风机振动原因分析
风机机舱振动故障排查处理方法说明
风机机舱振动类故障排查处理
方法说明
一、目的
当风机报出机舱振动类故障时,如何判断振动故障诱发的原因,以便准确的定位故障,及时有效的处理,现场技术人员可参考如下方法开展工作。
二、振动分析及处理
通常,引起风机报出振动类故障主要有:偏航时振动过大、机舱传感器损坏或接线松动和机舱共振等因素造成。
首先,当风机报出振动类故障后,不要盲目的复位处理,应先拷出该机位的故障记录文件,观察故障时刻的数据,进行分析。
具体的分析说明如下:
1、偏航时刻振动过大
故障现象:根据故障时刻数据,在风机开始偏航时机舱振动幅值由平缓开始大幅震荡,现象见图1、图2所示:
图1
图2
解决措施:及时清理刹车盘异物,保持刹车盘光洁平整;
检查刹车钳是否无法及时松闸。
2、振动传感器损坏或接线松动
故障现象:风机运行或偏航时,机舱振动幅值发生数据跳变,现象如图3 ~图5所示:
图3
图4
图5
解决措施:更换坏件或紧固电气回路接线。
3、控制问题引起
故障现象:风机在正常运行时,机舱振动幅值持续保持震荡,现象如图6 ~图8所示:
图6
图7
图8
解决措施:需要反馈控制所处理。
注:因非控制问题导致的振动类故障处理方法,请参照思达下发的《1.5MW风机频发故障处理方案(B版)》之要求处理!。
浅谈离心风机的振动原因及处理
浅谈离心风机的振动原因及处理青岛宏达赛耐尔科技股份有限公司山东省青岛市266111青岛宏达赛耐尔科技股份有限公司山东省青岛市266111摘要:风机是一种从动的流体机械,它将机械能转化为流体的动能,本文所介绍的风机只限定于电动离心风机。
离心风机应用于石油、化工、电力、农业等众多领域,其运行的稳定性,直接决定一条生产线的正常运营。
风机振动是影响风机运行的重要因素,如果风机运行过程中出现振幅或振速超限情况,一定存在不同程度的故障,风机振动现象表现在设备各部件(基础座、轴承座、电机等)出现规律性晃动,若振动较大,必要时需要进行停机检修,否则会引发较大事故。
因此,根据风机振动情况,逐一排查引发振动的原因,并及时采取措施进行检修处理。
关键词:离心风机;振动;措施1、设备基础的稳固性离心风机通过基座和螺栓固定在设备基础上,如果设备基础不稳固,出现松动或开裂现象,无论怎么调整风机或电机的固定紧力,都会有振动偏大的情况,此时只能重新加固设备基础或重新制作设备基础才能消除振动。
因此,风机振动与设备基础的稳固性有直接关系。
2、风机地脚螺栓的固定紧力在风机基础稳固的情况下,基座与设备基础通过锚栓连接,十分稳固。
而风机(风箱、轴承箱、电机)与基座通过地脚螺栓固定连接,若连接紧力不够出现松动,极易造成风机运行过程中振动。
处理方法是检查各个地脚螺栓的紧力,将松动的螺栓进行紧固处理。
因此,地脚螺栓的紧力也直接影响风机振动。
3、风机转动体轴承质量转子通过轴承进行高速旋转,而轴承分别固定在轴承箱和电机内,大型风机一般有推力轴承和支撑轴承,轴承的一个重要指标是轴承游隙,轴承游隙是轴承滚动体与轴承内外圈壳体之间的间隙,轴承的转动通过间隙来完成,间隙过小则滚动体无法滚动,间隙过大则会引起整个转子的振动。
因此优质的轴承,其轴承游隙在一定范围内(不同型号的轴承有不同的游隙标准),若超出这个范围则需要停机检修进行更换,否则将引起风机振动。
4、转子指标通常用挠度衡量转子的轴径水平,挠度出现偏差,则说明安装出现问题。
某电厂一次风机振动大原因分析及处理
某电厂一次风机振动大原因分析及处理摘要:平顶山发电分公司自投产以来一次风机就存在无规律振动现象,多次因振动大跳闸引起机组RB,严重威胁机组安全运行。
本文以平顶山发电分公司1000MW机组为例,从运行调整与设备缺陷两个方面对引起一次风机振动大的故障原因进行分析。
关键词:风机振动;精细调整;机壳强度;CFD分析;风道前言:动叶可调轴流式风机因其径向尺寸小、质量轻、流量大且调节范围广、高效率工作区宽调节性能好等诸多优点,逐渐成为大型火电机组送风机、引风机和一次风机的主流风机型式1。
但由于轴流式风机具有驼峰型性能曲线,加上机组调峰运行、工况变化频繁,运行条件恶略等因素、特别是一次风机时常发生风机振动大跳闸现象,对机组的安全性和经济性都产生了较大影响。
1、设备系统简介:国家电投河南电力有限公司平顶山发电分公司一期工程安装2×1000MW超超临界汽轮发电机组,锅炉为东方锅炉厂制造的DG3000/26.15-Ⅱ1型超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、对冲燃烧方式,Π型锅炉。
#1、#2锅炉共配备4台由成都电力机械厂生产的双级动叶可调轴流一次风机,风机型号:GU23838-22。
一次风机布置在锅炉后部零米,一次风道在一次风机出口挡板后分成两路:一路进入空气预热器和烟气进行热交换后,汇入热一次风母管;另一路不经过空气预热器进入冷一次风母管,经热、冷风母管分配为各热、冷风支管,经隔绝插板、调节挡板后,汇流成混合风进入磨煤机,携带并加热磨煤机磨制的合格煤粉进入炉膛参与锅炉燃烧。
2、一次风机振动大的原因分析针对一次风机振动的情况,我们加强对风机的运行监视,努力查找引起风机振动的原因,并结合该风机的现场实际运行情况,主要从运行和设备缺陷两个大方面对风机振动原因进行分析。
风道系统中,气流压力脉动与扰动会造成气流流态不良,在风道中会出现局部或气流相互干扰、碰撞而引起气流的压力脉动,压力波常常没有规律,振动随流量的增加而增大2。
引风机振动增大原因的诊断与处理
简介:在历次处理引风机故障经验的基础上,通过分析、现场检测、诊断,认为其基础支持刚度不足是风机高负荷振动增大超标的主要原因,采用加固基础解决了问题.关键字:引风机支持刚度;振动;诊断;处理1台300 MW机组锅炉配备2台型号为AN25eb、静叶可调轴流式引风机。
该风机自投运以来,因振动超标等问题采取过一些措施,但风机振动特性仍表现在空载或低负荷运行时振动小,在高负荷、满负荷时振动增大现象,且多次被迫降负荷或停风机处理,振动威胁着机组安全经济运行。
1 振动诊断1。
1 原因分析(1)引风机振动,一般来说其振动源应该来自风机本身,如转动部件材料的不均匀性;制造加工误差产生的转子质量不平衡;安装、检修质量不良;锅炉负荷变化时引风机运行调整不良;转子磨损或损坏,前、后导叶磨损、变形;进出口挡板开度调节不到位;轴承及轴承座故障等,都可使引风机在很小的干扰力作用下产生振动。
但由于采取了一系列相应的处理措施,如风机叶轮和后导叶进行了防磨处理,轴承使用进口优质产品,轴承箱与芯筒端板的连接高强螺栓采取了防松措施,对芯筒的支承固定进行了改进,还增加了拉筋;严格检修工艺质量,增加引风机运行振动监测装置等,解决了一些实际问题,风机低负荷运行良好,但高负荷振动增大现象仍未能解决.(2) 该风机在冷态下启动升至工作转速和低负荷时振动小,说明随转速变化由转子质量不平衡引起振动的问题影响不大;从风机振动频谱分析看出风机振动主要是工频振动,可以排除旋转失速,喘振等影响.(3)用锤击测量风机叶片的自振频率,该风机工作频率(叶片防磨后)为16。
5 Hz,叶片一阶频率已大于K=7,故对第一类激振力是安全的;该风机进口导叶24片,第二类激振力频率为16。
5×24=396 Hz,但频谱分析中,未发现有400 Hz左右的频率,可以认为第二类激振力对叶片振动和风机振动的影响不大.(4)风机振动主要是高负荷或满负荷振动增大,且振动不稳,出现波动或周期性振动.①振动不稳可能与锅炉燃烧调整、烟气流速、两台并联运行风机的流量分配等有关,同时也反映了风机支承刚度差、可能有局部松动等问题.风机进入高负荷发生振动增大现象,若在此情况下继续长时间运行,主轴承可能受损,其基础、台板、叶轮与主轴联接部件就有可能被振松,进而使振动更加恶化,最终导致停运风机解体检修.②从风机运行承力情况看,高负荷时,风机出力增大,根据作用力与反作用力原理,结果使支承转子的作用力增大和风机支承基础负荷增大,如果风机支承基础刚度或相关连接刚度不足,其承载抗扰性能就差。
引风机振动故障及分析
故障维修—198—引风机振动故障及分析练有北(宝钢湛江钢铁有限公司,广东 湛江 524000)引言 2018年2月底,某电厂2X350MW 燃煤掺烧煤气机组刚结束对1#机组B 修,在进行风烟系统试车试验时,1B 轴流式动调引风机X 向振动升至6.5mm/s,Y 向振动升至3.3mm/s,且有上升的趋势。
停机前,振动均小于3mm/s。
此次年修中,对1B 引风机解体检查发现两个主要问题:1)1B 引风机两级共44块动叶片迎风侧出现不同程度的磨损,遂对其进行了返厂喷涂修复处理;2)一级动叶滑块2个磨损,二级动叶滑块磨损3个,关节轴承与滑块间隙过大。
为了机组安全运行着想,4月5日联系厂家紧急派人前来现场动平衡。
从4月6日0:30起,开盖先进行探头安装采样,最后在二级轮毂上加990g 配重后试车,盘上风机振动最大X 向4.6mm/s 稳定到2.2mm/s,动平衡已合格。
全面恢复引风机再启动。
风机水平振动稳定在2.2mm/s 以下,但电机水平振动较大。
随着机组运行,1B 引风机的情况有所恶化:5月20日达到当前最大水平振动4.28mm/s.而且这个振动值是波动的,观察减煤气时明显振动增大。
6月19机组停下抢修,对1B 引风机进行了一次彻底检查,检查发现B 引风机轴承座下部翼型筒两侧各有一道裂纹,按厂家方案修复,为保证变形量,轴承箱中分面和轴向共架了3块百分表,监控着变形量焊接。
再次对叶轮做动平衡,此次在一级轮毂加配重693g。
再次启动,风机振动X:2.3mm/s;Y:1.4mm/s;电机振动:X:5.0mm/s,Y:2.8mm/s。
2019年3月B 修,1B 引风机转子返厂解体修复。
在风机厂内更换风机轴承,现场基础重新灌浆,更换新的动叶片。
重新试车,振动正常,运行至今风机振动不大于1.2mm/s。
1 振动过大原因分析 引风机振动大故障引起的原因主要两方面,一方面是机械原因引起(单体设备原因),另一方面是气流不稳引起(系统原因)。
风力发电机组振动原因分析和解决措施
风力发电机组振动原因分析和解决措施摘要:近年来,风力发电作为一种绿色能源在我国迅速发展,风电装机不断加大,机组数量不断增多,为保证机组设备的安全,风机厂家会相应对风机系统配置各种各样的保护,来确保机组在运行过程中发生异常时能够安全解列,其中风机振动超限就是一个常见的机组故障保护,主要是保证机组振动值在超过定值时机组停运,避免发生设备损毁或机组倒塌,我国早期投运的的1.5MW风机只配置两个振动传感器,振动监测较现在技术较为简单,当机组出现振动超限故障时,因涉及电气、传动、控制、结构、环境等多因素,分析处理都有一定难度,本文通过对某风场发生的振动超限故障进行研究,分析发生振动超限的原因,提出应对措施,提高风机安全和稳定性。
关键词:风机;振动;原因分析;解决措施引言:随着风力发电技术的发展,风机振动状态监测技术也得到较大的发展,目前,风机振动在线监测系统已成为风力发电机组一个重要的组成部分,对风机传动链进行24h监测。
而早期投产的风力发电机组,因技术限制,只在传动链上配置两个振动传感器,分别安装在齿轮箱和发电机下方,振动传感器拾取的振动信号不能够直接反映振动源的信号特征,而且还容易受外部干扰,所以机组运行过程中,经常会发生振动超限故障,影响风机稳定运行和造成一定电量损失,更严重的会影响到风机整机安全,所以,当风机发生振动超限故障,就需要运行单位尽快排查故障原因并采取措施,保证风机安全稳定运行。
一、风机振动原因分析云南某风电场作为较早在云南高海拔地方开发建设的风电场,安装的双馈式风力发电机组,2012年投产以后,机组经常发生振动超限故障,尤其在大风阶段,频率更高,严重影响风电场正常运营,为了彻底解决风机振动问题,通过对风场内风机发生的振动超限故障原因进行分析,发现主要为以下几个方面的问题:风向变化过快、风速湍流度大、传感器误报、传动链波动、叶片零位误差等几个方面原因。
(一)风向变化过快风力发电机组采取主动对风系统来捕捉风能,通过机组上安装的风向标来进行测风,风机位置与测风位置超过一定角度,控制系统启动对风。
引风机的振动故障分析及处理
引风机的振动故障分析及处理1. 引言1.1 引言引风机作为电厂中非常重要的设备之一,其正常运行对于保障电厂的安全和稳定运行起着至关重要的作用。
引风机在运行过程中可能会出现振动故障,给电厂的正常运行带来不利影响。
对引风机的振动故障进行分析和处理具有重要意义。
本文将首先对引风机振动故障的原因进行深入分析,包括可能的机械问题、电气问题等方面。
我们将介绍不同的处理方法,帮助读者更好地理解如何应对振动故障。
接着,我们会列举引风机振动故障常见的表现,以便读者能够及时发现和识别这些问题。
我们还会提出一些振动故障的预防措施,帮助读者避免振动故障的发生。
我们会介绍一些引风机振动故障的修复技术,帮助读者在出现振动故障时能够及时修复。
通过本文的阐述,希望读者能够更全面地了解引风机振动故障的原因、处理方法以及预防与修复技术,从而为电厂的安全运行提供更加坚实的保障。
2. 正文2.1 振动故障的原因分析1. 设备不平衡: 引风机如果在运转过程中出现不平衡的情况,会导致振动增大,进而引起振动故障。
设备不平衡的原因可能是安装不当、零部件损坏或磨损等。
2. 轴承故障: 轴承是引风机重要的零部件,如果轴承损坏或磨损严重,会导致引风机的振动增大。
轴承故障可能是因为润滑不良、使用时间过长或维护不当等原因造成的。
3. 转子失衡: 引风机转子失衡会导致设备振动,转子失衡的原因可能是设备设计缺陷、制造质量不过关或使用条件恶劣等。
4. 风叶损坏: 引风机风叶损坏会导致不均匀的气流通过,在高速运转时可能会产生振动。
风叶损坏的原因可能是使用过程中的磨损、腐蚀或碰撞等。
5. 安装松动: 引风机在运行过程中,如果有安装的螺栓松动或固定件松动,会导致设备振动。
定期检查设备安装状态十分重要。
以上是引风机振动故障的原因分析,只有找准问题的根源,才能有针对性地制定解决方案。
在实际运行中,需要密切关注设备运行情况,及时发现问题并采取有效的措施进行处理,以避免产生严重的事故。
除尘风机振动原因分析及对策
除尘风机振动原因分析及对策
振动原因分析:
1.设备不平衡:在安装过程中,风机转子的各个部件可能存在不平衡现象,导致设备振动。
此外,设备磨损、松动等也会造成不平衡。
2.风机底座不稳固:风机底座或支撑结构不稳固,造成设备运行时的机械振动。
3.叶轮叶片损坏:风机叶轮叶片出现磨损、断裂等情况,会导致不平衡振动。
4.轴承故障:风机轴承出现磨损、脱落等问题,会导致转子不平衡,进而产生振动。
5.风阻变化:除尘风机在工作过程中,风阻可能会发生变化,如过滤器阻塞、管道堵塞等,导致风机负荷发生变化,从而引起振动。
对策:
1.动平衡:对风机转子进行动平衡处理,确保各个部件的质量分布均匀,减少不平衡振动。
可以通过在转子上安装半扇质量,然后逐步去除质量,直到达到平衡。
2.检查底座和支撑结构:检查风机底座和支撑结构是否稳固,如果有松动或损坏的地方,及时进行修复或更换。
3.定期维护:定期检查叶轮叶片的磨损和断裂情况,如有需要及时更换。
对轴承进行润滑和维护,定期检查并更换磨损的轴承。
4.监测风阻变化:实施风阻监测系统,及时检测管道和过滤设备的阻力变化,当阻力过大时,可以及时清理和更换,以减少风机负荷变化引起的振动。
5.安装减振措施:在风机的设计和安装过程中,采用减振措施,如安装减振支座或减振器等,减少振动传导和加强结构的稳定性。
总之,除尘风机振动问题需要进行全面分析,找出具体原因,并采取相应的对策进行处理。
定期维护和检查也是保证设备正常运行和降低振动的重要手段。
风机振动原因及处理方法
风机振动原因及处理方法摘要:随着我国科学技术水平的不断提升,越来越多的科技结晶出现在人们的生产、生活中。
风机作为先进的设备得到了广泛的应用,并且为行业发展带来了诸多便利。
然而在实践中不难发现,风机在使用过程中较容易出现振动加剧的状况,而造就这一现象的原因又多种多样,如若处理不慎,那么就较容易对人们的财产、生命造成威胁。
近些年来,安全生产目标的提出对企业的生产经营活动提出了新的要求。
如若想要实现这一目标,那么企业就需要加强对风机的关注,在分析其非正常振动成因的基础之上展开对问题的解决,避免安全隐患,将安全事故扼杀于萌芽状态。
本文将以风机作为研究对象,分析其振动的原因,并且提出解决这一问题的处理方法,旨在促进风机运行的稳定性、可靠性。
关键词:风机;振动原因;处理方法引言:风机主要是将机械能以特定的形式转化为气体,从而满足使用者的生产需求[1]。
相较于其他设备而言,风机所处的环境多种多样,且工程也相对复杂,所以工作人员需要定期对风机展开检测、维护,以保障其正常运行。
由于风机较容易出现振动,所以在实行检测与维护工作时,需要对振动原因展开分析,然后再对其进行处理。
一、风机振动的原因分析(一)转子质量不平衡所引起的振动在风机的振动故障中,风机轴承箱振动是最为常见的故障类型。
一般情况下,工作人员会借助外部检测的方式来达成对这一故障类型的诊断。
在检测过程中,若是测量所得到的数据显示出振动值径向较大,轴向较小,且振动值会随着转速的上升而上升的现象,那么就表明该振动故障为转子不平衡所引起的故障。
转子质量不平衡是较为常见的成因,之所以会出现转子质量不平衡的情况,有以下几种可能性:首先,可能是叶轮出现磨损或者是被腐蚀,从而使得叶轮表面呈现出不均匀的状况[2];其次,可能是叶轮表面存在积灰或者是其他附着物;最后,可能是叶轮出现了零部件松动或者是连接件不牢固的现象。
(二)滚动轴承异常所引起的振动风机的零部件质量也是风机振动的成因之一。
风机振动原因及消除
三、现场动平衡
现场动平衡有单、双面试重法和影响系数法。试重法多用在初次 进行动平衡或无可参考影响系数的转子上,系数法则使用在有过动平 衡配重记录的或有现成影响系数的转子。我们现在使用的多为单面影 响系数法。 1、单面试重法步骤: (1)选择带宽、测量方法;带宽1Hz、试重法 1)选择带宽、测量方法;带宽1Hz、试重法 (2)预置转速:默认4000rp )预置转速:默认4000rp (3)启动转子到平衡转速,按 回车 开始测量;
经过多年的实践经验我们发现: 经过多年的实践经验我们发现: 我厂的引风机振动大多由叶轮 的动不平衡造成,即叶轮导流面局部失重和积灰质量不均, 的动不平衡造成,即叶轮导流面局部失重和积灰质量不均,以及烟气 温度、湿度变化等原因引起。 动不平衡是旋转机械的主要故障之一, 不平衡是旋转机械的主要故障之一, 温度、湿度变化等原因引起。 由转子不平衡引起的故障约占全部机械故障的50%, 由转子不平衡引起的故障约占全部机械故障的50%, 所以说风机运行 50% 中是常见的故障也是转子(叶轮)系统的不平衡。风机在运行时, 中是常见的故障也是转子(叶轮)系统的不平衡。风机在运行时,转 子会产生不平衡离心力,从而引起转子的横向振动, 子会产生不平衡离心力,从而引起转子的横向振动,并通过支撑转子 的轴承向外传播, 使风机产生振动和噪声。 的轴承向外传播, 使风机产生振动和噪声。 当不平衡力增大到一定 程度后转子会产生很大的横向振动,从而引发如轴承磨损、烧毁,转 程度后转子会产生很大的横向振动,从而引发如轴承磨损、烧毁, 子断裂等严重的机械事故。 子断裂等严重的机械事故。
现场动平衡
2、单面系数法步骤: (1)选择测量方式:系数法(通过“+”切换) )选择测量方式:系数法(通过“+”切换) (2)启动转子至平衡转速,待稳定后按 保持 记录数据 (3)按 回车 ,机器显示出计算结果。 (4)焊接配重块后再次启动转子测量,不满意则重复上述过程。
风机振动故障的主要原因分析及一些有效的处理方法
风机由于运行条件恶劣,故障率较高,容易导致机组非计划停运或减负荷运行,影响正常生产。
所以加强对风机的维护和保养,特别是要迅速判断出风机运行中故障产生的原因,采取相应的必要措施就显得十分重要了。
文章结合生产实际对风机振动的故障原因做出了相应的分析。
风机振动是运行中常见的现象,只要在振动控制范围之内,不会造成太大的影响。
但是风机的振动超标后,会引起轴承座或电机轴承的损坏、电机地脚螺栓松动、风机机壳、叶片和风道损坏、电机烧损发热等故障,使风机工作性能降低,甚至导致根本无法工作。
严重的可能因振动造成事故,危害人身健康及工作环境。
公司曾发生过因风机振动大,叶轮与壳体发生摩擦,引起设备着火的事故案例,给公司带来了较大的经济损失。
所以查找风机振动超标的原因,并针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
公司长期用测振仪对风机振动进行测量,并记录数据,结合生产实际中出现的故障现象对风机的振动原因作出了如下总结,并提出了相应的处理措施。
一、风机轴承箱振动风机最常见的故障就是轴承箱振动,可以通过外部检测进行初步诊断。
轴承箱振动引起故障有迹可查,是一个振动由小变大,缓慢发生的过程。
公司采用测振仪定期对风机的轴承箱进行振动值检测,对比振动值,迅速做出正确分析和处理,提前对有可能发生故障的风机进行有计划的检修,保证了风机的安全平稳运行。
1. 转子质量不平衡引起的振动公司发生的风机轴承箱振动中,大多数是由于转子系统质量不平衡引起的。
造成转子质量不平衡的原因主要有:叶轮出现不均匀的磨损或腐蚀;叶轮表面存在不均匀的积灰或附着物;叶轮补焊后未做动平衡;叶轮上零件松动或连接件不紧固等。
转子不平衡引起的振动的特征,用测振仪测得数据显示:(1) 振动值径向较大,而轴向较小;(2) 振动值随转速上升而增大。
针对转子不平衡引起的振动我们制定了一系列的防范措施,由于公司使用的引风机主要是将焙烧炉室内产生的沥青烟气及时抽送出烟道,所以风机叶轮容易腐蚀,表面及其他部位空腔易粘灰,产生不均匀积灰或附着物,造成风机转子不平衡,引起风机振动。
风机喘振的原因现象及处理方法
风机喘振的原因现象及处理方法风机喘振是指在运行过程中,风机叶片或整机出现振动,产生噪音,严重时甚至会引起设备损坏。
喘振现象给设备运行和生产带来了严重的隐患,因此对于风机喘振的原因和处理方法需要引起重视。
一、原因分析。
1.风机设计问题,风机叶片设计不合理或者风机结构设计存在缺陷,会导致风机在运行时产生振动。
2.风机安装问题,风机在安装过程中,如果安装不牢固或者安装位置选择不当,都会引起风机振动。
3.风机叶片损坏,风机叶片受到外部冲击或者长时间运行磨损,会导致叶片不平衡,产生振动。
4.风机运行环境,风机运行环境不稳定,比如风速突变或者风向改变,都会引起风机振动。
二、喘振现象。
1.噪音,风机在运行时会产生异常的噪音,这是喘振现象的一个主要表现。
2.振动,风机在运行时会出现明显的振动,可以通过观察风机叶片或者机体的晃动来判断。
3.设备损坏,严重的喘振现象会导致风机设备的损坏,严重影响设备的使用寿命和安全性。
三、处理方法。
1.优化设计,对于新购的风机设备,可以通过优化设计,改善叶片结构和整机结构,减少振动产生的可能。
2.加固安装,在风机安装过程中,需要加强对风机的固定,确保风机安装牢固,减少振动产生的可能。
3.定期检查,定期对风机设备进行检查和维护,及时发现叶片损坏或者设备松动等问题,做好维修和更换工作。
4.环境控制,对于风机运行环境,可以通过控制风速,改善风向等方式,减少风机振动产生的可能。
5.安全监控,在风机运行过程中,需要加强对设备的监控,及时发现异常振动,做好安全防护措施。
综上所述,风机喘振是一种常见的设备运行问题,对于喘振现象的原因分析和处理方法,需要我们引起重视。
通过优化设计、加固安装、定期检查、环境控制和安全监控等方式,可以有效减少风机喘振现象的发生,保障设备的安全运行和稳定生产。
希望本文对风机喘振问题有所帮助,谢谢阅读。
引风机的振动故障分析及处理
引风机的振动故障分析及处理引风机是工业生产中常用的通风设备,它通过产生气流来调节温度和湿度,以确保生产环境的舒适度和安全性。
在使用过程中,引风机可能会出现振动故障,这种故障不仅影响设备的工作效率,还可能导致设备损坏甚至安全事故。
对引风机的振动故障进行及时准确的分析和处理,对保障生产安全和设备正常运行至关重要。
一、引风机振动故障的原因1. 设备使用不当引风机在使用过程中,如果频繁启停或者在高速运行状态下突然停止,会导致叶轮和轴承等部件受到剧烈的冲击,从而产生振动故障。
2. 设备安装不当引风机在安装过程中,如果叶轮和轴承的安装位置不正确,或者叶轮与轴承之间的间隙过大或过小,都会导致设备的振动增大。
3. 设备零部件磨损引风机长时间运行后,叶轮、轴承、轴和壳体等零部件会因摩擦和磨损而导致振动故障。
4. 环境因素工作环境中的震动、振动和温度变化等因素,都会对引风机的振动产生影响,进而引起振动故障。
二、振动故障的表现1. 噪音增大引风机在正常工作时,一般会有一定的噪音,但如果振动故障严重,噪音将明显增大,甚至会出现异响。
2. 振动增大振动故障会导致引风机整体的振动增大,有时候可以通过触摸设备外壳来感受到明显的振动。
3. 能源消耗增加振动会导致引风机的能源消耗增加,这是因为振动会导致设备的工作效率降低,进而增加能源的消耗量。
4. 设备温升振动会使引风机部件之间的摩擦增大,导致设备温升加剧,甚至因为摩擦引起零部件损坏。
三、振动故障的处理方法1. 设备运行监测对引风机的振动和噪音进行定期监测,一旦发现异常情况,及时对设备进行检修。
2. 设备使用规范避免频繁启停操作,以及突然停止引风机在高速运行状态下,保证设备的正常工作状态。
3. 定期维护定期对引风机进行清洗、润滑、零部件更换等维护工作,延长设备的使用寿命。
5. 调整安装位置对于因设备安装不当导致的振动故障,及时调整叶轮和轴承的安装位置,减少振动的影响。
6. 更换零部件定期检查叶轮、轴承、轴和壳体等部件的磨损情况,及时更换磨损过大的零部件,避免振动故障的发生。
风机振动的原因及案例
风机振动的原因及案例1风机轴承振动超标风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。
风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1不停炉处理叶片非工作面积灰引起风机振动这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。
这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。
机翼型的叶片最易积灰。
当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。
由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。
在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。
这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。
经过研究,提出了一个经实际证明行之有效的处理方法。
如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。
喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。
这样就实现了不停炉而处理风机振动的目的。
用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。
1.2不停炉处理叶片磨损引起的振动磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。
风机振动的原因及案例
风机振动的原因及案例1风机轴承振动超标风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。
风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1不停炉处置叶片非工作面积灰引发风机振动这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。
这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。
机翼型的叶片最易积灰。
当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。
由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰消灭,叶轮又将再次达至均衡,从而增加风机的振动。
在实际工作中,通常的处置方法就是临时电石后关上风机机壳的人孔门,检修人员步入机壳内去除叶轮上的积灰。
这样不仅环境恶劣,存有不安全因素,而且导致机组的非计划停驶,检修时间短,劳动强度小。
经过研究,明确提出了一个经实际证明行之有效的处置方法。
例如图1右图,在机壳喉舌处(a点,径向对着叶轮)安装一排燃烧室(4~5个),将燃烧室阳入成相同角度。
燃烧室与冲灰水泵相连,将跳灰水做为冲洗积灰的动力介质,减少负荷后停在单侧风机,在停在风机的瞬间快速关上阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,关上在机壳底部安装的阀门将跳灰水排跑。
这样就同时实现了不停炉而处置风机振动的目的。
用冲灰水并作清灰的介质,和用蒸汽和压缩空气较之,具备对燃烧室结构建议高、清灰范围小、效果不好、对叶片磨损大等优点。
1.2不停炉处理叶片磨损引起的振动磨损就是风机中最常用的现象,风机在运转中振动缓慢下降,通常就是由于叶片磨损,均衡毁坏后导致的。
风机振动原因分析及处理
风机振动原因分析及处理摘要:风机振动是电站及水泥企业风机运行中常见故障,其振动具有多方面的原因,本文首先概述了风机振动的原因,以高温风机振动为例,具体分析其振动的原因及处理措施。
关键词:风机;振动;高温;分析与处理电站及水泥企业风机运行中常见故障之一就是风机振动,确保锅炉机组及窑系统稳定运行的一项重要环节就是解决风机振动问题。
风机振动的原因复杂且很多,本文首先概述了风机振动的原因,以高温风机振动为例,具体分析其振动的原因及处理措施,旨在为类似风机的振动诊断和处理提供参考。
1. 常见风机振动原因风机振动常见原因具体可分为以下十条:(1)动静部分之间发生摩擦;(2)转子动平衡不符合要求;(3)轴承底座和基础连按不良;(4)基础的刚度不够或不牢固;(5)进风箱涡流脉动造成的振动;(6)风机组装问题;(7)入口调节门后中心涡流引起的振动;(8)风机转速接近临界转速引起的振动;(9)风机旋转失速、喘振等;(10)烟、风道结构设计原因。
2. 高温风机振动原因及处理2.1 情况介绍某公司1O00t/d生产线窑尾高温风机型号为W6—2*29—46No21.5F,转速一般为1000-1200r/min。
风机轴承振动的最大允许值:振幅0.198mm,振速1lmm/s;轴承温度报警值75℃,停机95℃;液力偶合器出油温度报警值8O℃,停机值为85℃。
生产中曾多次出现轴承座振动较大现象。
前期主要是风机管道通风不畅引起,然而自2011年7月开始,清理管道后轴承振动并未减小,反而逐步加大,超过最大允许值。
经多次停机检查,联轴器对中没问题,轴承游隙在0.10mm左右(轴承型号为22224CC/W33/C3),也在正常范围内,液力偶合器及电动机振动都不大,风叶积灰少,但风叶磨损不均匀,前端叶片有的只有5mm左右厚,后端叶片有的7mm厚(标准为8mm厚),所以怀疑是风叶磨损不均匀造成叶轮不平衡引起的。
然而,有时候,在未做任何处理的情况下,重新启动后,风机的振动值又正常,运行一段时间后会突然增大。
风机振动故障原因分析及处理
风机振动故障原因分析及处理0 前言风机在水泥行业使用特别多,包括各种类型的风机,如高温风机、离心风机、鼓风机、罗茨风机、高压风机等,而这些风机在使用过程中,由于各方面的原因,致使风机振动加剧,致最后损坏,严重的还会造成重大的设备事故,给企业的安全管理、生产组织以及效益等带来较大影响。
下面就引起风机振动的故障原因、故障因素、处理办法,谈一点自己的看法。
1 引起风机振动的故障原因分析风机故障现象及原因,有其规律可循,一般来讲有以下几种:1)设计原因:风机的设计一般是根据风机的使用环境、温度、风量、风压、介质等来设计的,而有的企业并没有完全根据这些因素来选型,致使造成存在如下因素:风机设计不当,动态特性不良,运行时发生振动;结构不合理,应力集中;设计工作转速接近或落入临界转速区;热膨胀量计算不准,导致热态对中不良等。
2)制造原因:风机制造厂家对风机的质量要求也影响风机的运转,如:零部件加工制造不良,精度不够;零件材质不良,强度不够,制造缺陷;转子动平衡不符合技术要求等。
3)安装、维修原因:风机的安装精度要求对风机运转起着至关重要的作用,如安装精度未达到安装要求,对风机运行将起着破坏作用。
在风机安装过程中,就有如下影响因素,如:机械安装不当,零部件错位,预负荷大;轴系对中不良;机器几何参数(如配合间隙、过盈量及相对位置)调整不当;转子长期放置不当,改变了动平衡精度;未按规程检修,破坏了机器原有的配合性质和精度等。
4)操作运行原因:在风机使用过程中,对风机维护、保养的好坏,对风机的运行质量起着决定性作用。
如:工艺参数(如介质的温度、压力、流量、负荷等)偏离设计值,机器运行工况不正常;机器在超转速、超负荷下运行,改变了机器的工作特性;润滑或者冷却不良;转子局部损坏或结垢;启停机或升降速过程操作不当,热膨胀不均匀或在临界区停留时间过久等。
5)机器劣化原因:一般设备在使用时都有一定的年限,达到一定年限设备性能将恶化。
大型轴流风机各类振动原因分析及处理措施
大型轴流风机各类振动原因分析及处理措施轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取代离心风机成为主流。
轴流风机有动叶和静叶2种调节方式。
动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。
静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。
随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。
本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析.一、动叶调节结构导致振动动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示.动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。
(一)单级叶轮部分叶片开度不同步单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。
这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动.单级叶轮部分叶片开度不同步引起的振动主要特点如下:1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高次谐波成分,这在振速频谱中表现得相对明显一些,在位移频谱中几乎观察不到.2)风机振幅不稳定,振幅变化主要发生在动叶开度调节过程中,在动叶开度稳定时振幅基本保持稳定,有时会随动叶开度变化而逐步变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 轴承座振动
转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。
造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。
转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。
动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。
其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动;
滚动轴承异常引起的振动
轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。
其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。
滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。
这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。
|
轴承座基础刚度不够引起的振动
基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。
这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。
联轴器异常引起的振动
联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。
其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交#。