高考数学全国卷III
2020年高考全国III卷理科数学试题(含解析)
一、选择题1.已知集合*{(,)|,,}A x y x y N y x =∈≥,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A.2B.3C.4D.6【答案】C【解析】{(4,4),(3,5),(2,6)(1,7)}A B =,有4个元素,故选C.2.复数113i -的虚部是( )A.310-B.110-C.110D.310【答案】D【解析】1131313(13)(13)10i ii i i ++==--+,故选D. 3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 ( )A.14p p ==30.1=C.14p p ==30.2= 【答案】B等,都为选项中,大部分数4.Logistic 0.23(53)()1t KI t e --=+,其中K *t 约为 ( )(ln193≈A.60 69 【答案】C1319≈-,∴*66t ≈. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( ) A.1(,0)4 B.1(,0)2 C.(1,0) D.(2,0)【答案】B【解析】不妨设(2,4)D p ,(2,E ,∵OD OE ⊥,∴440OD OE p ⋅=-=,解得1p =,故抛物线C 的方程为22y x =,其焦点坐标为1(,0)2.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,a a b <+>=( )A.3135-B.1935-C.1735D.1935【答案】D【解析】由2()||25619a a b a a b ⋅+=+⋅=-=,又22||27a b a a b b +=+⋅+=,所以()1919cos ,5735||||a a b a a b a a b ⋅+<+>===⨯⋅+,故选D.7.在ABC ∆中,2cos ,4,33C AC BC ===,则cos B = ( )A.19B.13C.12D.23【答案】A【解析】由余弦定理可知:2222222||||||34||cos 32||||234BC AC AB AB C BC AC +-+-===⋅⨯⨯,可得|| 3 AB =,又由余弦定理可知222222||||||3341cos 2||||2339AB BC AC B AB BC +-+-===⋅⨯⨯. 故选A.8.如图为某几何体的三视图,则该几何体的表面积是 ( )A.6+ B. C. D.4+【答案】C棱PC ⊥底面ABC 606=+︒C.9.已知2tan tan()74πθθ-+=,则tan θ= ( )A.2-B.1-C.1D.2 【答案】D【解析】由题可知1tan 2tan 71tan θθθ+-=-,化解得:22tan 2tan 1tan 77tan θθθθ---=-,解得tan 2θ=.故选D.10.若直线l 与曲线y 和圆2215x y +=都相切,则l 的方程为 ( )A.21y x =+B.122y x =+C.112y x =+ D.1122y x =+ 【答案】D【解析】由y =得y '=假设直线l与曲线y =相切于点0(x , 则直线l的方程为0)y x x =-,即00x x -+=.由直线l 与圆2215x y +==,解得01x =,故直线l 的方程为210x y -+=,即1122y x =+. 11.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F.P 是C 上一点,且12F P F P ⊥.若12PF F ∆的面积为4,则a = ( ) A.1D.8 【答案】 A【解析】法一:设1PF m =,则12142PF F S mn ∆==,又ce a=a 所以24tan 45b ︒=又因为c e a ==12.已知5458<,45138<.设5,8,13,则 ( )A.a b c <<B.b a c <<C.b c a <<D.c a b <<【答案】A【解析】易知,,(0,1)a b c ∈,由2225555558log 3(log 3log 8)(log 24)2log 3log 8log 54144a b +==⋅<==<知a b <, 因为8log 5b =,13log 8c =,所以85,138b c ==,即554485,138b c ==, 又因为544558,138<<,所以445541385813c b b =>=>,即b c <, 综上所述:a b c <<.故选:A. 二、填空题13.若x ,y 满足约束条件0201x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则32z x y =+的最大值为________.【答案】7【解析】作出可行域如图所示,由32z x y =+知3122y x z =-+,由图可知,当目标函数过点(1,2)A 时,取得最大值,即max 7z =.14.262()x x+的展开式中常数项是________(用数字作答).【答案】240【解析】因为2(6)123r r r r r r r ---240.15.________.【答案】3锥的母线长为,可得OD BCOS BS =322r -23316.关于函数1()sin sin f x x x=+. ①()f x 的图像关于y 轴对称; ②()f x 的图像关于原点对称;③()f x 的图像关于直线2x π=对称;④()f x 的最小值为2.其中所有真命题的序号是________. 【答案】②③【解析】对于①,由sin 0x ≠可得函数的定义域为{|,}x x k k Z π≠∈,故定义域关于原点对称,由11()sin()sin ()sin()sin f x x x f x x x-=-+=--=--,所以该函数为奇函数,关于原点对称,①错②对;对于③,11()sin()sin ()sin()sin f x x x f x x xπππ-=-+=+=-,所以()f x 关于2x π=对称,③对;对于④,令sin t x =,则[1,0)(0,1]t ∈-,由双勾函数1()f t t t=+的性质,可知()(,2][2,)f t ∈-∞-⋃+∞,所以()f x 无最小值,④错.三、解答题17.设数列{}n a 满足13a =,134n n a a n +=-. (1)计算23,a a .猜想的通项公式并加以证明;(2)求数列{2}n n a 的前n 项和n S .【解析】(1)由13a =,134n n a a n +=-,21345a a =-=﹐323427a a =-⨯=,… 猜想{}n a 的通项公式为21n a n =+. 利用数学归纳法证明:(i )当1,2,3n =时,显然成立;(ii )假设()n k k N *=∈时猜想成立,即21k a k =+,则1n k =+时,1343(21)42(1)1k k a a k k k k +=-=+-=++, 所以1n k =+时猜想也成立, 综上(i )(ii ),所以21n a n =+. (2)令2(2n n n b a ==则12n n S b b b =+++2323252n S =⨯+⨯+由①-②得,1322(21)2n n n S n +-=+⨯+⨯,化简得(21)2n S n =-⨯18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻的人次,整理数据得到下表(单位:天):(1)分別估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的值计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”,根据所给数据.完成下面的22⨯列联表.并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,.【解析】(1)根据上面的统计数据,可得:该市一天的空气质量等级为1的概率为2162543100100++= 该市一天的空气质量等级为2的概率为5101227100100++=,该市一天的空气质量等级为3的概率为67821100100++=, 该市一天的空气质量等级为4的概率为7209100100++=. (2)由题意,计算得1000.203000.355000.45350x =⨯+⨯+⨯=, 即一天中到该公园锻炼的平均人次的值计值为350. (3)22⨯列联表如下:由表中数据可得:22100(3383722)K ⨯⨯-⨯所以有95%. 19.如图,在长方体1上且112,2DE ED BF FB ==(1)证明:点1C (2)若12,1,3AB AD AA ===,求二面角1A EF A --的正弦值.【解析】(1)在1AA 上取一点M ,使得12A M AM =,分别连接EM ,1B M ,1EC , 1FC .在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111 DD AA BB ==, 又12DE ED =,12A M AM =,12BF FB =,所以1DE AM FB ==, 所以四边形1B FAM 和四边形EDAM 都是平行四边形. 所以1//AF MB 且1AF MB =,//AD ME 且AD ME =,又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =,所以11//B C ME 且11B C ME =,则四边形11B C EM 为平行四边形, 所以11//EC MB , 所以1//AF EC ,所以点1C ,在平面AEF 内.(2)在长方形1111ABCD A B C D -中,以1C 为原点,11C D 所在直线为x 轴,11C B 的直线为y 轴,1C C 2AB =,1AD =,13AA =所以(2,1,3)A ,E (2,1,0),则(2,1,EF =-(0,1,1)=--,1(0,1,2)A E =-1111(,,)n x y z =,则1100n EF n AE ⎧⋅=⎧⎪⇒⎨⎨⋅=⎩⎪⎩,取法向量1(1,1,1)n =-,设平面1A EF 22(,n x =,则2222210200n EF z y z n A E ⎧⋅==⎪⇒⎨-+=⋅=⎪⎩,取法向量2(1,4,n =所以121212142cos ,||||321n n n n n n ⋅+-<>==⋅⋅设二面角1A EF A -为θ,则42sin 7, 即二面角1A EF A -的正弦值为20.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ ∆的面积.【解析】(1)c e a ==22516m =,∴C 的方程:221612525x y +=. (2)设直线BP :(5)y k x =-,与椭圆C 联立可得:2222(116)160400250k x k x k +-+-=.设00(,)P x y ,则202400255116k x k -=+,∴202805116k x k-=+,∴0210||5|116PB x k =-+. ∵BP BQ ⊥,∴直线BQ :1(5)y x k=--.令6x =,1y k =-,∴1(6,)Q k -,||BQ =∵||||BP BQ =,∴214k =或2164k =. 根据椭圆的对称性,只需讨论12k =和18k =的情况,当12k =时,03x =,||PQ =PQ 点A 到直线PQ 11122APQ S PQ d ∆=.||⋅=当18k =时,03x =-||PQ =∴点A 到直线PQ ∴21|2APQ S PQ d ∆=.|⋅综上52APQ S ∆=.21.设函数3()f x x bx c =++,曲线()y f x =在点11(,())22f 处的切线与y 轴垂直.(1)求b ;(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【解析】(1)2()3f x x b '=+,又曲线()y f x =在点11(,())22f 处的切线与y 轴垂直,∴13()024f b '=+= ,解得34b =-.(2)设0x 为()f x 的一个零点,且011x -≤≤,由题意可知30034c x x =-+,令33()(11)4x x x x ϕ=-+-≤≤,则11()3()()22x x x ϕ'=-+,此时1(1,)2x ∈--,()0x ϕ'<,()x ϕ单调递减;11(,)22x ∈-,()0x ϕ'>,()x ϕ单调递增;1(,1)2x ∈,()0x ϕ'<,()x ϕ单调递减,则1(1)4f -=,11()24f -=-,11()24f =,1(1)4f =-,此时1144c -≤≤,再设1x 为()f x 的零点,则31113()04f x x x c =-+=,311131444x x -≤-+≤,整理得2111211(1)(1)01(1)()0x x x x x ⎧-++≤⎪⎨+-≥⎪,解得111x -≤≤, 则()f x 四、选做题(2选1)22.在直角坐标系xOy 1t ≠),C 与坐标轴交于,A B (1)求||AB ;(2的极坐标方程. 【解析】(1)当x =,求得12y =;当0y =时,求得2t =或t (0,12)和(4,0)-,||AB (2)由(1)得直线3120x y -+=,故直线AB 23.设a ,b ,c R ∈,(1)证明:ab bc ++(2)用max{,,}a b c 表示a ,b ,c的最大值,证明:max{,,}a b c ≥. 【解析】(1)∵0a b c ++=,∴()c a b =-+,222()()2cb bc ca ab a b c ab a b ab a b ab ++=++=-+=---223()024b a b =-+-<.(2)∵0a b c ++=,∴()c a b =-+,∵1abc =,∴()1ab a b -+=,即:2210ba b a ++=,∵0b ≠,则440b b ∆=-≥. 不妨设b 为max{,,}a b c ,则340b -≥,即b ≥,∴max{,,}a b c ≥。
2020年高考全国三卷理科数学试卷
2020年高考全国三卷理科数学试卷2020年普通高等学校招生全国统一考试(III卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{(x,y)|x,y\in N^*,y\geq x\}$,$B=\{(x,y)|x+y=8\}$,则$A\cap B$中元素的个数为A。
2B。
3C。
4D。
62.复数$\frac{1}{1-3i}$的虚部是A。
$-\frac{3}{10}$B。
$-\frac{1}{3}$C。
$\frac{1}{3}$D。
$\frac{3}{10}$3.在一组样本数据中,1、2、3、4出现的频率分别为$p_1$,$p_2$,$p_3$,$p_4$,且$\sum\limits_{i=1}^4 p_i=1$,则下面四种情形中,对应样本的标准差最大的一组是A。
$p_1=p_4=0.1$,$p_2=p_3=0.4$B。
$p_1=p_4=0.4$,$p_2=p_3=0.1$C。
$p_1=p_4=0.2$,$p_2=p_3=0.3$D。
$p_1=p_4=0.3$,$p_2=p_3=0.2$4.Logistic模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数$I(t)$($t$的单位:天)的Logistic模型:$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中$K$为最大确诊病例数。
当$I(t^*)=0.95K$时,标志着已初步遏制疫情,则约为$\ln 19\approx 3$。
则$t^*$约为A。
60B。
63C。
66D。
695.设$O$为坐标原点,直线$x=2$与抛物线$C:y^2=2px(p>0)$交于$D$、$E$两点,若$OD\perp OE$,则$C$的焦点坐标为A。
$(1,\frac{1}{2})$B。
$(2,1)$C。
$(1,-\frac{1}{2})$D。
2019年新课标全国卷3高考理科数学试题及答案
绝密★启用前2019年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2019年全国高考数学卷3试题及答案
2019年全国高考数学卷Ⅲ试题及答案文3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A .16B .14C .13D .12 答案:D .命题意图:本题主要考查以下几点:(1)古典概型;(2)数学建模和数学运算素养;(3)等价转化的思想.解题思路:男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.解:两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是21,故选D .理3、文4.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .5.0B .0.6C .0.7D .8.0 答案:C .命题意图:本题主要考查以下几点:(1)抽样数据的统计;(2)数据处理和数学运算素养;(3)去重法;(4)转化与化归思想.解题思路:根据题先求出阅读过西游记的人数,进而得解.解:由题意得,阅读过《西游记》的学生人数为70608090=+-,则其与该校学生人数之比为7.010070=÷.故选C .文17、理17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到)(C P 的估计值为70.0.(1)求乙离子残留百分比直方图中a 、b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 答案:(1)0.35a =,0.10b =;(2)4.05,6.命题意图:本题主要考查以下几点:(1)频率分布直方图;(2)平均数.解题思路:(1)由()0.70P C =可解得a 和b 的值;(2)根据公式求平均数.解:(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.205⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=.。
2020年高考全国卷三文科数学及答案解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.(5 分)已知集合 A = 1,2,3,5,7,11, B = x | 3 x 15,则 A B 中元素的个数为
()
A. 2
B. 3
C. 4
A. 5
B. 2 5
C. 4 5
D.8 5
12.(5 分)已知函数 f (x) = sin x + 1 ,则 sin x
A. f (x) 的最小值为 2
B. f (x) 的图像关于 y 轴对称
C. f (x) 的图像关于直线 x = 对称
D. f (x) 的图像关于直线 x = 对称 2
二、 空题:本题共 4 小题,每小题 5 分,共 20 分。
(2)点C1 在平面 AEF 内. 20.(12 分)
已知函数 f (x) = x3 − kx + k 2
(1)讨论 f (x) 的单调性
2)若 f (x) 有三个零点,求 k 的取值范围.
21.(12 分)
已知椭圆
C
:x2 25
+
y2 m2
= 1(0 m 5
的离心率为
15 ,A,B 分别为
13.(5 分)若 x , y 满足约束条件 2x − y 0,则 z = 3x + 2 y 的最大值为
.
x 1,
2
14.(5
分)设双曲线 C
:
x2 a2
−
y2 b2
= 1(a
0,b
0) 的一条渐近线为
y
=
2x ,则C 的离心
2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析
2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。
(完整版)2019高考卷III理科数学真题(含答案)
2019普通高等学校招生全国统一考试(全国III卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2}2.若z(1+i)=2i,则z=A.-1-I B.-1+I C.1-i D.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本小学生阅读四大名著的情况,随机调查看了100位学生,期中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.的展开式中的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列 {}的前4项和为15,且,则A.16 B.8 C.4 D.26.已知曲线y=+xlnx在点(1,ae)处的切线方程为y=2x+b,则A.a=e,b=-1 B.a=e,b=1 C.a= ,b=1 D.a=,b=-17.函数y=2x32x+2-x,在[-6,6]的图像大致为A. B. C. D.10.双曲线C:x24-y22=1的右焦点为F,点P 在C的一条渐近线上,O为坐标原点,若|PO|=|PF|,则△PFO 的面积为A.4 B.2 C.二、填空题:本题共4小题,每小题5分,共20分.三.解答题,共70分,解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答:(一)必考题:共60分。
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
2019年普通高等学校招生全国统一考试理科数学·参考答案一、选择题1.A 2.D 3.C 4.A 5.C 6.D 7.B 8.B 9.C 10.A 11.C12.D二、填空题13.2314.4 15. 16.118.8三、解答题17.解:(1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 18.解:(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC 的面积34ABC S a =△. 由正弦定理得()sin 120sin 31sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而3382ABC S <<△. 因此,△ABC 面积的取值范围是33⎝⎭.19.解:(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG u u u r =(1,0AC u u u r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||⋅〈〉==n m n m n m 因此二面角B –CG –A 的大小为30°. 20. 解:(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为–1,最大值为1.21.解:(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y - 设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t=-==+.设12,d d分别为点D,E到直线AB的距离,则12d d==.因此,四边形ADBE的面积()(2121||32S AB d d t=+=+设M为线段AB的中点,则21,2M t t⎛⎫+⎪⎝⎭.由于EM AB⊥u u u u r u u u r,而()2,2EM t t=-u u u u r,ABu u u r与向量(1, )t平行,所以()220t t t+-=.解得t=0或1t=±;当t=0时,S=3;当1t=±时,S=因此,四边形ADBE的面积为3或22.解:(1)由题设可得,弧»»»,,AB BC CD所在圆的极坐标方程分别为2cosρθ=,2sinρθ=,2cosρθ=-.所以1M的极坐标方程为π2cos04ρθθ⎛⎫=≤≤⎪⎝⎭,2M的极坐标方程为π3π2sin44ρθθ⎛⎫=≤≤⎪⎝⎭,3M的极坐标方程为3π2cosπ4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)设(,)Pρθ,由题设及(1)知若π4θ≤≤,则2cosθ=,解得π6θ=;若π3π44θ≤≤,则2sinθ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cosθ-=5π6θ=.综上,P的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.23.解:(1)由于2[(1)(1)(1)]x y z-++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x=-+++++-++++++-2223(1)(1)(1)x y z⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立. 所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦, 故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥, 当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +. 由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2022年全国卷3高考理科数学含答案详解
2021年全国卷3高考理科数学含答案详解绝密★启用前2022年普通高等学校招生全国统一考试〔新课标Ⅲ〕理科数学考前须知:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.集合A={}22(,)1x y x y+=│,B={}(,)x y y x=│,那么A B中元素的个数为A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,那么∣z∣=A.12B.22C.2D.23.某城市为了解游客人数的变化规律,提高旅游效劳质量,收集并整理了2022年1月至2022年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.学#科&网根据该折线图,以下结论错误的选项是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比拟平稳4.(x+y)(2x-y)5的展开式中x3y3的系数为A.-80 B.-40 C.40D.80A .5B .4C .3D .28.圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4 C .π2 D .π49.等差数列{}na 的首项为1,公差不为0.假设a 2,a 3,a 6成等比数列,那么{}na 前6项的和为 A .-24 B .-3 C .3 D .810.椭圆C :22221x y a b +=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为A 6B 3C .23D .1311.函数211()2()x x f x xx a e e --+=-++有唯一零点,那么a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.假设AP =λ AB +μAD ,那么λ+μ的最大值为A .3B .2C 5D .2二、填空题:此题共4小题,每题5分,共20分。
2020年全国高考数学-全国Ⅲ卷三卷理科解析(Word域、极致精编版)
2020年普通高等学校招生全国统一考试——全国Ⅲ理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6答案:C解析:由题意,A ∩B 中的元素满足⎩⎨⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4.所以满足要求的元素有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.2.复数11-3i的虚部是( )A .-310B .-110C .110D .310答案:D解析:因为z =11-3i =1+3i (1-3i )(1+3i )=110+310i ,所以复数z =11-3i 的虚部为310.3.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑4i =1p i =1,则下面四种情形中,对应样本的标准差最大的一组是( )A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.2答案:B解析:易知四种情形中平均数均为x -=∑4i =1x i p i =2.5.对于A ,方差s 2A =(1-2.5)2×0.1+(2-2.5)2×0.4+(3-2.5)2×0.4+(4-2.5)2×0.1=0.65; 对于B ,方差s 2B =(1-2.5)2×0.4+(2-2.5)2×0.1+(3-2.5)2×0.1+(4-2.5)2×0.4=1.85; 对于C ,方差s 2C =(1-2.5)2×0.2+(2-2.5)2×0.3+(3-2.5)2×0.3+(4-2.5)2×0.2=1.05; 对于D ,方差s 2D =(1-2.5)2×0.3+(2-2.5)2×0.2+(3-2.5)2×0.2+(4-2.5)2×0.3=1.45.因此,B 选项这一组标准差最大.法二:样本数据距离平均数越大,且概率越大时,方差和标准差可能越大.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e -0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为( )(ln19≈3)A .60B .63C .66D .69答案:C解析:当I (t *)=K 1+e-0.23(t *-53)=0.95K ,则e 0.23(t *-53)=19,所以0.23(t *-53)=ln19≈3,解得t *≈30.23+53≈66.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .(14,0)B .(12,0)C .(1,0)D .(2,0)答案:B解析:因为直线x =2与抛物线y 2=2px (p >0)交于D ,E 两点,且OD ⊥OE ,所以∠DOx =∠EOx =π4,所以D (2,2),代入抛物线方程得4=4p ,即p =1,所以抛物线的焦点坐标为(12,0).6.已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos <a ,a +b >=( )A .-3135B .-1935C .1735D .1935答案:D解析:易得a ·(a +b )=|a |2+a ·b =52-6=19,|a +b |=a 2+2a ·b +b 2=25-2×6+36=7.因此,cos <a ,a +b >=a ·(a +b )|a |·|a +b |=195×7=1935.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23答案:A解析:由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =42+32-2×4×3×23=9,即AB =3.于是cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.8.下图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+42C .6+23D .4+2 3 答案:C解析:根据三视图,在正方体中截取出符合题意的立体图形.在立体图形中,易得S △ABC =S △ADC =S △CDB =12×2×2=2.易得AB =AD =DB =22,故S △ADB =12AB ·AD ·sin60º=34(22)2=23.所以,该几何体的表面积是3×2+23=6+23.9.已知2tan θ-tan(θ+π4)=7,则tan θ=( )A .-2B .-1C .1D .2答案:D解析:因为2tan θ-tan(θ+π4)=7,所以2tan θ-tan θ+11-tan θ=7,解得tan θ=2.10.若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案:D解析:设直线l 与曲线y =x 的切点为(x 0,x 0),x 0>0,因函数y =x 的导数为y'=12x ,所以直线l 的方程为y -x 0=12x 0(x -x 0),即x -2x 0y +x 0=0.由于直线l 与圆x 2+y 2=15相切,则d =x 01+4x 0=r =15,整理得5x 20-4x 0-1=0,解得x 0=1或x 0=-15(舍).所以,直线l 的方程为x -2y +1=0,即y =12x +12.11.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .8答案:A解析:因为离心率e =ca=5,所以c =5a .因为F 1P ⊥F 2P ,所以|PF 1|2+|PF 2|2=(2c )2. S △PF 1F 2=12|PF 1|·|PF 2|=4,即|PF 1|·|PF 2|=8.又由双曲线的定义可得||PF 1|-|PF 2||=2a .因为(|PF 1|-|PF 2|)2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|,即4a 2=4c 2-16,又c =5a ,所以16a 2=16,解得a =1.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b答案:A解析:由题意可知a ,b ,c ∈(0,1).a b =log 53log 85=lg3lg5·lg8lg5<1(lg5)2·(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,所以a <b ; 由b =log 85,得8b =5,因为55<84,得85b <84,所以5b <4,得b <45;由c =log 138,得13c =8,因为134<85,得134<135c ,所以5c >4,得c >45.综上所述,a <b <c .二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为_________.答案:714.(x 2+2x )6的展开式中常数项是__________(用数字作答).答案:240解析:(x 2+2x )6的二项展开式通项为T r +1=C r 6·(x 2)6-r ·(2x )r =C r6(2)r ·x 12-3r ,令12-3r =0,解得r =4,所以(x 2+2x )6的展开式中常数项是C 46·24=240.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案:23π 解析:法一:圆锥内半径最大的球应该是该圆锥的内切球,如图.由底面半径为1,母线长为3,易得高SC =22.不妨设该内切球与母线BS 切于点D ,令OD =OC =r ,由△SOD ∽△SBC ,可得ODOS =BC BS ,即r 22-r =13,解得r =22. 此时V =43πr 3=23π.法二:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC =2,AB =AC =3,且点M 为BC 边上的中点,设内切圆的圆心为O .设内切圆半径为r ,则12×2×22=S △ABC =S △AOB +S △BOC +S △AOC =12×AB ×r +12×BC ×r +12×AC ×r =12×(3+3+2)×r ,解得r =22,故体积V =43πr 3=23π.16.关于函数f (x )=sin x +1sin x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 答案:②③解析:函数f (x )的定义域为{x |x ≠kπ,k ∈Z },定义域关于0对称,易得f (-x )=sin(-x )+1sin(-x )=-sin x -1sin x =-(sin x +1sin x )=-f (x ),所以f (x )是非零的奇函数,因此图象关于原点对称,故命题①错误,命题②正确;对于命题③,因为f (π2-x )=sin(π2-x )+1sin(π2-x )=cos x +1cos x ,f (π2+x )=sin(π2+x )+1sin(π2+x )=cos x +1cos x ,则f (π2-x )=f (π2+x ),所以f (x )的图象关于直线x =π2对称,命题③正确;对于命题④,当-π<x <0时,sin x <0,则f (x )=sin x +1sin x<0<2,命题④错误.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .解析:(1)由题意,a 2=3a 1-4=9-4=5,a 3=3a 2-8=3×5-8=7.猜想数列{a n }是以3为首项,2为公差的等差数列,故a n =2n +1. 证明:①当n =1时,a 1=3=2+1;②假设当n =k (k ∈N *)时,命题成立,即a k =2k +1,则当n =k +1时,a k +1=3a k -4k =3(2k +1)-4k =2k +3=2(k +1)+1,所以当n =k +1时,命题也成立.综上,由数学归纳法知,对任意的n ∈N *,都有a n =2n +1. (2)由(1)可知,2n a n =(2n +1)·2n ,则S n =3×2+5×22+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+…+(2n -3)·2n -1+(2n -1)·2n +(2n +1)·2n +1,② ①-②得,-S n=6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2,所以S n =(2n -1)·2n +1+2.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400 人次>400空气质量好 空气质量不好附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2≥k ) 0.050 0.0100.001k3.841 6.635 10.828解析:(1)由频数分布表可知,该市一天的空气质量等级为1的概率为2+16+25100=0.43,等级为2的概率为5+10+12100=0.27,等级为3的概率为6+7+8100=0.21,等级为4的概率为7+2+0100=0.09.(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100×20+300×35+500×45100=350.(3)2×2列联表如下:人次≤400 人次>400空气质量不好 33 37 空气质量好228 K 2=100×(33×8-37×22)55×45×70×30≈5.820>3.841,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解析:(1)在棱CC 1上取点G ,使得CG =2C 1G ,连接DG 、FG 、C 1E 、C 1F .在长方体ABCD -A 1B 1C 1D 1中,易得CG =23CC 1=23BB 1=BF 且CG ∥BF ,所以四边形BCGF 为平行四边形,因此BC _∥FG . 又BC _∥AD ,所以FG _∥AD ,因此四边形ADGF 为平行四边形,所以AF _∥DG . 易得C 1G _∥DE ,所以四边形DEC 1G 为平行四边形,因此C 1E _∥DG . 所以C 1E _∥AF ,则四边形AEC 1F 为平行四边形,因此点C 1在平面AEF 内.(2)以点C 1为坐标原点,C 1D 1、C 1B 1、C 1C 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系C 1-xyz .易得A (2,1,3),A 1(2,1,0),E (2,0,2),F (0,1,1),故AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1).设平面AEF 的法向量为m =(x 1,y 1,z 1),由⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,得⎩⎨⎧-y 1-z 1=0,-2x 1-2z 1=0,取z 1=-1,得x 1=y 1=1,则m =(1,1,-1).设平面A 1EF 的法向量为n =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧n ·A 1E →=0,n ·A 1F →=0,得⎩⎨⎧-y 2+2z 2=0,-2x 2+z 2=0,取z 2=2,得x 2=1,y 2=4,则n =(1,4,2).于是cos <m ,n >=m ·n |m |·|n |=33×21=77.设二面角A -EF -A 1的平面角为θ,则|cos θ|=77,所以sin θ=1-cos 2θ=427,因此,二面角A -EF -A 1的正弦值为427.20.已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.解析:(1)因为椭圆C :x 225+y 2m2=1(0<m <5),所以a =5,b =m .e =c a=1-(b a)2=1-(m 5)2=154,解得m =54,所以C :x 225+y 2(54)2=1,即x 225+16y 225=1.(2)不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N .因为BP ⊥BQ ,所以∠PBM +∠QBN =90º,又∠BQN +∠QBN =90º,所以∠PBM =∠BQN .又|BP |=|BQ |,所以△PMB ≌△BNQ .因为椭圆C :x 225+16y 225=1,所以B (5,0),所以|PM |=|BN |=6-5=1,即y P =1,将其代入x 225+16y 225=1,可得x P =3或-3,所以P 点为(3,1)或(-3,1).①当P 点为(3,1)时,|MB |=5-3=2=|NQ |,故Q 点为(6,2). 因为A (-5,0),可求得直线AQ 的直线方程为2x -11y +10=0,故点P 到直线AQ 的距离为d =|2×3-11×1+10|22+112=|5|125=55,又|AQ |=(6+5)2+(2-0)2=55,所以△APQ 面积为12×55×55=52. ②当P 点为(-3,1)时,|MB |=5+3=8=|NQ |,故Q 点为(6,8).因为A (-5,0),可求得直线AQ 的直线方程为8x -11y +40=0,故点P 到直线AQ 的距离为d =|8×(-3)-11×1+40|82+112=|5|185=5185,又|AQ |=(6+5)2+(8-0)2=185,所以△APQ 面积为12×185×5185=52. 综上所述,△APQ 的面积为52.21.设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.解:(1)因为f'(x )=3x 2+b ,由题意得f'(12)=0,即3×(12)2+b =0,则b =-34.(2)由(1)得f (x )=x 3-34x +c ,故f'(x )=3x 2-34=3(x +12)(x -12).令f'(x )>0,得x >12或x <-12;令f'(x )<0,得-12<x <12.所以f (x )在(-12,12)上递减,在(-∞,-12),(12,+∞)上递增.且f (-1)=f (12)=c -14,f (-12)=f (1)=c +14.若f (x )有一个绝对值不大于1的零点,则f (x )在[-1,1]上有零点,则c -14≤0≤c +14,得-14≤c ≤14.当c =-14时,易知f (x )的零点为-12和1,满足所有零点的绝对值都不大于1.当c =14时,易知f (x )的零点为-1和12,满足所有零点的绝对值都不大于1.当-14<c <14时,f (-1)=f (12)=c -14<0,f (-12)=f (1)=c +14>0,所以f (x )的零点x 1∈(-1,-12),x 2∈(-12,12),x 3∈(12,1),满足所有零点的绝对值都不大于1.综上,f (x )所有零点的绝对值都不大于1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2-t -t 2,y =2-3t +t 2(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求|AB |;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.解析:(1)令x =0,则2-t -t 2=0,解得t =-2或1(舍),则y =2-3t +t 2=12,故A (0,12).令y =0,则2-3t +t 2=0,解得t =2或1(舍),则x =2-t -t 2=-4,故B (-4,0). |AB |=42+122=410.(2)由(1)可知k AB =3,则直线AB 的方程为y =3(x +4),即3x -y +12=0.所以,直线AB 的极坐标方程为3ρcos θ-ρsin θ+12=0.[选修4—5:不等式选讲](10分)(2020全国Ⅲ理23文23)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.解析:(1)因为(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,所以ab +bc +ca =-12(a 2+b 2+c 2).因为abc =1,所以a ,b ,c 均不为0,所以ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a .由a +b +c =0,abc =1,可知a >0,b <0,c <0.易得a =-b -c ,a =1bc ,所以a 2=(b +c )2≥4bc =4a ,即a 3≥4,所以a ≥34.即证得max{a ,b ,c }≥34.。
全国高考数学试卷三卷答案
一、选择题1. 答案:A解析:根据题目条件,可得等差数列的公差为2,首项为3,第10项为3+9×2=21。
2. 答案:C解析:由题意得,函数的定义域为x≠0,根据函数的性质,可知选项C正确。
3. 答案:B解析:由题意得,直线l的斜率为-1,所以l的方程为y=-x+b。
将点A(2,3)代入得3=-2+b,解得b=5,所以l的方程为y=-x+5。
4. 答案:D解析:根据题目条件,可得圆的方程为(x-2)²+(y+1)²=5,圆心为(2,-1),半径为√5。
根据勾股定理,可知选项D正确。
5. 答案:A解析:根据题目条件,可得函数的定义域为x∈(0,1),当x=0时,f(x)无定义。
因此,选项A正确。
二、填空题6. 答案:2√2解析:根据题目条件,可得向量a与向量b的夹角θ满足cosθ=1/2,所以θ=π/3。
因此,向量a与向量b的长度乘积为2√2。
7. 答案:-4解析:根据题目条件,可得等差数列的首项为2,公差为-2,第10项为-16。
所以,等差数列的前10项和为S10=2×10-2×(10-1)×(10+1)/2=-4。
8. 答案:e解析:根据题目条件,可得函数的导数为f'(x)=e^x,且f'(x)在x=0时取得最小值1。
因此,函数f(x)在x=0时取得最小值e^0=1。
9. 答案:2解析:根据题目条件,可得三角形ABC的面积为S=1/2×BC×AD=1/2×BC×h,其中h为三角形ABC的高。
由勾股定理可得AC²=BC²+AB²,代入得h=AB/√2。
所以,三角形ABC的面积为S=1/2×BC×AB/√2=AB²/2√2=2。
三、解答题10. 解答:(1)由题意得,函数f(x)在区间[0,1]上单调递增,且f(0)=0,f(1)=1。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2019年高考数学真题试卷 理科数学 (全国 III 卷) (含答案)
2019年普通高等学校招生全国统一考试(全国III 卷)理科数学一、 选择题1.已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( ) A. }1,0,1{- B. B.{0,1} C. C.}1,1{- D. D.}2,1,0{2.若i i z 2)1(=+,则=z ( )A.i --1B.i +-1C.i -1D.i +13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.5.0 B.6.0 C.7.0 D.8.04.42)1)(21(x x ++的展开式中3x 的系数为( ) A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A. 16 B. 8 C. 4 D.26.已知曲线x x ae y xln +=在点)1(ae ,处的切线方程为b x y +=2,则( )A.e a =,1-=bB.e a =,1=bC.1-=e a ,1=bD.1-=e a ,1-=b7.函数3222x xx y -=+在[6,6]-的图像大致为( ) A.B.C.D.8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面⊥ECD 平面ABCD ,M 是线段ED 的中点,则( )A.EN BM =,且直线EN BM ,是相交直线B.EN BM ≠,且直线EN BM ,是相交直线C.EN BM =,且直线EN BM ,是异面直线D.EN BM ≠,且直线EN BM ,是异面直线9.执行右边的程序框图,如果输出ε为01.0,则输出s 的值等于( )A.4212-B.5212- C.6212-D.7212-10.双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为( )A: 324 B:322C: 22 D:3211.若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增 ○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4 二.填空题13.已知a r ,b r 为单位向量,且0a b ⋅=r r,若2c a =r r ,则cos ,a c =r r.答案:23解析:∵()22222459c a a b b =-=+-⋅=r r r r r ,∴3c =r,∵()2222a c a a a b ⋅=⋅=⋅=r r r r r r ,∴22cos ,133a c a c a c ⋅===⨯⋅r rr r r r . 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________.16.学生到工厂劳动实践,利用3D 打印技术制作模型。
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
2023年高考数学试题-全国III卷(原卷版)
2023年高考数学试题-全国III卷(原卷版)2023年高考数学试题-全国III卷(原卷版)第一部分:选择题(共30小题,每小题4分,共120分)1. 设函数$f(x)=\sqrt{9-x^2}$,则$f(x)$ 的定义域是()。
- A. $[-3,3]$- B. $[-9,9]$- C. $[-\infty , + \infty]$- D. $[-8,8]$2. 已知函数 $y=ax^2+bx+c$ 的顶点为 $(1, 3)$,且经过点 $(-1, 1)$ 和 $(2, 4)$。
则 $y=ax^2+bx+c$ 的解析式为()。
- A. $y=2x^2-4x+3$- B. $y=3x^2-6x+3$- C. $y=4x^2-8x+3$- D. $y=2x^2+2x+3$...第二部分:填空题(共10小题,每小题6分,共60分)41. 根据方程组 $\begin{cases} 2x+y=3 \\ x-3y=4 \end{cases}$ 的解情况可知,该方程组()。
- 答案:无解42. 设 $x$ 是正实数,下面的等式成立是()。
- 答案:$\log_2{x^2} = 2\log_4{x}$43. 表达式 $\sqrt{3}(2-\sqrt{3}+\sqrt{12}-2\sqrt{3})$ 的值是()。
- 答案:$-\sqrt{3}$...第三部分:解答题(共2小题,共20分)21. 已知函数 $f(x)=a(x+1)(x-2)$ 是奇函数,求 $a$ 的值。
- 解答略22. 一管道将水以恒定的时间速度充满一个长方体水槽,长方体水槽的底面长为 $2.5 \, \text{m}$,宽为 $1 \, \text{m}$,高为$0.8 \, \text{m}$。
水槽中已有一定深度的水,若用该管道充满水槽所需时间为 $6$ 分钟,则水槽中原有的水深为多少米?- 解答略...以上是2023年高考数学试题-全国III卷(原卷版)的部分内容。
全国新高考数学试卷三卷
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的零点个数是:A. 1个B. 2个C. 3个D. 0个2. 若复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹是:A. 以(0,1)和(0,-1)为焦点的椭圆B. 以(0,1)和(0,-1)为焦点的双曲线C. 以(0,1)和(0,-1)为焦点的抛物线D. 以原点为圆心的圆3. 下列函数中,在区间(0, +∞)上单调递减的是:A. y = 2xB. y = 2x^2C. y = 2^xD. y = log2x4. 若等差数列{an}的前n项和为Sn,且a1 = 1,S5 = 20,则数列{an}的公差d 为:A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点A(1, 2),点B(-2, 3),则线段AB的中点坐标是:A. (-1, 2.5)B. (1, 2.5)C. (-1, 1.5)D. (1, 1.5)6. 若向量a = (1, 2),向量b = (2, 3),则向量a与向量b的夹角θ的余弦值是:A. 1/5B. 2/5C. 3/5D. 4/57. 已知函数f(x) = ax^2 + bx + c,若f(-1) = 0,f(2) = 0,且f(0) = 1,则a、b、c的值分别是:A. a = 1, b = -2, c = 1B. a = 1, b = -2, c = 0C. a = -1, b = 2, c = 1D. a = -1, b = 2, c = 08. 若等比数列{an}的前n项和为Sn,且a1 = 1,S5 = 31,则数列{an}的公比q 为:A. 2B. 3C. 4D. 59. 在△ABC中,若角A、B、C的对边分别为a、b、c,且a = 3,b = 4,c = 5,则sinA + sinB + sinC的值是:A. 3√2/2B. 4√2/2C. 5√2/2D. 6√2/210. 若函数f(x) = |x - 1| + |x + 1|在区间[-1, 1]上的最大值为M,最小值为m,则M - m的值为:A. 2B. 4C. 6D. 811. 在等差数列{an}中,若a1 = 1,公差d = 2,则数列{an^2}的前n项和为S_n,若S_n = 50,则n的值为:A. 5B. 6C. 7D. 812. 若复数z满足|z - 1| = |z + 1|,则复数z的实部a的取值范围是:A. a ≥ 1B. a ≤ 1C. a > 1D. a < 1二、填空题(本大题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(理科数学全国卷3)
数 学(理科)
一、选择题:本题共12小题。
每小题5分.
1.已知集合{}
10A x x =-≥,{}2,1,0=B ,则=⋂B A ( )
.A {}0 .B {
}1 .C {}1,2 .D {}0,1,2
2.()()=-+i i 21 ( )
.A i --3 .B i +-3 .C i -3 .D i +3
3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )
4. 若1
sin 3α=
,则cos2α= ( ) .A 89 .B 79 .C 79- .D 89-
5. 252()x x
+的展开式中4x 的系数为 ( )
.A 10 .B 20 .C 40 .D 80
6.直线20x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆()2
222x y -+=上,则ABP ∆面积的取值范围是 ( )
.A []2,6 .B []4,8 .C 2,32⎡⎣ .D 22,32⎡⎣
7.函数422y x x =-++的图像大致为 ( )
8.某群体中的每位成员使用移动支付的概率都为P ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,()()64=<=X P X P ,则=P ( )
.A .B .C .D
9.ABC ∆的内角C B A 、、的对边分别c b a 、、,若ABC ∆的面积为222
4
a b c +-,则=C
( )
.
A 2π .
B 3π .
C 4π .
D 6
π
10.设D C B A 、、、是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥ABC D -积的最大值为 ( )
.A 3 .B 183 .C 3 .D 3
11.设21F F 、是双曲线C : 22
221x y a b
-=(0,0>>b a )的左、右焦点,O 是坐标原点,过2F 作C 的一
条渐近线的垂线,垂足为P ,若16PF OP =,则C 的离心率为 ( )
.A 5 .B 2 .C 3 .D
2
12.设3.0log 2.0=a ,3.0log 2=b ,则 ( )
.A 0a b ab +<< .B 0ab a b <+< .C 0a b ab +<< .D 0ab a b <<+
二、填空题:本题共4小题,舟小题5分,共20分.
13.已知向量()2,1=,()2,2-=,()λ,1=,()
+2//,则_____=λ.
14.曲线()1x y ax e =+在点()1,0处的切线的斜率为2-,则_____=a .
15.函数()cos 36f x x π⎛
⎫=+ ⎪⎝
⎭在[]0,π的零点个数为 .
16.已知点()1,1-M 和抛物线:C 24y x =,过C 的焦点且斜率为k 的直线与C 交于B A 、两点,若∠
AMB=90。
,则_____=k
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22, 23题为选考题,考生根据要求作答. (一)必考题:共60分。
17.(12分)等比数列{}n a 中,11=a ,354a a =.
(1)求{}n a 的通项公式;
(2)记n S 为{}2a 的前n 项和,若63=m S ,求m .
18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min )制了如下茎叶图:
(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下而的列联表:
(3)根据(2)的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:
()
()()()()
2
2
n ad bc
K
a b c d a c b d
-
=
++++
,
19. (12分)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在的平面垂直,M是弧CD上异于D
C、的点.
(1)证明:平面AMD平面BMC;
(2)当三棱锥ABC
M-体积最大时,求面MAB与面MCD所成二面角的正弦值.
20.(12分)己知斜率为k的直线l与椭圆:
C
22
1
43
x y
-=交于B
A、两点,线段AB的中点为()m
M,1()0>
m.
(1)证明:
2
1
-
<
k;
(2)设F为C的右焦点,P为C上一点,且0
FP FA FB
++=
u u u r u u u r u u u r
,证明:、、成等差数列,并求该数列的公差.
()
2
p K k
≥
k
21.(12分)已知函数()()
()22ln 12f x x ax x x =+++-
(1)若0a =,证明:当-1<x <0时,()f x <0,当x >0时,()f x >0; (2)若0x =,是()f x 的极大值点,求a .
(二)选考题:共10分;请考生在第22. 23题中任选一题作答;如果多做,则按所做的第一题计分. 22.〔选修4-4:坐标系与参数方程] (10分)
在直角坐标系xOy 中,O e 的参数方程为cos sin x y θ
θ
=⎧⎨=⎩(θ为参数),过点(且倾斜角为α的直线l
与O e 交于B A 、两点.
(1)求α取值范围;
(2)求AB 中点P 的轨迹的参数方程.
23.[选修4-5:不等式选讲](10分)
设函数()211f x x x =++-. (1)画出()y f x =的图像;
(2)当[0,)x ∈+∞时,()f x ax b ≤+,求a b +的最小值.。