12 ] 1 3. {x 2x ≠±} 14. 1615. (1,2)三、 解答题16解:(1)由210x -≠,得1x ≠±,所以,函数21()1f x x =-的定义域为{|1}x x ∈≠±R ……………………… 4分 (2)函数21()1f x x =-在(1,)+∞上单调递减. ………………………………6分证明:任取12,(1,)x x ∈+∞,设12x x <, 则210,x x x ∆=->12122122222112()()1111(1)(1)x x x x y y y x x x x -+∆=-=-=----…………………… 10分121,1,x x >>22121210,10,0.x x x x ∴->->+>又12x x <,所以120,x x -< 故0.y ∆< 因此,函数21()1f x x =-在(1,)+∞上单调递减. ………………………15分 17. {x1x ≠-}18 【解析】令u (x )=x 2-3x+3=(x-)2+, 当x ∈[0,2]时,u (x )max =u (0)=3;u (x )min =u ()=. 当a>1时,y min ==8,解得a=16; 当0<a<1时,y min =a 3=8,解得a=2(舍去). 因此a=16.19.解:⑴∵函数()y f x =的图象经过(3,4)P∴3-14a=,即24a =. ……………………………………… 2分又0a >,所以2a =. ……………………………………… 4分 ⑵当1a >时,1(lg)( 2.1)100f f >-; 当01a <<时,1(lg)( 2.1)100f f <-. …………………………………… 8分因为,31(lg)(2)100f f a -=-=, 3.1( 2.1)f a --= 当1a >时,xy a =在(,)-∞+∞上为增函数,∵3 3.1->-,∴33.1a a -->.即1(lg)( 2.1)100f f >-. 当01a <<时,xy a =在(,)-∞+∞上为减函数,∵3 3.1->-,∴33.1a a --<.即1(lg)( 2.1)100f f <-. ……………………………………… 10分 ⑶由(lg )100f a =知,lg 1100a a -=.所以,lg 1lg 2a a-=(或lg 1log 100a a -=).∴(lg 1)lg 2a a -⋅=.∴2lg lg 20a a --=, ……………………………………… 12分 ∴lg 1a =- 或 lg 2a =,所以,110a = 或 100a =. ……………………………………… 15分 201a a- 21. (1) 10. (2)【解析】∵10x=3,∴102x=9, ∴102x-y ==.。

相关文档
最新文档