安徽省江南十校联考试卷及答案
安徽省江南十校2023-2024学年高一上学期分科诊断摸底联考试题 数学含答案
2023年“江南十校”高一分科诊断摸底联考数学试卷(答案在最后)注意事项:1.本试卷总分为150分,数学考试总时间为120分钟;2.本试卷包括“试题卷”和“答题卷”,请务必在“答题卷”上答题,在“试题卷”上答题无效;3.考生作答时,请将自己的姓名、准考证号填写在答题卷的相应位置。
一、选择题:本题共8小题,每题5分,共40分.每小题给出的四个选项中,只有一个选项符合要求.1.下列关系中,正确的是()A .e R ∈B .{}12φ∈,C .{}01x x ∉>-D .{}}{200x x x x ≤⊆>2.设命题,0)5)(1(,:>-+∈∀x x R x p 则“命题p 的否定”是()A .,(1)(5)0x R x x ∃∈+->B .,(1)(5)0x R x x ∃∈+-<C .,(1)(5)0x R x x ∀∈+-≤D .,(1)(5)0x R x x ∃∈+-≤3.[]2"1,2,20"x x a ∀∈--≤恒成立的一个充分不必要条件是()A .0a ≤B .1a ≤C .3a ≥D .2a ≥4.已知0,>>cb a ,下列不等式一定成立的是()A .-a c b>B .c ca b >C .a bc c >D .a bc c>5.如图是杭州2023年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若321=l l ,则=21S S()A .9B .8C .4D .3..C .D .7.已知12(1cos 60)a ︒=-,3log 2b =,bc a =,则()A .a b c<<B .b a c<<C .a c b<<D .b c a<<8.已知函数x x f x -+=-)14(log )(12,则不等式)3()3(+<x f x f 的解集为()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2⎛⎫+∞⎪⎝⎭C .13,42⎛⎫-⎪⎝⎭D .33,42⎛⎫-⎪⎝⎭二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.下列命题中正确的有()A .2()1m f x m m x =--()是幂函数,且在),(∞+0单调递减,则1-=mB .22()log 2f x x x =-()的单调递增区间是),(∞+1C .21()1f x ax ax =++的定义域为R ,则[]4,0∈aD .()f x x =+的值域是(]5,∞-10.下列选项中,结果为正数的有()A .sin1cos1+B .sin 2cos 2+C .sin3cos3+D .sin 4cos4+11.已知正数2,++=b a ab b a 满足,则()A .2a b ++的最小值为B .1ab +的最小值为C .111a b+D .310a b +的最小值为12.高斯是德国的著名数学家、物理学家、天文学家和大地测量学家。
安徽省“江南十校”2023-2024学年高三下学期3月联考地理试卷含答案
绝密★启用前2024届安徽省“江南十校”联考地理(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
自2001年以来,湖北省潜江市政府结合当地实际,关注小龙虾产业发展,实现从“虾稻连作”到“餐桌顶流”。
潜江小龙虾当选2022年中国地理标志产品榜首,其产量位居全国前列,小龙虾产业规模已近千亿元,潜江也已成为全国最大的小龙虾交易中心,产城融合(产业园区与城市融合发展)初见成效。
目前小龙虾产业正在进军预制菜新赛道。
完成下面小题。
1.当前虾农提高小龙虾养殖收益的最有效途径是()A.扩大养殖规模B.提高养殖品质C.增强产品竞争力D.改进养殖方式2.潜江成为中国最大的小龙虾交易中心的主要原因是()A.产量最高B.产业链全C.交通便利D.政策支持3.下列促进潜江小龙虾产城融合举措中最有效的是()A.技术创新,文旅结合B.品牌建设,抢占先位C.精深加工,冷链仓储D.预制菜品,全年“长红”【答案】1.C 2.D 3.A【解析】【1题详解】农产品收益与销售的收入(销量、价格)和成本等有关,增强产品竞争力能够提高市场占有率,扩大消费市场,是增加收益的最有效途径,C正确;龙虾的养殖规模主要影响产量,养殖品质(方式)主要影响价格,养殖方式主要影响成本,都可以影响养殖收益,但不是提高养殖优势的最有效途径,ABD错误。
所以选C。
【2题详解】我国最大的小龙虾产品交易中心的形成与龙虾产量、品质、配套产业链、交通物流等有关。
但20多年来政府结合当地实际,关注小龙虾产业发展,先手推动,从“虾稻连作”、“餐桌顶流”都是转型之路中政府主动作为,最主要的原因是政策支持,D正确,ABC错误。
2023年安徽省江南十校高考数学联考试卷+答案解析(附后)
2023年安徽省江南十校高考数学联考试卷1. 已知集合,,则( )A. B.C. D.2. 设i为虚数单位,复数,则z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知平面向量的夹角为,且,则( )A. B. C. D.4. 安徽徽州古城与四川阆中古城、山西平遥古城、云南丽江古城被称为中国四大古城.徽州古城中有一古建筑,其底层部分可近似看作一个正方体已知该正方体中,点E,F分别是棱,的中点,过,E,F三点的平面与平面ABCD的交线为l,则直线l与直线所成角为( )A. B. C. D.5. 为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.( )A. 40B. 24C. 20D. 126. 已知函数,则下列说法正确的是( )A. 点是曲线的对称中心B. 点是曲线的对称中心C. 直线是曲线的对称轴D. 直线是曲线的对称轴7. 在三棱锥中,底面ABC,,,则三棱锥外接球的表面积为( )A. B. C. D.8. 已知,则a,b,c的大小关系为( )A.B. C.D.9. 已知函数,则( )A. 是奇函数B. 的单调递增区间为和C. 的最大值为D.的极值点为10.在平行六面体中,已知,,则( )A. 直线与BD 所成的角为B. 线段的长度为C.直线与所成的角为D. 直线与平面ABCD 所成角的正弦值为11. 已知O 为坐标原点,点,,线段AB 的中点M 在抛物线C :上,连接OB 并延长,与C 交于点N ,则( )A. C 的准线方程为B. 点B 为线段ON 的中点C. 直线AN 与C 相切D. C 在点M 处的切线与直线ON 平行12. 已知函数和及其导函数和的定义域均为R ,若,,且为偶函数,则( )A. B. 函数的图象关于直线对称C. 函数的图象关于直线对称D.13.的展开式中,常数项为______ 用数字作答14. 已知圆C :,直线l :是参数,则直线l 被圆C 截得的弦长的最小值为______ .15. 已知直线l 与椭圆交于M ,N 两点,线段MN 中点P 在直线上,且线段MN 的垂直平分线交x 轴于点,则椭圆E 的离心率是______ .16. 若过点有3条直线与函数的图象相切,则m 的取值范围是______ .17. 在平面直角坐标系Oxy 中,锐角、的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 的交点分别为P ,已知点P 的纵坐标为,点Q 的横坐标为求的值;记的内角A ,B ,C 的对边分别为a ,b ,请从下面两个问题中任选一个作答,如果多选,则按第一个解答计分.①若,且,求周长的最大值.②若,,且,求的面积.18. 已知在递增数列中,,为函数的两个零点,数列是公差为2的等差数列.求数列的通项公式;设数列的前n 项和为,证明:19. 渔船海上外出作业受天气限制,尤其浪高对渔船安全影响最大,二月份是某海域风浪最平静的月份,浪高一般不超过某研究小组从前些年二月份各天的浪高数据中,随机抽取50天数据作为样本,制成频率分布直方图:如图根据海浪高度将海浪划分为如下等级:浪高海浪等级微浪小浪中浪大浪海事管理部门规定:海浪等级在“大浪”及以上禁止渔船出海作业.某渔船出海作业除受浪高限制外,还受其他因素影响,根据以往经验可知:“微浪”情况下出海作业的概率为,“小浪”情况下出海作业的概率为,“中浪”情况下出海作业的概率为,请根据上面频率分布直方图,估计二月份的某天各种海浪等级出现的概率,并求该渔船在这天出海作业的概率;气象预报预计未来三天内会持续“中浪”或“大浪”,根据以往经验可知:若某天是“大浪”,则第二天是“大浪”的概率为,“中浪”的概率为;若某天是“中浪”,则第二天是“大浪”的概率为,“中浪”的概率为现已知某天为“中浪”,记该天的后三天出现“大浪”的天数为X,求X的分布列和数学期望.20. 如图,四棱锥中,为等腰三角形,,,,证明:;若,点M在线段PB上,,求平面DMC与平面PAD夹角的余弦值.21. 我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则称它们互为“姊妺”圆锥曲线.已知椭圆,双曲线是椭圆的“姊妺”圆锥曲线,,分别为,的离心率,且,点M,N分别为椭圆的左、右顶点.求双曲线的方程;设过点的动直线l交双曲线右支于A,B两点,若直线AM,BN的斜率分别为,试探究与的比值是否为定值.若是定值,求出这个定值;若不是定值,请说明理由;求的取值范围.22. 已知函数若在定义域上具有唯一单调性,求k的取值范围;当时,证明:答案和解析1.【答案】C【解析】解:,,,则,,,,,故选:分别将两个集合中的元素表示出来,再求补集,交集.本题考查集合的运算,考查二次不等式的解法,属于基础题.2.【答案】D【解析】解:因为,所以复数对应的点为在第四象限,故选:利用复数的运算性质化简复数z,求出对应的点的坐标,由此即可求解.本题考查了复数的运算性质,涉及到复数的实际意义,属于基础题.3.【答案】C【解析】解:已知平面向量的夹角为,且,则,则,故选:由平面向量数量积的运算,结合平面向量的模的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量的模的运算,属基础题.4.【答案】A【解析】解:如图所示,在平面中,连接与DA交于H,则,在平面中,连接与DC交于G,则,则GH为平面与平面ABCD的交线l,且,而在等边中AC与所成的角为,故l与直线所成角为故选:作出平面与平面ABCD的交线l,再求l与直线所成角.本题考查异面直线所成的角的求法,属基础题.5.【答案】B【解析】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种,故选:根据相邻问题用捆绑法和不相邻问题用插空法即可求解.本题考查了排列组合的应用,属于基础题.6.【答案】C【解析】解:,当,则,此时,则函数关于对称,故A错误,当,则,此时,则函数关于对称,故B错误,当,则,此时,则函数关于对称,故C正确,当,则,此时,则函数关于点对称,故D错误,故选:利用辅助角公式进行化简,然后分别利用对称性进行判断即可.本题主要考查三角函数对称性的判断,根据辅助角公式进行化简是解决本题的关键,是中档题.7.【答案】B【解析】解:在三棱锥中,底面ABC,如图所示:在中,,,利用余弦定理:,解得:,设的外接圆的半径为R,利用正弦定理,解得,过点E作的垂线和AP的垂直平分线交于点O,即点O为三棱锥外接球的球心,设球的半径为r,故;所以故选:首先利用正弦定理和余弦定理求出三棱锥的外接球的半径,进一步利用球的表面积公式求出结果.本题考查的知识要点:正弦定理和余弦定理,求和三棱锥的关系,球的表面积公式,主要考查学生的理解能力和计算能力,属于中档题和易错题.8.【答案】D【解析】解:,,,,设,,所以在上单调递减,因为,所以,所以,,令,,,所以在上单调递增,又,所以,所以,所以,故选:,,,则,设,,求导分析单调性,即可得出b与a的大小关系;,令,,求导分析单调性,即可得出b与c的大小关系,即可得出答案.本题考查函数的单调性,数的大小,属于基础题.9.【答案】AB【解析】解:对于A,因为对,,所以是R上的奇函数,故A正确;对于B,由得或,所以的单调递增区间为和,故B正确;对于C,因为时,,所以无最大值,故C错误;对于D,由得,经检验是函数的极大值点,是函数的极小值点,极值点是实数,故D错误,故选:根据奇偶性的定义可判断A;对函数求导,令可得函数的增区间,即可判断B;根据时,,所以无最大值,即可判断C;由得,检验可得为函数的极值点,即可判断本题主要考查了三次函数的性质,属于基础题.10.【答案】AC【解析】解:在平行六面体中,取,,,,,,,对于A:,,,则,故直线与BD所成的角为,故A正确;对于B:,则,即,故B错误;对于C:,故,即,故直线与所成的角为,故C正确;对于D:在平行六面体中,四边形ABCD是菱形,则,又,,平面,平面,平面,又平面ABCD,则平面平面ABCD,连接AC交BD于点O,过点作于点E,如图所示:平面平面,平面,平面ABCD,直线与平面ABCD所成角为,,则,即,在中,,故D错误,故选:在平行六面体中,取,,,利用空间向量的线性运算,逐一分析选项,即可得出答案.本题考查直线与平面的夹角、异面直线的夹角,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.11.【答案】BCD【解析】解:对A,根据中点公式得,将其代入C:得,则,所以抛物线C:的准线方程为,故A错误;对B,因为,则直线OB的斜率为a,则直线OB的方程为,将其代入C:得,解得或舍去,此时,则,所以B为ON中点,故B正确;对C,C:,即,则,故抛物线C在点N处的切线的斜率为,故切线方程为,令得,所以直线AN为C的切线,故C正确;对D,抛物线C:在处的切线方程的斜率为,而直线ON的斜率为a,则两直线的斜率相等,且两直线显然不可能重合,所以C在点M处的切线与直线ON平行.故选:将代入抛物线得,则得到其准线方程,则可判断A,联立直线OB的方程与抛物线方程即可得到,即可判断B,利用导数求出抛物线C在点N处的切线方程,令,则可判断C,再次利用导数求出抛物线在处的切线斜率,则可判断本题考查了抛物线的性质,属于中档题.12.【答案】ABC【解析】解:对于A,由为偶函数得,即有,则的图象关于直线对称,对两边同时求导得:,令,得,故A正确;对于B,由关于直线对称得,由,得,所以,即的图象关于直线对称,故B正确;对于C,对两边同时求导得,由,得,则,即,所以的图象关于直线对称,故C正确;对于D,由,得,结合C选项可知,,即,所以,所以4是函数的一个周期,由,得4也是函数的一个周期,由,得,所以,故D错误.故选:根据为偶函数,可得,两边求导即可判断A;由关于直线对称得,结合,即可判断B;根据,两边同时求导得,从而可判断C;先求出函数和的周期,再结合函数的对称性即可判断本题考查了复合函数的奇偶性、周期性、对数性及复合函数的求导、导数的对称性及奇偶性,属于中档题.13.【答案】60【解析】解:的展开式的通项公式为,,1,,当,即时,;当时,无解;展开式中的常数项为,故答案为:当前边括号取3时,后边括号取常数项;当前边括号取x时,后边括号取项,无解;由此计算出常数项即可.本题考查二项式展开式的应用,考查学生计算能力,属于基础题.14.【答案】【解析】解:圆C:的圆心坐标为,半径为由直线l:,得,联立,解得直线l过定点,又,点在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时直线l被圆C截得的弦长的最小值为故答案为:由圆的方程求出圆心坐标与半径,由直线方程可得直线过定点,求得,再由垂径定理求得直线l被圆C截得的弦长的最小值.本题考查直线与圆的位置关系,考查了垂径定理的应用,属中档题.15.【答案】【解析】解:根据题意设MN中点,又,直线的斜率为,又,直线MN的斜率为,设,,则,两式相减可得:,,,椭圆E的离心率,故答案为:根据直线垂直的条件,点差法,方程思想,化归转化思想,即可求解.本题考查椭圆的离心率的求解,点差法的应用,方程思想,属中档题.16.【答案】【解析】解:设切点为,则,过点P的切线方程为,代入点P坐标化简为,即这个方程有三个不等根即可,令,求导得到,函数在上单调递减,在上单调递增,在上单调递减,又,当时,,要使方程有三个不等实数根,则,的取值范围是:故答案为:求出函数的导函数,可得函数的最值,即可求得实数m的取值范围.本题考查的是导数的几何意义的应用,将函数的切线条数转化为切点个数问题,最终转化为零点个数问题是解决此题的关键,是中档题.17.【答案】解:因为,是锐角,所以P,Q在第一象限,又因为P,Q在单位圆上,点P的纵坐标为,点Q的横坐标为,所以,所以故选①:由中结论可得,又,,由余弦定理可得,即,,,,当时,等号成立,,即当为等边三角形时,周长最大,最大值为选②:由可知,则,由正弦定理,可得,故,则【解析】先利用三角函数的定义与同角的平方关系求得,,,,再利用余弦的和差公式即可得解;选①:先结合中条件得到,再利用余弦定理与基本不等式推得,从而得解;选②:先结合中条件求得,再利用正弦定理求得a,b,从而利用三角形面积公式即可得解.本题考查了正余弦定理、三角函数的定义以及基本不等式的应用,属于中档题.18.【答案】解:在递增数列中,,为函数的两个零点,可得,,公差,则数列是首项为5,公差为2的等差数列,则,则;证明:,则,因为,所以【解析】令,解方程可得,,再由等差数列的通项公式和数列的恒等式,等差数列的求和公式,计算可得所求通项公式;求得,再由数列的裂项相消求和,结合不等式的性质可得证明.本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查转化思想和运算能力、推理能力,属于中档题.19.【答案】解:记这天浪级是“微浪”为事件,浪级是“小浪”为事件,浪级是“中浪”为事件,浪级是“大浪”为事件,该渔船当天出海作业为事件B ,则由题意可知:,,,所以依题意可知,X 的所有可能取值为0,1,2,3,所以,,,,则X 的分布列为:X 0123P所以【解析】根据频率分布直方图计算频率即可估计二月份的某天各种海浪等级出现的概率;根据全概率公式可求得该渔船在这天出海作业的概率;依题意可知,X 的所有可能取值为0,1,2,3,求出对应的概率,即可得出分布列,根据期望公式求出期望.本题主要考查概率的求法,离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.20.【答案】证明:取AD的中点O,连接OP,OC,如图,因为,则,又,即有,而,于是四边形ABCO为平行四边形,又,则,又,PO,平面POC,所以平面POC,又,因此平面POC,而平面POC,所以;解:因为,,且,AD,平面PAD,则平面PAD,又,则平面PAD,分别以OC,OP,OD所在的直线为x,y,z轴建立空间直角坐标系,如图,又,则,,又,则,所以,,,,,则,,设平面DMC的法向量为,则,令,得,又平面PAD的一个法向量为,则,所以平面DMC与平面PAD夹角的余弦值为【解析】根据给定条件,取AD的中点O,利用线面垂直的判定证明平面POC即可推理作答;以O为原点,建立空间直角坐标系,利用空间向量求解作答.本题考查了线线垂直的证明和二面角的计算,属于中档题.21.【答案】解:由题意可设双曲线:,则,解得,双曲线的方程为;设,,直线AB的方程为,由,消去x得,则,,且,,;设直线AM:,代入双曲线方程并整理得,由于点M为双曲线的左顶点,此方程有一根为,,解得,点A在双曲线的右支上,,解得,即,同理可得,由,,【解析】由题意可设双曲线:,利用,可求b;设,,直线AB的方程为,与双曲线联立方程组可得,,进而计算可得为定值.设直线AM:,代入双曲线方程可得,进而可得,,进而由可得,进而求得的取值范围.本题考查椭圆和双曲线的标准方程与离心率,双曲线的几何性质,直线与双曲线的位置关系,渐近线与双曲线的位置关系,属中档题.22.【答案】解:由题意得的定义域为,,若在定义域上单调递增,则恒成立,即在上恒成立,又,;若在定义域上单调递减,则恒成立,即在上恒成立,而这样的k不存在;综上所述:在定义域上单调递增,且,所以k的取值范围为;证明:要证成立,只需证,只需证,只需证,只需证,当时,,原不等式即证,由知在上单调递增,,,又,则,原不等式成立.【解析】求导后若在定义域上单调递增,则恒成立,若在定义域上单调递减,则恒成立,利用恒成立知识即可求解;,再根据的单调性即可得证.本题考查了导数的综合应用,属于中档题.。
2024届高考安徽省江南十校联考高三历史试卷(含答案)
2024届高考安徽省江南十校联考高三历史试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.考古发现,位于辽西的夏家店下层文化(约公元前2000~前1500年),以鬲、甗、鼎为代表的三足器占据了陶器群的主导地位,个别器物还发挥着礼器的作用,与二里头遗址发掘的同类器物相似。
该考古发现( )A.印证了区域经济文化的均衡发展B.说明文化融合促进了国家的统一C.反映了中华文明起源的多元一体D.证明中原率先成为中华文明核心2.两汉时期,文人献赋盛行。
西汉武帝时,如有天子出巡、游猎、求仙等行为,司马相如、扬雄等文人往往献赋加以讽颂。
东汉建都洛阳后,一些关中遗老仍然盼望朝廷能够回迁长安,对此,班固上《两都赋》加以驳斥。
这一现象反映了当时( )A.行政制度的重大调整B.文人较强的社会责任意识C.积极进取的时代风貌D.兼收并蓄的思想文化政策3.据《唐六典》记载,唐朝在西域广置屯田,玄宗时始由节度使兼任营田使,不少地方出现“禾菽相望”“良田数十里”的繁荣景象。
由此可推知( )A.屯田为唐朝驻军西域提供物质保障B.西域地区从唐朝开始隶属朝廷管辖C.节度使的设置有利于加强中央集权D.地方监察制度的完善推动边疆开发4.下列关于宋代科举制的记述,集中反映出这一制度( )C.切实防范宗室外戚干预政治D.优化了官僚队伍总体结构5.明清时期,儒贾兼业的现象普遍存在,其中尤以徽商“贾而好儒”的特色最为显著。
时人曾说道“业儒服贾各随其矩,而事道亦相为通”。
这一现象客观上( )A.瓦解了重农抑商政策B.改变了社会主流思想C.带动了社会风气变化D.抑制了商品经济发展6.下表美资旗昌轮船公司在华经营情况A.竞争对手的加入B.资本投入的大幅削减C.传统体制的束缚D.国货运动的蓬勃开展7.下图所示的学科设置,反映了( )宣统三年(1911年)安徽官立皖江中学堂修业文凭(局部)A.新旧并存的时代特征B.民主共和的社会潮流C.近代学制的渐次完善D.新式教育的初步兴起8.1937年11月10日,八路军总部在山西省和顺县石拐镇召开军事会议,刘伯承在会上传达了毛泽东和八路军总部的指示:“129师化整为零,分散到各地活动。
2024届安徽省“江南十校”联考(物理答案详解)
2024届安徽省“江南十校”联考物理参考答案一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一个选项是符合要求的。
1.【答案】B【解析】A .若登月飞船的发射速度大于11.2km/s ,则会逃脱地球束缚,故A 错误; B .登月飞船要在月球上着陆需要减速降低轨道,所以B 正确;C .登月飞船在返回地球的过程中需要先加速返回,再减速降落,所以C 错误;D .登月飞船在接近月球过程中,先加速下降再减速下降,所以先失重后超重,所以D 错误。
2.【答案】C【解析】A .小圆柱转到圆心等高处时,T 形支架的瞬时速度不为零,故A 错误; B .小球振动过程中,小球和弹簧组成的系统机械能不守恒,故B 错误;C .经过一段时间后,小球振动达到稳定时,它振动的频率是0.25Hz ,故C 正确;D .圆盘以2s 的周期匀速运动,小球振动达到稳定时,由共振曲线可知,振幅比原来大,故D 错误。
3.【答案】C【解析】ABC .要把小词典斜向上抛出,手先要斜向上加速运动,再斜向上减速运动,而且减速运动的加速度一定要大于g ,即手与小词典分离时,手减速运动的加速度竖直向下的分量一定要大于g ,这样手才能与小词典分离做斜抛运动。
故A ,B 错误;C 正确D .小词典脱离手掌前的整个过程,手受小词典的摩擦力方向先向后,然后变成向前,故D 错误 4.【答案】B【解析】A .根据光电效应方程k 0E h W ν=−再根据动能定理k c eU E =联立可得0c eU h W ν=−利用图像遏止电压的值可知ννν=<甲乙丙而光子动量h p cν=因此光子动量之间的关系为p p p =<甲乙丙,A 错误; B .光电效应中c k eU E =利用图像遏止电压的值可知E E <k 甲k 丙所以B 正确;C .光的双缝干涉实验中,相邻干涉条纹的宽度为l x dλ∆=由νν<甲丙又cλν=得λλ>甲丙所以分别用甲光、丙光照射同一双缝干涉实验装置,甲光形成的干涉条纹间距比丙光的宽,所以C 错误;D .由题图可知,甲光和乙光频率相同,但是甲光比乙光的饱和电流大,即甲光的光强大于乙光,所以D 错误。
安徽省江南十校2023-2024学年高二下学期5月联考语文试题(含答案)
2024年5月江南十校高二联考语文试卷一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,18分)阅读下面的文字,完场下面小题。
材料一:读者蒙重:作为生态学的学生,我会思考生态学的作用,这使得我产生了生态学好像并没有具体的应用场景和发展方向的疑惑。
另外,植物与海洋目前哪个更为重要?唐志尧:生态学是研究宏观生命系统结构、功能与动态的学科,其目的在于揭示宏观生命系统的格局、过程和秩序。
生态学是一门与人类生存和社会发展密切相关的学科,也是人类认识和改造世界的一种自然观。
生态学的母体是生物学,从学科服务于人类社会的角度看,它和以生物学为基础的另外两个学科——医学和农学,在阐明和调控生物体的生命规律的基础上,共同对人类诊断治疗疾病(医学)、提高农作物产量(农学)、改善人类生活环境质量(生态学)等实践活动提供支撑。
因此,生态学不只是象牙塔里的学问,还是能够解决实际问题、满足重大社会需求的学科,它为人类认识、保护和利用自然,维持可持续生物圈提供理论基础和解决途径。
生态学是生态文明建设最重要的理论基础。
伴随着环境、资源、生物多样性及气候变化等全球性问题的出现,生态学为研究这些问题,以及支撑社会发展和满足国家需求提供了重要基础。
“生态文明建设”“五位一体”发展总体布局、“新发展理念”等都需要强大的生态学学科作为理论支撑;“山水林田湖草沙生命共同体”“绿水青山就是金山银山”等理念,本身既是生态学的重要研究内容,更是国家和社会对生态学学科的新要求和新期盼。
可以说,这些关于生态文明建设的理念和举措体现了党和国家在保护生态、加强生态学学科支撑方面的坚强意志。
生态学必须呼应这一需求,为生态文明建设提供学科支撑和理论基础。
具体而言,生态学可以在退化生态系统的修复与重建、生物多样性的保护与利用、病虫害的治理与防控、生态系统服务的提升与维护、水体富营养化的预防与治理、重大生态工程的执行与评估、气候变化政策的制定与实施、国土空间规划与生态整治、生态产品价值化以及碳中和的实现途径等问题的解决方面,提供坚实的理论支撑。
2024届高考安徽省江南十校高三联考思想政治试卷(含答案)
2024届高考安徽省江南十校高三联考思想政治试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.《共产党宣言》指出:“代替那存在着阶级和阶级对立的资产阶级社会的,将是这样的一个联合体,在那里,每个人的自由发展是一切人自由发展的条件。
”据此,这个联合体要( )①把个人财产变为社会财产②消灭对人的阶级剥削和压迫③追求突破社会限制的个体自由④建立维护最大多数人利益的制度A.①②B.①③C.②④D.③④2.2024年是五四运动105周年,一代又一代中国青年谱写着一曲曲“振兴中华”的青春壮歌。
青年李大钊积极宣传马克思主义,致力于建立马克思主义政党;青年毛泽东深入农村调查研究,开展农民运动;青年习近平担任正定县委副书记时期,带领人民锐意改革;当代青年在中华大地上建功立业,为建设社会主义现代化国家贡献力量。
由此可见( )①中国青年始终是实现中华民族伟大复兴的先锋力量②担当时代大仍需青年自觉树立社会主义核心价值观③当代青年以带领人民实现中国式现代化为历史使命④实现伟大中国梦的征程需要广大青年接续拼搏奋斗A.①③B.①④C.②③D.②④3.围绕“完善基本医疗保险门诊共济保障机制”,安徽省明确规定:提高职工普通门诊保障待遇,逐步将多发病、常见病普通门诊费用纳入统筹基金支付范围;个人账户可用于职工本人及其配偶、父母、子女在定点医疗机构就医发生的由个人负担的医疗费用。
这一规定可( )①增强基金的统筹保障功能,提高医保基金的使用效率②增加职工的福利性收入,实现发展成果全体人民共享③减轻参保职工医疗费用负担,提高全民医保发展水平④通过再分配完善医保制度,发挥医保防范医疗风险功能A.①③B.①④C.②③D.②④4.2023年12月,中央经济工作会议强调“发展数字经济”。
根据“数据要素市场化配置的动态过程图”分析,以下政策举措有利于提高数据要素配置效率的是( )①建立数据产权制度,提高数据要素生产者、所有者收益②构建规范高效、公平开放的高标准全国数据统一大市场③健全数据要素由市场评价贡献、按贡献决定报酬的机制④释放数据要素价值,推动数字技术与实体经济深度融合A.①②B.②③C.③④D.①④5.湘河水利枢纽工程是国务院确定的172项重大节水供水工程之一,是西藏自治区“十三五”规划重点骨干工程。
安徽省江南十校2023-2024学年高二下学期5月联考数学试卷 Word版含解析
2024年“江南十校”高二年级联考数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 等差数列中,,,则()A. B. C. 0D. 2【答案】C 【解析】【分析】利用等差数列的性质求解即可.【详解】由等差数列性质得:,即,又,即,故.故选:C2. 安徽省某市石斛企业2024年加入网络平台直播后,每天石斛的销售量(单位:盒),估计300天内石斛的销售量约在1950到2050盒的天数大约为( )(附:若随机变量,则,,)A. 205B. 246C. 270D. 286【答案】A{}n a 12318a a a ++=53a =8a =2-1-2318a =26a =8252a a a +=866a +=80a =()~2000,2500X N ()2~,X N μσ()0.6827P X μσμσ-≤≤+≈()22P X μσμσ-≤≤+0.9545≈()330.9973P X μσμσ-≤≤+≈【解析】【分析】由题意可得,进而由可得结论.【详解】由,所以,所以销售量约在1950到2050盒的概率为,所以由可知大约有205天.故选:A.3. 已知,,圆M 经过A ,B 两点,且圆的周长被x 轴平分,则圆M 的标准方程为( )A B. C. D. 【答案】B 【解析】【分析】求出线段的中垂线,求得与轴的交点即为圆心坐标,进而求得圆的方程.【详解】由题意,中点为,所以线段的中垂线为,令得,所以,半径,所以圆M 的标准方程为.故选:B.4. “一带一路”2024国际冰雪大会中国青少年冰球国际邀请赛在江苏无锡举行,现将4名志愿者分成3组,每组至少一人,分赴3个不同场馆服务,则不同的分配方案种数是( )A. 18 B. 36 C. 54 D. 72【答案】B【解析】【分析】先将4人分成3组,一组2人,一组1人,一组1人,再分配.【详解】将4人分成3组,一组2人,一组1人,一组1人,分法有种,再分配给3个.2000,50μδ==0.6827300204.81⨯=(2000,2500)X N 2000,50μδ==()0.6827P X μδμδ-≤≤-=0.6827300204.81⨯=()4,0A (B 22532x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝()2224x y -+=224x y +=()2214x y -+=AB x ABk ==AB 52⎛ ⎝AB 52y x ⎫-=-⎪⎭0y =2x =()2,0M 2r =()2224x y -+=24C不同场馆有,所以不同的分配方案种数种.故选:B.5. 在棱长均相等的正三棱柱中,E 为棱AB 的中点,则直线与平面所成角的正弦值为( )A.B.C.D.【答案】A 【解析】【分析】本题线面角的定义,作出线面角,根据勾股定理算出线面角所在直角三角形的边长,进而求出正弦值.【详解】过E 作,F 为垂足,连接,则为直线与平面所成角,设三棱柱的棱长为2,则,∴故选:A33A 2343C A 36⋅=111ABC A B C -1B E 11BB C C 13EFBC ⊥1B F 1EB F ∠1B E 1B C EF =1B E =1sin EB F ∠=6. 已知是各项均为正数的等比数列,若,,,则数列的最小项为( )A. B. C. D. 【答案】B 【解析】【分析】设公比为,可得,可求的通项公式,进而可得,进而可得时,,可得结论.【详解】由,,是各项均为正数的等比数列,设其公比为,则有,解得或(舍去),所以,,由得,所以时,,又,,,故最小.故选:B.7. 已知抛物线的焦点为F ,直线l 过点F 且与抛物线交于P ,Q 两点,若,则直线l 倾斜角的正弦值为( )A.B.C. 2D. 3【答案】A 【解析】【分析】由抛物线的定义作出图象,结合几何关系求出即可.{}n a 13a =339S =3nn a b n={}n b 2b 3b 5b 7b q 233339q q ++={}n a 33n n b n=3n ≥1n n b b +≥13a =339S ={}n a q 233339q q ++=3q =4q =-3nn a =33n n b n =31311n nb n b n +⎛⎫=> ⎪+⎝⎭2n >3n ≥1n n b b +≥13b =298b =31b =3b 24x y =2FP QF =1312【详解】过P ,Q 分别作,垂直于准线,垂足分别为,,过Q 作,垂足为R ,设,则,,.故选:A.8. 已知函数,若在上单调,则实数a 的取值范围为( )A. B. C. D. 【答案】D 【解析】【分析】先判断函数为奇函数,根据奇函数的性质有:要使函数在上单调,只要函数在上单调,对函数求导,代特殊值求得,结合函数在上单调,可知在上恒成立,即可知,确定值并检验即可求解.【详解】因为,且,所以为奇函数,要使函数在上单调,只要函数在上单调;又,且,又函数在上单调,故函数在上只能单调递减,PP 'QQ 'P 'Q 'QR PP '⊥FQ r =2FP r =QQ r '=1sin 33PR r PR r PQR PQr =⇒∠===()sin cos f x a x x x =+()f x []π,π-[]0,1[)1,-+∞(],1-∞-{}1-()f x []π,π-()f x []0,πππ022f ⎛⎫'=-<⎪⎝⎭[]0,π[]0,π()0f x '≤()()()010π10f a f a ⎧=+≤⎪⎨=-+≤''⎪⎩a[]π,πx ∈-()()()()sin cos sin cos f x a x x x a x x x f x -=---=--=-()f x ()f x []π,π-()f x []0,π()()1cos sin f x a x x x =+-'ππ022f ⎛⎫'=-<⎪⎝⎭()f x []0,π()f x []0,π由,即,解得,当时,,时,,,故有在上恒成立,经检验知,时符合题意.故选:D【点睛】关键点点睛:本题关键在于根据函数的单调性,判断出导数的取值情况,由此确定值并检验.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知函数,下列关于的说法正确的是( )A. 在上单调递减B. 在上单调递增C. 有且仅有一个零点D. 存在极大值点【答案】BC 【解析】【分析】利用导数的正负的单调性和极值,即可判断ABD ;令可判断D.【详解】对于AB ,由题意知函数的定义域为,所以,令,得,当时,,在上单调递减;当时,,在上单调递增;故A 错误.B 正确;对于D ,由上可知,是的极小值点,无极大值点.故D 错误;令,得,当时,,故为的唯一零点,故C 正确.()()()010π10f a f a ⎧=+≤⎪⎨=-+≤''⎪⎩11a a ≤-⎧⎨≥-⎩1a =-1a =-()sin f x x x '=-[]0,πx ∈0x -≤sin 0x ≥()sin 0f x x x '=-≤[]0,πx ∈1a =-a ()()1e xf x x =-()f x ()f x ()0,1()f x ()1,+∞()f x ()f x ()f x ()0f x =()()1e xf x x =-R ()()e 1e e xxxf x x x =+-='()0f x '=0x =0x <()0f x '<()f x (),0∞-0x >()0f x '>()f x ()0,∞+0x =()f x ()0f x =1x =1x <()0f x <1x =()f x故选:BC10. 现有甲、乙两个盒子,各装有若干个大小相同的小球(如图),则下列说法正确的是( )A. 甲盒中一次取出3个球,至少取到一个红球的概率是B. 乙盒有放回的取3次球,每次取一个,取到2个白球和1个红球的概率是C. 甲盒不放回的取2次球,每次取一个,第二次取到红球的概率是D. 甲盒不放回的多次取球,每次取一个,则在第一、二次都取到白球的条件下,第三次也取到白球的概率是【答案】ABC 【解析】【分析】A 选项利用超几何分布求概率公式即可计算;B 根据二项分布求概率公式计算即可;C 选项、D 选项利用全概率公式与条件概率公式即可求解.【详解】对于A ,记“甲盒中取3球至少一个红球”,则,故A 正确;对于B ,记“乙盒有放回的取3次球,取到2个白球”,则,故B 正确;对于C ,记“甲盒不放回第i 次取到红球”,则,故C 正确.对于D ,,故D 不正确.故选:ABC.1621381337A =()3639C 161C 21P A =-=B =()32313C 28P B ⎛⎫== ⎪⎝⎭=i A ()()()()()()21212121121||P A P A A A P A P A A P A P A A =+=⋅+⋅3263198983=⨯+⨯=()()()312312126544987|65798P A A A P A A A P A A ⨯⨯===⨯11. 达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化为图3所示的几何体,图3中每个正方体的棱长为1,E ,F 为棱,AB 的中点,则( )A. 点P 到直线CQ 的距离为2B. 直线平面C. 平面和平面D. 平面截正方体【答案】ABD 【解析】【分析】由余弦定理可求得,可求P 到CQ 的距离的距离,判断A ;以点D为坐标原点,以DA ,DC ,所在的直线分别为x 轴,y 轴,z 轴,利用向量法平面,判断B ;结合B ,可求得到平面的距离,到平面的距离,可求得平面与平面的距离,判断C ;连接并延长交CD 延长线于U ,连接UF 交AD于V ,交CB 的延长线于W ,可得截面为,求得截面的周长判断D.【详解】由勾股定理可得,由余弦定理得,得,P 到CQ 的距离为,所以A 正确;选项B :如图,以点D 为坐标原点,以DA ,DC ,所在的直线分别为x 轴,y 轴,z 轴,1DD 1AC ⊥1A BD1A BD 11B CD 1C EF 1111ABCD A B C D -45PCQ ∠=︒1DD 1AC ⊥1A BD A 1A BD 1C 11B CD 1A BD 11B CD 1C E 1EVFXC PQ ==PC 3QC ==222cos 2PC QC PQ PCQ PC QC +-∠==45PCQ ∠=︒sin 452PC ⋅︒=1DD则,,,,,∴,设平面的法向量分别为,所以 ,∴,所以平面,故B 正确;选项C :由B 可知平面,同理可证平面,易求,设到平面的距离为,由,可得,所以,解得,所以到平面到平面所以平面与平面C 不正确;选项D :连接并延长交CD 延长线于U ,连接UF 交AD 于V,交CB 的延长线于W ,,,,,的()0,0,0D ()1,0,0A ()10,1,1C ()11,0,1A ()1,1,0B ()11,1,1AC =-1A BD (),,m x y z =()()()()()11,0,1,,01,1,11,1,0,,0DA m x y z x z m DB m x y z x y ⎧⋅=⋅=+=⎪⇒=--⎨⋅=⋅=+=⎪⎩1AC m ∥1AC ⊥1A BD 1AC ⊥ 1A BD 1AC ⊥11B D C 1AC =A 1A BD d 11A A BD A ABD V V --=1111133A BD A ABD S d S AA -=V V g g 1111sin 601113232d ⨯︒⨯=⨯⨯⨯⨯d =A 1A BD 1C 11B CD 1A BD 11B CD =1C E 1C E ==152263ED EV DV ⎧=⎪⎪⇒=⎨⎪=⎪⎩1312AV VF AF ⎧=⎪⎪⇒=⎨⎪=⎪⎩1214FB FX BX ⎧=⎪⎪⇒=⎨⎪=⎪⎩,所以D 正确.故选:ABD.【点睛】方法点睛:求点到面的距离,常用等体积法转化为一个面上的高的方法处理,求截面周长,关键是作出截面图形.三、填空题:本题共3小题,每小题5分,共15分.12. 展开式中的常数项为______.【答案】135【解析】【分析】根据二项式展开式的通项特征,即可求解.【详解】展开式的通项为,令,所以常数项为,故答案为:13513. 已知函数,其中,若是的极小值点,则实数a 的取值范围为______.【答案】【解析】【分析】求导可得,由是的极小值点,结合已知可得,求解可得实数的取值范围.【详解】因为函数的定义域为,求导得,111115344B C C X B X =⎧⎪⇒=⎨=⎪⎩5564++++=63x ⎛- ⎝63x ⎛- ⎝(){}3662613,0,1,2,3,4,5,6k k k k C x k ---∈36042k k -=⇒=()442613135C -=()()213ln 312f x x ax a x =-+-0a <3x =()f x 1,3⎛⎫-∞- ⎪⎝⎭()()()13ax x f x x--'-=3x =()f x 13a-<a ()f x (0,)+∞()()()()()231313331ax a x ax x f x ax a x x x-+-+--'-=-+-==令,可得或,因为是的极小值点,又,所以,从而.所以实数的取值范围为.故答案为:14. 过双曲线的左焦点F 作渐近线的垂线,与双曲线及渐近线的交点分别为A ,B ,点A ,B 均在第二象限,且A 为线段FB 的中点,则______.【答案】1【解析】【分析】首先利用点到直线的距离公式计算出,进而得到,在根据双曲线的定义计算出,然后在中使用余弦定理即可求解。
安徽省江南十校2024届高三3月联考数学试卷含答案
2024届安徽省“江南十校”联考数学(答案在最后)姓名__________座位号__________注意事项:1.答卷前,考生务必将自已的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}221,10x A x B x x =≥=->∣∣,则A B ⋃=()A.{}11x x -<< B.{}01x x ≤< C.{}1x x >- D.{}0x x ≥【答案】C 【解析】【分析】根据指数函数的单调性,结合一元二次不等式的解法、集合并集的定义进行求解即可.【详解】因为{}{}{}{}2210,1011xA x x xB x x x x =≥=≥=->=-<<,所以A B ⋃={}1x x >-,故选:C2.已知复数z 满足()12i 43i z +=+,则z =()A.2i + B.2i- C.2i 5-+ D.2i 5--【答案】A 【解析】【分析】根据复数的除法和共轭复数的概念即可得到答案.【详解】()()()()43i 12i 43i 105i2i 12i 12i 12i 5z +-+-====-++-,所以2i z =+.故选:A.3.已知向量,a b 满足()()1,,3,1a b m a b +=-= .若//a b ,则实数m =()A.13-B.13C.3D.-3【答案】B 【解析】【分析】根据给定条件,求出,a b的坐标,再利用向量共线的坐标表示计算即得.【详解】由()()1,,3,1a b m a b +=-= ,得11(2,),(1,)22m m a b +-==- ,由//a b,得112022m m -+⋅+=,所以13m =.故选:B4.已知函数π()3sin(2)(||)2f x x ϕϕ=+<的图象向右平移π6个单位长度后,得到函数()g x 的图象.若()g x 是偶函数,则ϕ为()A.π6B.π6-C.π3D.π3-【答案】B 【解析】【分析】利用给定的图象变换求出()g x 的解析式,再利用正弦函数的奇偶性列式计算即得.【详解】依题意,()ππ3sin 263g x f x x ϕ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭,由()g x 是偶函数,得πππ,Z 32k k ϕ-+=+∈,而π||2ϕ<,则π1,6k ϕ=-=-.故选:B5.酒驾严重危害交通安全.为了保障交通安全,交通法规定:机动车驾驶人每100ml 血液中酒精含量达到2079mg 为酒后驾车,80mg 及以上为醉酒驾车.若某机动车驾驶员饮酒后,其血液中酒精含量上升到了1.2m g /m l .假设他停止饮酒后,其血液中酒精含量以每小时20%的速度减少,则他能驾驶需要的时间至少为()(精确到0.001.参考数据:lg20.3010,lg30.4771≈≈)A.7.963小时B.8.005小时C.8.022小时D.8.105小时【答案】C 【解析】【分析】根据题意列出指数不等式,根据对数运算法则即可计算.【详解】由已知得:1.20.80.2x ⨯<,所以lg 6lg 2lg 313lg 213lg 2x +>=--,即0.30100.47710.77818.022130.30100.0970x +>=≈-⨯,所以8.022x >故选:C.6.已知函数()1ln f x x x=-在点()1,1-处的切线与曲线()212y ax a x =+--只有一个公共点,则实数a 的取值范围为()A.{}1,9 B.{}0,1,9 C.{}1,9-- D.{}0,1,9--【答案】B 【解析】【分析】求出切线方程,再对a 分0a =和0a ≠讨论即可.【详解】由211()f x x x'=+得(1)2f '=,所以切线方程是2(1)123y x x =--=-,①若0a =,则曲线为2y x =--,显然切线与该曲线只有一个公共点,②若0a ≠,则223(1)2x ax a x -=+--,即2(3)10ax a x +-+=,由2(3)40a a ∆=--=,即21090a a -+=,得1a =或9a =,综上:0a =或1a =或9a =.故选:B.7.已知圆22:8120C x y x +-+=,点M .过原点的直线与圆C 相交于两个不同的点,A B ,则||MA MB +的取值范围为()A.2)-+B.2]+ C.4)-+ D.4]+【答案】D 【解析】【分析】取线段AB 的中点P ,求出点P 的轨迹方程,再利用平面向量数量积的运算律及圆的性质求解即得.【详解】圆22:(4)4C x y -+=的圆心(4,0)C ,半径为2,取线段AB 的中点P ,连接CP ,当P 与圆C 的圆心C 不重合时,CP OP ⊥,点P 在以线段OC 为直径的圆在圆C 内的圆弧上,当P 与C 重合时,也在此圆弧上,因此点P 的轨迹是以线段OC 为直径的圆在圆C 内的圆弧,圆弧所在圆心为()2,0,方程为22(2)4(34)x y x -+=<≤,显然|||2|M MA MB P += ,过点M 与点(2,0)的直线斜率12k =-,过点M与点3(,的直线斜率23k =-,显然21k k <,即过点M 与点(2,0)的直线与该圆弧相交,因此max ||22MP == ,点M与点的距离为3,则||3MP > ,所以||MA MB +的取值范围为4]+.故选:D8.已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,且111,1,1n n n n a S n a b a +=+==+,则使得n T M <恒成立的实数M 的最小值为()A.1B.32 C.76D.2【答案】C 【解析】【分析】根据给定条件,求出数列{}1n a +的通项,再利用等比数列前n 项和公式求出n T 即可得解.【详解】数列{}n a 中,11a =,1n n a S n +=+,当2n ≥时,11n n a S n -=+-,两式相减得11n n n a a a +-=+,即121n n a a +=+,整理得112(1)n n a a ++=+,而211112a S a =+=+=,因此数列{}(2)1n a n +≥是首项为3,公比为2的等比数列,2132n n a -+=⨯,11a =不满足上式,则111112b a ==+,当2n ≥时,21132n n b -=⨯,1211111211721232332612n n n T ---=+⨯=+-⨯<-,而111726T b ==<,依题意,76M ≥,所以实数M 的最小值为76.故选:C【点睛】思路点睛:给出n S 与n a 的递推关系,求n a ,常用思路是:一是利用1n n n S S a +-=转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.箱线图是用来表示一组或多组数据分布情况的统计图,因形似箱子而得名.在箱线图中(如图1),箱体中部的粗实线表示中位数;中间箱体的上、下底,分别是数据的上四分位数(75%分位数)和下四分位数(25%分位数);整个箱体的高度为四分位距;位于最下面和最上面的实横线分别表示最小值和最大值(有时候箱子外部会有一些点,它们是数据中的异常值).图2为某地区2023年5月和6月的空气质量指数(AQI )箱线图.AQI 值越小,空气质量越好;AQI 值超过200,说明污染严重.则()A.该地区2023年5月有严重污染天气B.该地区2023年6月的AQI 值比5月的AQI 值集中C.该地区2023年5月的AQI 值比6月的AQI 值集中D.从整体上看,该地区2023年5月的空气质量略好于6月【答案】ACD 【解析】【分析】根据给定信息,结合图示,逐项判断即得.【详解】对于A ,图2所示中5月份有AQI 值超过200的异常值,A 正确;对于B ,C ,图2中5月份的箱体高度比6月份的箱体高度小,说明5月的AQI 值比6月的AQI 值集中,B 错误,C 正确;对于D ,虽然5月有严重污染天气,但从图2所示中5月份箱体整体上比6月份箱体偏下且箱体高度小,AQI 值整体集中于较小值,说明从整体上看,该地区2023年5月的空气质量略好于6月,D 正确.故选:ACD10.已知抛物线2:2E y px =的焦点为F ,从点F 发出的光线经过抛物线上的点P (原点除外)反射,则反射光线平行于x 轴.经过点F 且垂直于x 轴的直线交抛物线E 于,B C 两点,经过点P 且垂直于x 轴的直线交x 轴于点Q ;抛物线E 在点P 处的切线l 与,x y 轴分别交于点,M N ,则()A.2||PQ BF QF=⋅ B.2||PQ BC OQ=⋅C.PF MF = D.FN l⊥【答案】BCD 【解析】【分析】根据题意,得到各线段的长度,从而判断AB ,利用抛物线光学性质,结合抛物线的定义判断CD.【详解】对于AB ,设点(,)P x y ,则(,0)Q x ,y =,则||PQ =,2pBF p QF x ==-,所以2||22pPQ px px BF QF =≠-=⋅,故A 错误;又||2,||BC p OQ x ==,则2||2PQ px BC OQ ==⋅,故B 正确;对于C ,如下图所示,过点P 作x 轴的平行线RH ,与抛物线E 的准线KH 交于点H ,又题意所给抛物线的光学性质可得SPR MPF ∠=∠,又SPR PMF ∠=∠,所以MPF PMF ∠=∠,从而||||PF MF =,故C 正确;对于D ,因为SPR HPM ∠=∠,所以MPF HPM ∠=∠,即PM 为HPF ∠的角平分线,又由抛物线定义知PH PF =,结合||||PF MF =,可得四边形MFPH 为菱形,而y 轴经过线段FH 中点,从而PM 与y 轴的交点即为点N ,所以FN l ⊥,故D 正确.故选:BCD.11.已知点,,,S A B C均在半径为的球面上,ABC是边长为的等边三角形,SA BC ⊥,SA =,则三棱锥S ABC -的体积可以为()A.3B.C.D.【答案】BC 【解析】【分析】利用线线垂直构造面面垂直结合三棱锥的外接球特征分类讨论计算即可.【详解】取,BC SA 的中点,D F ,设三棱锥S ABC -的外接球球心为O,半径R =作⊥EO AD 于E ,连接,,AO AD OF ,易知,,AD BC AS AD A AS AD ⊥⋂=⊂、平面ADS ,因为SA BC ⊥,所以BC ⊥平面ADS ,又BC ⊂平面ABC ,所以平面ABC⊥平面ADS ,作⊥SG AD 于G 点,平面ABC ⋂平面ADS AD =,则SG ⊥平面ABC ,故三棱锥S ABC -的体积为211334ABC V S SG AB SG =⋅=⨯⨯⨯= ,由题意可知22,1,32AE AD OA OE OF ===⇒===,即11tan ,tan 23OAE OAF ∠=∠=,若S 在直线AO 的下方,则()111323tan tan 1175123SAD EAO FAO SG -∠=∠-∠====+⨯,若S 在直线AO 的上方,则()1123tan tan 1311123SAD EAO FAO SG +∠=∠+∠====-⨯,综上所述V =或335.故选:BC【点睛】思路点睛:先根据条件得出球心与S 点所在平面垂直于底面ABC ,再根据三棱锥的外接球性质及勾股定理计算夹角,OAE OAF ∠∠,最后分类讨论S 点的位置计算三棱锥的高即可.三、填空题:本题共3小题,每小题5分,共15分.12.从0,2,4,6中任意选1个数字,从1,3,5中任意选2个数字,得到没有重复数字的三位数.在所组成的三位数中任选一个,则该数是偶数的概率为__________.【答案】411【解析】【分析】根据两个计数原理及古典概型计算即可.【详解】根据题意可知:若从0,2,4,6中任意选1个不为0的数字有13C 3=种选法,从1,3,5中任意选2个数字有23C 3=种选法,由选出的3个数字组成三位数有3!种组法,共333!54⨯⨯=种方法,其中偶数有1233C A 18⨯=个;若从0,2,4,6中选0,再从1,3,5中任意选2个数字有23C 3=种选法,由选出的3个数字组成三位数有12C 2!4⨯=种组法,共13412⨯⨯=种方法,其中偶数有23A 6=个;所以该数为偶数的概率为1864541211P +==+.故答案为:41113.若函数()2f x +为偶函数,()15y g x =+-是奇函数,且()()22f x g x -+=,则()2023f =__________.【答案】3-【解析】【分析】根据抽象函数的奇偶性、对称性、周期性计算即可.【详解】由题意可知()f x 关于2x =轴对称,()g x 关于()1,5中心对称,()()()()()()2221022228f x g x f x g x f x g x -+=⇒-+--=⇒---=-,所以()()8f x g x -=-,故()()()()262f x f x f x f x +-=-=++,所以()()()()2464f x f x f x f x +++=-⇒=+,即4T =是()f x 的一个正周期,则()()()202331f f f ==由()()()()26136f x f x f f -+=-⇒-+=-,且()()13f f -=,则()13f =-,故答案为:3-14.过双曲线2222:1(0,0)x y E a b a b-=>>的右焦点F 的直线分别在第一、第二象限交E 的两条渐近线于,M N 两点,且OM MN ⊥.若23OM MN ON a +-=,则双曲线E 的离心率为__________.【答案】【解析】【分析】根据渐近线的斜率与倾斜角的关系,结合正切二倍角的公式、正切的定义、勾股定理、双曲线离心率的公式进行求解即可.【详解】由题意可知该双曲线的渐近线方程为by x a=±,如图所示:令MOF θ∠=,于是有tan b aθ=,由双曲线和两条渐近线的对称性可得:π2MON θ∠=-,因为OM MN ⊥,所以ππππ00π22242MON θθ<∠<⇒<-<⇒<<,即tan 1bb a aθ=>⇒>,在直角三角形MOF 中,设()tan 0,MF bm m MF bm OM am OMaθ===>⇒==,根据勾股定理可得:222222222221MF OM OF b m a m c c m c m +=⇒+=⇒=⇒=,或1m =-舍去,即,MF b OM a ==,在直角三角形MON 中,()222222tan tan π2tan 21bNM NM aba MONb b a OM a a θθ∠=-=-=-===--2222a bNM b a⇒=-,由勾股定理可知:22222222222a b ac ON NM OM a b a b a ⎛⎫=+=+= ⎪--⎝⎭,因为23OM MN ON a +-=,所以()2222222222222226306303a b ac a a b a ab c b a ab a b b a b a +-=⇒-+-=⇒-+-+=--2223230202b bb b a ab a a a ⎛⎫⇒+-=⇒-+=⇒= ⎪⎝⎭,或1b a =舍去,由222222224455b b c a c e a a a a-=⇒=⇒=⇒=⇒=,故答案为:5【点睛】关键点睛:本题的关键是利用二倍角的正切公式、由已知等式化简成为,a b 的齐次方程,进而求出双曲线的离心率.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,,a b c 分别是ABC 三个内角,,A B C 3sin cos c A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点,B C 顺时针旋转15 ,30 ,旋转后相交于点D (如图所示),且30DBC ∠= ,求AD .【答案】(1)π3A =(2)63【解析】【分析】(1)根据正弦定理实现边角转化,结合两角和的正弦公式、辅助角公式进行求解即可;(2)根据正弦定理,结合余弦定理、两角和的正弦公式进行求解即可.【小问1详解】根据正弦定理,由3sin cos 3sin sin cos sin sin c A a C b c C A A C B C+=+⇒+=+()3sin sin cos sin πsin C A A C A C C ⇒+=--+()3sin sin cos sin sin C A A C A C C⇒+=++3sin sin cos sin cos cos sin sin C A A C A C A C C ⇒+=++3sin cos sin sin C A A C C ⇒=+,因为()0,πC ∈,所以sin 0C ≠,π3sin cos sin sin 3sin cos 12sin 16C A A C C A A A ⎛⎫=+⇒=+⇒-= ⎪⎝⎭π1sin 62A ⎛⎫⇒-= ⎪⎝⎭,因为因为()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,因此πππ663A A -=⇒=.【小问2详解】由(1)可知π3A =,由题意可知ππ,126ABD ACD ∠=∠=,而π6DBC ∠=,所以πππ5π5ππ7ππ,4341212612ABC ACB BCD ∠=⇒∠=--=⇒∠=+=π7πππ6124BDC ⇒∠=--=,在ABC中,由正弦定理可知:1232632,π5πππ22223sin sin sin 3126422BC AB AC AB ⎛=⇒=⇒=⨯⨯= ⎛⎫⎝⎭+ ⎪⎝⎭在DBC △中,由正弦定理可知:11π7πππ222222sin sin sin 4123422BC BD AC BD ⎛=⇒=⇒=⨯⨯= ⎛⎫⎝⎭+ ⎪⎝⎭,在DBA中,由余弦定理可知:AD =.3=16.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,1,2,60PB AB AD PD BAD ∠=====.(1)求证:平面PAB ⊥平面ABCD ;(2)若二面角P BD A --的大小为120 ,点E 在棱PD 上,且2PE ED =,求直线CE 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)65【解析】【分析】(1)根据余弦定理求出BD =,再利用勾股定理逆定理和面面垂直的判定即可;(2)建立合适的空间之间坐标系,求出相关法向量,根据线面角的空间向量求法即可.【小问1详解】证明:由余弦定理得BD =所以222222,AD AB BD PD PB BD =+=+,因此,AB BD PB BD ⊥⊥,又因为,,AB PB B AB PB ⋂=⊂平面PAB ,所以BD ⊥面PAB ,又因为BD ⊂平面ABCD ,故平面PAB ⊥平面ABCD .【小问2详解】由于,AB BD PB BD ⊥⊥,所以二面角P BD A --的平面角为PBA ∠,即120PBA ︒∠=,在平面PAB 内过点B 作AB 的垂线,交AP 于F ,由平面PAB ⊥平面ABCD ,且BF ⊂平面PAB ,平面PAB ⋂平面ABCD AB =,得BF ⊥平面ABCD ,以B 为坐标原点,,,BA BD BF为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系B xyz -,则1(0,0,0),(,0,22B D C P ⎛⎫-- ⎪ ⎪⎝⎭,设平面PBC 的法向量为(,,)n x y z =,由于1(,0,22BC BP ⎛⎫=-=- ⎪ ⎪⎝⎭ 则00n BC n BP ⎧⋅=⎪⎨⋅=⎪⎩,即013022x x z ⎧-+=⎪⎨-+=⎪⎩,令x =,则1y z ==,所以n =设直线CE 与平面PBC 所成角为θ,2533,,3636CE CP PE CP PD ⎛⎫=+=+=- ⎪ ⎪⎝⎭ ,63sin cos ,5CE n CE n CE nθ⋅∴===⋅,因此直线CE 与平面PBC所成角的正弦值为5.17.某产品的尺寸与标准尺寸的误差绝对值不超过4mm 即视为合格品,否则视为不合格品.假设误差服从正态分布且每件产品是否为合格品相互独立.现随机抽取100件产品,误差的样本均值为0,样本方差为4.用样本估计总体.(1)试估计100件产品中不合格品的件数(精确到1);(2)在(1)的条件下,现出售随机包装的100箱该产品,每箱均有100件产品.收货方对每箱产品均采取不放回地随机抽取方式进行检验,箱与箱之间的检验相互独立.每箱按以下规则判断是否接受该箱产品:如果抽检的第1件产品不合格,则拒绝该箱产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受该箱产品,否则拒绝该箱产品.若该箱产品通过检验后生产方获利1000元;该箱产品被拒绝,则亏损89元.求100箱该产品利润的期望值.附:若随机变量Z 服从正态分布()2,N μσ,则()0.6827P Z μσμσ-+≈≤≤,()()220.9545,330.9973.P Z P Z μσμσμσμσ-≤≤+≈-≤≤+≈【答案】(1)约为5件;(2)89330元.【解析】【分析】(1)根据给定条件,利用正态分布的概率求出这批产品的合格率即可得估计值.(2)利用互斥事件的概率及条件概率公式求出一箱产品通过的概率,再利用二项分布的期望公式及期望的性质计算即得.【小问1详解】分别用样本均值和样本标准差估计正态分布的参数μ和σ,得产品的尺寸误差2)~(0,2X N ,(||4)(22)0.9545P X P X μσμσ≤=-≤≤+≈,因此估计这批产品的合格率为95.45%,样本的不合格品率为10.95450.0455-=,所以估计100件产品中有1000.0455 4.555⨯=≈件不合格品.【小问2详解】设1A =“抽检的第1件产品不合格”,2A =“抽检的第2件产品不合格”,则一箱产品被拒绝的事件为112)(A A A ,因此1121121121))())((((()(|))P A A A P A P A A P A P A P A A =+=+ 59559710010099990=+⨯=,设100箱产品通过检验的箱数为Y ,则893~(100,990Y B ,因此100箱利润1000(89)(100)10898900W Y Y Y =+--=-,所以平均利润893()(10898900)1089()890010891008900990E W E Y E Y =-=-=⨯⨯89330=(元).18.已知矩形ABCD 中,,,,AB BC E F G H ==分别是矩形四条边的中点,以矩形中心O 为原点,HF 所在直线为x 轴,EG 所在直线为y 轴,建立如图所示的平面直角坐标系.直线,HF BC 上的动点,R S 满足(),OR OF CS CF λλλ==∈R.(1)求直线ER 与直线GS 交点P 的轨迹方程;(2)当3λ=-时,过点R 的直线m (与x 轴不重合)和点P 轨迹交于,M N 两点,过点N 作直线:3l x =-的垂线,垂足为点Q .设直线MQ 与x 轴交于点K ,求KMN △面积的最大值.【答案】(1)221(62x y +=不含点(0,;(2)34.【解析】【分析】(1)根据给定条件,借助向量共线用λ表示点,R S ,再求出直线,ER GS 的方程,联立消去参数λ即得.(2)设出直线m 的方程,与点P 的轨迹方程联立,借助韦达定理求出点K 坐标,再建立三角形面积的函数关系,并求出最大值即得.【小问1详解】依题意,(()0,,,,E G FC ,设点)(,),(,0),R S P x y R x S y ,由OR OF λ=,得R x =,即,0)R ,由CS CF λ=,得)S y λ=-,即))S λ-,当0λ≠时,直线:ER y x =,直线:GS y x =+,联立消去参数λ得21(3y y x +-=-,即221(0)62x y x +=≠,当0λ=时,得交点P ,满足上述方程,所以直线ER 与直线GS 交点P 的轨迹方程:221(62x y +=不含点(0,.【小问2详解】当3λ=-时,点(2,0)R -,过点R 的直线m可设为2(x ty t =-≠,由22236x ty x y =-⎧⎨+=⎩消去x 得:22(2)36ty y -+=,即22(3)420t y ty +--=,设1112)(,,)(,M x y N x y ,则12122242,33t y y y y t t -+==++,依题意,2()3,Q y -,直线1221:(3)3y y MQ y y x x --=++,令0y =,得点K 横坐标()212111212333K y x y x y x y y y y -+--=-=--,又111212)2,2(x ty ty y y y =-=-+,则122112211122112121212155(23(2)32352222)Ky y y y y y y ty y ty y y y x y y y y y y y y ++--+----+-=====-----,因此直线MQ 过定点5(,0)2K -,显然1212||11||||24KMN S KR y y y y =-=- ,而12||y y-===,令21(1)n t n=+≥,12y y-==≤=当且仅当2n=,即1t=±取等号,此时4KMNS=,所以KMN△面积的最大值为4.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.19.已知函数()()()e,,xf x x a x a f x=--∈'R是()f x的导函数.(1)证明:()f x'在(),-∞+∞上存在唯一零点x;(2)设函数()()2211e12xg x x ax x x⎛⎫=-+-++⎪⎝⎭.①当e4,2a∞-⎡⎫∈+⎪⎢⎣⎭时,求函数()g x的单调区间;②当e4,2a∞-⎛⎫∈- ⎪⎝⎭时,讨论函数()g x零点的个数.【答案】(1)证明见解析;(2)①答案见解析;②只一个零点.【解析】【分析】(1)对函数求导,构造()()1e xh x x a-=-+-利用其单调性结合零点存在性定理计算即可证明;(2)①先求导函数,构造()()1e xh x x a-=-+-,利用其单调性及()10h-<,得出1x>-,从而判定单调区间;②利用(1)、①的结论,分类讨论函数的单调性,极大值与0的关系判定零点个数即可.【小问1详解】由题意可知()()1e 1xf x x a +'=--,由()01e 0xf x x a -+'=⇒--=,令()1e xh x x a -=-+-,易知()y h x =在R 上单调递增,又11(1)0e a h a --=-<,若0a ≥,由于11a a +>-且11(1)20ea h a ++=->;若a<0,由于1a a ->-且11()12120e e a ah a a a --⎛⎫-=--=-->⎪⎝⎭;所以在(),-∞+∞上存在唯一零点0x ,使得()00h x =,即()f x '在(),-∞+∞上存在唯一零点0x ;【小问2详解】①当e 4,2a ∞-⎡⎫∈+⎪⎢⎣⎭时,易知()()()()221e 1x g x x a x a x =+-+--+'()()11e e x xx x a -⎡⎤=+-+-⎣⎦,由(1)知()1e xh x x a -=-+-单调递增,且只存在一个零点0x ,注意到()3e 41e 02h a --=--≤-<,所以01x >-,可得在区间(),1-∞-和()0,x +∞上,()0g x '>,即此时()g x 单调递增,在()01,x -上,()0g x '<,即此时()g x 单调递减;②易知()00g =,即()g x 的一个零点为0x =,(i )当e 4e,2a -⎛⎫∈- ⎪⎝⎭时,由上可知()1e 0h a -=--<,即01x >-,此时在区间(),1-∞-和()0,x +∞上,()0g x '>,()g x 单调递增,在()01,x -上,()0g x '<,()g x 单调递减,则=1x -时取得极大值()24e102ea g +--=<,又()()()22252e 59e e 50g a =-->-->,即此时()g x 的零点只一个为0x =;(ii )当a e =-时,易知01x =-,此时()0g x '≥,则()g x 在R 上单调递增,所以此时()g x 的零点只一个为0x =;(iii )当e a <-时,易知01x <-,此时在区间()0,x -∞和()1,-+∞上,()0g x '<,()g x 单调递增,在()0,1x -上,()0g x '<,()g x 单调递减,则0x x =时取得极大值()()()002222000000000111e 1e 1e 122xx g x x ax x x x x x x ⎛⎫⎛⎫=-+-++<++-++⎪ ⎪⎝⎭⎝⎭,因为01x <-,所以()()2200111111022x x ++>⨯-+-+>,若200e 10x x ++≤,则()02200001e 1e 102xx x x x ⎛⎫++-++<⎪⎝⎭,若200e 10x x ++>,则()02200001e 1e 12xx x x x ⎛⎫++-++⎪⎝⎭()22000011e 11e 2x x x x ⎛⎫<++⨯-++ ⎪⎝⎭()()0220000e 2111e 110222x x x x x --⎛⎫<++⨯-++=< ⎪⎝⎭,所以()00g x <,同上此时()g x 的零点只一个为0x =;综上所述:()g x 的零点只一个为0x =.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.。
安徽省江南十校2024-2025学年高三上学期第一次综合素质检测数学试题含答案
姓名座位号(在此卷上答题无效)绝密★启用前2024年“江南十校”新高三第一次综合素质检测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2log 2<=x x A ,{}4<=x x B ,=B A A .)4,(-∞B .)4,0(C .)4,4(-D .)0,4(-2.记等差数列{}n a 的前n 项和为n S ,已知863=+a a ,则=8S A .28B .30C .32D .363.已知函数1221)(+-=xx f ,则对任意实数x ,有A .0)()(=+-x f x f B .0)()(=--x f x f C .2)()(=+-x f x f D .2)()(=--x f x f 4.已知βα,都是锐角,71cos =α,1411)cos(-=+βα,求=βcos A .21B .9839C .9859D .98715.已知()nx 21+的展开式中各项系数的和为243,则该展开式中的4x 项的系数为A .5B .16C .40D .806.已知正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心,2为半径作一个球,则球面与正方体的表面相交所得到的曲线的长为A .23πB .25πC .π2D .π7.某次跳水比赛甲、乙、丙、丁、戊5名跳水运动员进入跳水比赛决赛,现采用抽签法决定决赛跳水顺序,在“运动员甲不是第一个出场,运动员乙不是最后一个出场”的前提下,“运动员丙第一个出场”的概率为A .133B .51C .41D .1348.对于0>x ,0ln 12≥-x e xλλ恒成立,则正数λ的范围是A .e1≥λB .e21≥λC .e 2≥λD .e≥λ二、选择题:本题共3小题,每小题6分,共18分。
2024届安徽省“江南十校”联考(语文答案)
2024届安徽省“江南十校”联考语文参考答案选择题(每小题3分,共36分)1.答案:A(A项“对西方文明理论进行系统论述”错误,材料一重在为中华文明探源提供理论方向指导,并没有对西方文明进行系统论述。
)2.答案:D(D项“科技考古作为后过程考古学的得力助手”错,原文观点是科技考古是“过程考古学”的得力助手。
)3.答案:B(材料二第一段的核心观点是:要更新考古范式,充分利用科技方法协同考古工作。
A项属文物考古;C项属遗址考古;D项属文献考古。
三者皆为传统考古,并未与科技考古相结合。
)4.答案:B(A项依据材料二第一段梳理,错误有两处。
应该先“提供问题导向”,才能指导“提炼隐形信息”。
同时,“更新研究范式”的目的是进行“考古学的历史重建”,而不是“重建文献历史”。
C项依据材料二第三段梳理,错误有两处。
“超越器物分类”是例证中田野考古工作者在探索生产力和生产关系时的具体做法,与相关梳理不属于同一个逻辑层面。
同时,考古学阐释要重视的是“文化变迁的内部动因”,而不是“外部动因”。
D项依据材料二第六段梳理,“熟悉田野考古”和“掌握社科理论”是针对理科背景出身的学者提出的“重视学科沟通”的要求,没有涉及针对“田野工作者”的要求,无法实现多学科融合,形成研究整体。
)5.答案:①材料一是从政治家的角度高屋建瓴地为新时代的考古工作作宏观的理论指导;其目标是依托考古来推进中华文明探源工程,把中国文明历史研究引向深入,增强历史自觉,坚定文化自信。
②材料二是从考古学者的角度具体分析如何将科技与考古相融合;其目标是建立历史、科技和人文整合的考古学,从而真正实现国史重建。
(每点3分,其中角度1分,目标2分。
)6.答案:A(祖父充当副驾耕田是在“牧业转为农耕”时的相关情节,不是在“云青马就这样为我家效劳了二十几年”之后。
老人这样做是出于对云青马的爱惜。
)7.答案:C(文中母亲劝说父亲的情节确实给故事增添了温情的力量,但这一劝说主要出于母亲的“心地纯良”,而不是真正理解祖父的心愿。
安徽省江南十校2023-2024学年高一下学期5月阶段联考化学试题含答案
2024年“江南十校”高一年级5月份阶段联考化学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
可能用到的相对原子质量:H-1C-12N-14O-16Na-23S-32一、选择题:本题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2023年是我国实施新型基础设施建设的重要时期,在包括5G 基站建设、城际高速铁路和城市轨道交通等领域都取得瞩目成就,其中涉及各种化学材料。
下列相关说法错误的是A.中国自主研发的首个5G 微基站射频芯片的主要材料是SiB.高铁动车的车厢厢体由不锈钢和铝合金制成,不锈钢和铝合金均属于金属材料C.国产飞机C919用到的氮化硅陶瓷是新型无机非金属材料D.歼-20战斗机在长春航展上完美亮相,其机身采用的碳纤维是有机高分子材料【答案】D 【解析】【详解】A .电子芯片的材料主要是Si ,射频芯片也是电子芯片,故A 正确;B .不锈钢是铁合金,铁合金与铝合金均属于金属材料,故B 正确;C .氮化硅陶瓷,是一种烧结时不收缩的无机材料陶瓷,属于新型无机非金属材料,故C 正确;D .碳纤维指的是含碳量在90%以上的高强度无定型的碳材料,不属于有机高分子材料,故D 错误;答案D 。
2.对于可逆反应()()()()A g 3B s 2C g 2D g ++ ,在不同条件下的化学反应速率如下,其中表示的反应速率最快的是A.()11A 5mol L min v --=⋅⋅B.()11B 0.4mol L sv --=⋅⋅C.()11D 6mol L minv --=⋅⋅ D.()11C 0.2mol L sv --=⋅⋅【答案】D【解析】【详解】反应速率与化学计量数的比值越大,反应速率越快,则A 项51=5;B 为固体,不能用浓度变化表示反应速率;C 项62=3;D 项0.2602=6;显然D 中比值最大,反应速率最快。
2024届安徽省“江南十校”联考(地理答案)
2024届安徽省江南十校联考高三地理试题答案一、选择题(48分)12345678910111213141516C D A D C B B A B A D A C B C D二、非选题(52分)17、(共16分)(1)气候(积温、气温、光照、昼夜温差、无霜期)、地形(海拔)等(任答2点,每点1分共2分);自然条件独特(光照强、昼夜温差大);育种技术的提高;延长产业链,产品深加工;政策支持等。
(任答2点,每点2分共4分)(2)黑龙江:农业机械化程度高、种植经验丰富、冬半年有闲置劳动力(每点1分,任答2点得2分)广东:有冬闲土地、热量适宜、政策、市场广阔等(每点1分,任答2点得2分)(3)赞同:我国地形、气候多样,适宜种植的区域广;我国对粮食需求量增加,需求的种类增多;我国耕地资源与粮食生产存在问题(人均耕地少,后备耕地资源有限,耕地质量欠佳,退化污染严重,农业气象灾害频发,粮食产量年际波动大等问题严重);马铃薯单产高,适应性强,扩大种植利于维护我国粮食安全。
(从种植条件、市场需求、耕地与粮食安全等角度,任答3点共6分,答案合理酌情给分)不赞同:农作物种植规模应因时因地而异;马铃薯部分耕作区,由于劳动力、机械化水平、种植经验与技术投入导致耕种成本高;部分地区生态脆弱,扩大马铃薯种植规模,会造成生态破坏;粮食可以跨区域调剂或进口;不同区域居民饮食习惯不同;可以通过技术投入,提高单产。
(任答3点共6分,答案合理酌情给分)18、(共16分)(1)风化作用、风力作用(风力侵蚀)、重力崩塌。
(任答2点得4分)(2)火山内部的高温蒸汽通过岩层的裂隙上升,到达地表的冰层;蒸汽的热量先融化部分冰层,形成出气孔;夹带着融水的热气喷出地表后,遇到低温空气,立刻冻结成冰,形成冰塔;蒸汽继续融化冰层,冰塔顶端出气口冒着热气。
(任答3点得6分)(3)当火山活动活跃时,热量大,产生的水蒸汽多(2分),促进冰花发育(2分)。
但是当火山活动过于剧烈,热量过高时,冰花融化甚至全部融化。
2024届高考安徽省江南十校高三联考化学试卷(含答案)
2024届高考安徽省江南十校高三联考化学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.化学与社会、生活、环境、工业生产等密切相关。
下列说法错误的是( ) A.杭州亚运会火炬采用“零碳甲醇”作为燃料,它是利用焦炉气中的氢气和从工业尾气中捕捉的2CO 共同合成,是符合“碳中和”属性的绿色能源 B.用“杯酚”分离60C 和70C ,反映出了超分子具有分子识别的特性C.聚乳酸等高分子材料在微生物的作用下可降解为小分子,为消除“白色污染”带来了希望D.豆腐是具有悠久历史的传统美食,其制作原理是利用盐卤等物质使豆浆中的蛋白质变性2.盐酸米多君是用来治疗低血压的药物,其结构如图所示。
下列说法错误的是( )A.该物质分子式为122024C H N O ClB.其水解产物之一可以发生缩聚反应C.1mol 该物质最多可以消耗2molNaOHD.该物质可以发生加成、取代、氧化、还原反应3.工业上以含硫矿物(如黄铁矿)为原料来制备硫酸,其流程如下:25224V O O 98%H SO 22324400C 500CFeS SO SO H SO ︒︒-−−−→−−−−−→−−−−→燃烧吸收 下列说法正确的是( )A.基态S 原子核外有16种不同空间运动状态的电子B.食品中添加适量的2SO 可以起到漂白、防腐和抗氧化等作用C.浓硫酸不能干燥3NH ,但可干燥HID.25V O 能降低反应的活化能,提高2SO 的平衡转化率4.同一主族元素形成的物质在结构和性质上往往具有一定的相似性。
下列说法正确的是( )A.冰中1个2H O 周围有4个紧邻分子,2H S 晶体中1个2H S 周围也有4个紧邻分子B.P 和Cl 可以形成5PCl 分子,N 和Cl 也可以形成5NCl 分子C.3Al(OH)可与碱生成[]4Al(OH)-,3B(OH)也可与碱生成[]4B(OH)-D.2Cl 可与水生成HCl 和HClO ,2F 也可与水生成HF 和HFO 5.结构决定性质。
2024届安徽省“江南十校”联考(政治答案详解)
2024届安徽省“江南十校”联考思想政治答案详解一、选择题1.答案:C【解析】①:共产主义要把作为社会力量的资本变为公共的、属于全体社会成员的财产,并不是“把个人财产变为社会财产”,①错误。
这个联合体要代替阶级和阶级对立的资产阶级社会,共产主义革命就是要建立维护最大多数人利益的制度,彻底消灭人对人的剥削制度和历史现象,②④正确。
③“每个人的自由发展是一切人自由发展的条件”不是一个个人主义命题,是一个彻底的集体主义命题,科学解答个人与社会的关系,而不是割裂个人与社会的关系,③错误。
故本题选C。
2.答案:B【解析】一代又一代中国青年书写着一曲曲“振兴中华”的青春壮歌,青年李大钊、毛泽东、习近平以及当代青年的奋斗行动说明,中国青年始终是实现中华民族伟大复兴的先锋力量,实现伟大中国梦的征程需要广大青年接续拼搏奋斗,①④当选。
②:材料没有涉及社会主义核心价值观的内容,②不选。
中国共产党带领中国人民实现中国式现代化,不是由青年带领,③说法错误。
故本题选B。
3.答案:A【解析】①:“逐步将多发病、常见病普通门诊费用纳入统筹基金支付范围”增强了基金的统筹保障功能,提高使用效率,①正确。
②:题干没有涉及福利性收入,更没有提高职工福利性收入,②错误。
③:“提高职工普通门诊保障待遇,个人账户可用于职工本人及其配偶、父母、子女在定点医疗机构就医发生的由个人负担的医疗费用”可以减轻参保职工医疗费用负担,提高全民医保发展水平,③正确。
④:“完善基本医疗保险门诊共济保障机制”是通过互助共济来应对疾病带来的经济风险,而不是防范医疗风险。
而且医保也不具有防范医疗风险的作用,④错误。
故本题选A。
4.答案:B【解析】①:建立数据产权制度有助于保障数据要素生产者所有者的权益,但无法“提高数据要素生产者所有者的收益”,①错误。
②:“构建规范高效、公平开放的高标准全国数据统一大市场”,有利于发挥市场在数据要素配置中的决定性作用,实现市场主体高水平协同,提高数据要素资源配置效率,②正确。
2024安徽“江南十校”联考语文试题及答案
2024届安徽“江南十校”联考语文试题及答案安徽省江南十校2024届高三联考语文试题一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。
材料一:中华文明探源工程对中华文明的起源、形成、发展的历史脉络,对中华文明多元一体格局的形成和发展过程,对中华文明的特点及其形成原因等,都有了较为清晰的认识。
同时,工程取得的成果还是初步的和阶段性的,还有许多历史之谜等待破解,还有许多重大问题需要通过实证和研究达成共识。
现在,我们运用生物学、分子生物学、化学、地学、物理学等前沿学科的最新技术分析我国古代遗存,使中华文明探源有了坚实的科技分析依据,拓展了我们对中国五千多年文明史的认知。
对文明起源和形成的探究是一个既复杂又漫长的系统工程,需要把考古探索和文献研究同自然科学技术手段有机结合起来,综合把握物质、精神和社会关系形态等因素,逐步还原文明从涓涓溪流到江河汇流的发展历程。
要加强统筹规划和科学布局,坚持多学科、多角度、多层次、全方位,密切考古学、人文科学和自然科学的联合攻关,拓宽研究时空范围和覆盖领域,进一步回答好中华文明起源、形成、发展的基本图景、内在机制以及各区域文明演进路径等重大问题。
长期以来,西方形成了一套文明理论,我们要加以借鉴,但不能照抄照搬。
中华文明探源工程提出文明定义和认定进入文明社会的中国方案,为世界文明起源研究作出了原创性贡献。
(选自习近平《把中国文明历史研究引向深入增强历史自觉坚定文化自信》) 材料二:中国考古学如要真正达到国史重建的目标,首先需要更新范式,为科技方法进入考古学形成的学科交叉提供问题导向。
考古学的历史重建与文献历史有本质的区别,其研究材料的物质性决定了必须依赖自然科学手段的帮助,以提炼其中不可直观的隐形信息。
而且,考古学与历史学相比,更加擅长探索环境、生业、技术、人口和社会复杂化的长时段发展。
对于科技考古工作者,应当熟悉和掌握当代考古学的新范式和新理论,努力为解决各种考古学难题提供关键信息。
2024届安徽省“江南十校”联考(政治答案)
2024届安徽省“江南十校”联考思想政治参考答案一、选择题12345678C B A B BD C B910111213141516A DBCD B C C二、非选择题17.①坚持新发展理念,政府提供政策和资金支持,推动糯稻产业高质量发展。
(3分)②适应市场需求,调整种植结构,提高糯米质量,推进品牌建设,提高市场竞争力。
(3分)③推动三产融合发展,促进科技创新,形成完整“产业链”,促进糯稻产业转型升级,增强规模优势,提高经济效益。
(3分)(其他言之有理可酌情给分)18.①党发挥总揽全局、协调各方的领导核心作用,提出中国式现代化是全体人民共同富裕的现代化,指明共同富裕的科学内涵和实现路径,以这一美好愿景激励人、鼓舞人、感召人。
(3分)②党坚持以人民为中心,科学执政、民主执政,问计于民,以广大人民的根本利益作为制定方案的出发点和落脚点,凝聚民心民智民力。
(3分)③党坚持群众路线,激发人民的创造热情,实现全体人民在推进共同富裕中同心同向、团结奋斗。
(3分)(其他言之有理可酌情给分)19.(1)①价值观对人们认识和改造世界的活动有重要的导向作用,遵循客观规律,自觉站在人民的立场上。
创造和实现人生价值需要充分发挥主观能动性,提高个人素质,锤炼品德修为,(4分)②丘濬爱国爱民、关注民生,廉洁奉公、敬业求精,究治世安民之道,践利国利民之行,成为一代济民、养民、安民、亲民的名臣。
(2分)(其他言之有理可酌情给分)(2)①丘濬心怀百姓、济世为民的思想可以教化育人,提高人们思想道德素质、法治意识,培育科学精神、劳动精神。
(3分)②丘濬文化中为国为民的思想充分体现了以爱国主义为核心的中华民族精神,能够激发民族自信心和自豪感,有助于维护国家安全和统一,建设文化强国,坚定文化自信。
(3分)(其他言之有理可酌情给分)20.①李某作为子女,对父母有赡养的义务。
在父亲病重期间,李某请假回家照顾,尽了子女的孝道,是一种孝老爱亲的行为。
2024届安徽省“江南十校”联考(生物答案)
2024年安徽省“江南十校”联考生物学试题参考答案、评分细则一、选择题题号123456789101112131415答案D B B D D B A C D C D A C C D二、非选择题16.(9分,除标注每空2分)【答案】(1)单位时间、单位叶面积的二氧化碳(2)脲酶林地环境中由于高大植被的遮挡,林下光照强度较弱,相比红松幼树,水曲柳幼树的光饱和点较低,能更好地在林地环境中生长(3)施用尿素处理时气孔开放程度减小,吸收、固定的CO2减少,光合速率减小;呼吸速率增加(3分)【评分细则】(1)答“二氧化碳”得1分(2)第二空:光照强度弱(1分),水曲柳幼树光饱和点较低(1分)(3)气孔开放程度减小,吸收、固定的CO2减少,光合速率减少(2分);呼吸速率增加(1分)17.(12分,每空2分)【答案】(1)Z a W Z A Z a(2)1/6(3)①父本在产生配子时,减数分裂Ⅱ后期姐妹染色单体未分离,产生Z a Z a的雄配子,与W的雌配子结合形成Z a Z a W的雄性②母本在产生配子时,A基因发生突变,产生Z a雌配子,与Z a的雄配子结合产生Z a Z a的雄性(4)深普斑、浅普斑深普斑【评分细则】(1)基因型顺序写错不得分(3)①父本在产生配子时,减数分裂Ⅱ后期姐妹染色单体未分离,产生Z a Z a的雄配子(1分),与W 的雌配子结合形成Z a Z a W的雄性(1分)②母本在产生配子时,A基因发生突变,产生Z a雌配子(1分),与Z a的雄配子结合产生Z a Z a的雄性(1分)18.(13分,除标注每空2分)【答案】(1)③④(2)正(1分)CRH(1分)cAMP含量增加,促进CRH基因表达,CRH合成增多;同时Ca2+内流增加,促进CRH分泌(4分)(3)实验设计:(4分)①选取生长发育状况相同的健康小白鼠若干,测定血液中CRH的含量②手术破坏小白鼠肾上腺皮质,注射适量ACTH,一段时间后测定血液中CRH的含量预期结果:(1分)与手术前相比,若小白鼠血液中的CRH含量明显减少,则说明解释正确;若小白鼠血液中的CRH含量无明显变化,则说明解释错误【评分细则】(1)少答得1分,错答不得分。
2023届安徽省“江南十校”联考生物参考答案
2023届安徽省“江南十校”联考生物试题评分参考一、选择题(本大题生物试题共6 小题,每小题6 分,共计36 分)1. 答案:A【解析】如图所示,有糖蛋白的一侧为细胞膜外一侧,Ca2+ 由细胞内向细胞外进行主动运输,A 错误;在跨膜运输时,Ca2+ 需与特定的载体蛋白紧密结合,能表明载体蛋白具有特异性,B 错误;从图可知,有ATP 水解成ADP 的过程,说明该载体蛋白是一种能催化ATP 水解的酶,酶是可以降低反应所需的活化能的,C 正确;在图示的主动运输过程中,载体蛋白的磷酸化导致其空间结构发生变化,且每次转运都会发生同样的结构改变,D 正确。
2. 答案:C【解析】粳稻对低温耐受性的增强与脱落酸和活性氧的水平有关,A 错误;粳稻的bZIP73 基因通过与另一个bZIP 蛋白发生互作,说明基因与性状的关系不是一一对应的关系,B 错误;与粳稻相比,籼稻的bZIP73 基因中有1 个脱氧核苷酸不同,说明粳稻和籼稻的bZIP73 基因间的差异是由基因突变导致的,C 正确;在转录时,遵循碱基互补配对原则,由基因中的DNA 的碱基序列转变为mRNA 中的碱基序列,bZIP73 基因转录形成的mRNA 碱基与模板链的互补,碱基排列顺序是不同的,D 错误。
3. 答案:B【解析】基因库是指一个种群中的全部个体所含有的全部基因,A 错误;在自然选择的作用下,种群的基因频率会发生定向的改变,有可能导致深圳拟兰某些基因的丢失,B 正确;生物的多样性包括遗传多样性(基因多样性)、物种多样性和生态系统多样性,C 错误;不同物种之间、生物与无机环境之间在相互影响中不断进化,D 错误。
4. 答案:C【解析】毒性弥漫性甲状腺肿是一种自身免疫病,A 错误;补充碘可以治疗缺碘导致的甲状腺肿,但不能治疗毒性弥漫性甲状腺肿,B 错误;毒性弥漫性甲状腺肿的患者会出现甲状腺激素合成增加的现象,临床会表现为精神亢奋且体温略高于正常人,C 正确;毒性弥漫性甲状腺肿是一种自身免疫病,不能通过增强患者的免疫力来缓解症状,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX年安徽省“江南十校”高三联考语文试题(考试日期:20XX年3月8日上午)本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷第1页至第6页,第Ⅱ卷第7页至第8页。
全卷满分150分,考试时间150分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答选择题(第Ⅰ卷1~6题,第Ⅱ卷15~17题)时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题(第Ⅰ卷7~14题,第Ⅱ卷18~21题)时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
第Ⅰ卷(阅读题共66分)一、(9分)阅读下面的文字,完成1~3题。
①文学艺术是一定历史条件下,人类对于客观世界、心灵世界、理想世界的一种表达维度。
就文艺作品是“对人类精神世界的一种记录”而言,电影《小时代》无比真切地表达了思想解放、物质财富迅速积累之后,个人主义和消费主义的虎视眈眈和一往无前的力量。
今天,我们都不必讳言物质创造的重要性和必要性,但是一旦对于财富的炫耀和追求,成为一个社会较大人群尤其是已经摆脱贫困的知识分子的终极目标,一个社会先知先觉阶层的知识分子的精神追求向世俗和世故下倾,整个社会的思想面目势必“喜言通俗,恶称大雅”。
②在中国社会物质文明日益发达的今天,文艺作品对于物质和人的关系的探索是必要的和有价值的,但探索如果仅仅停留在物质创造和物质拥有的层面,把物质本身作为人生追逐的目标,奉消费主义为圭臬,是“小”了时代,窄了格局,.....矮了思想。
今天,中国许多知识分子“言必称西”,认为中国文化传统以大化小,是对个性和个体人发展的剥夺和压迫。
但他们忽视了一个重要的常识:强调发展个性、发挥个体人的天赋特长的西方社会,对于个体的尊重和对于他者即社会大群体的尊重和奉献,通过宗教的层面上升到价值领域并获得共识、付诸实践。
个体的“小”存在于社会历史的“大”之中,工具性的物质服务于本原性的思想和精神。
立功,立言,立人,哪一桩是把个体的价值捆绑在物质的战车上?③青春可掠单纯之美,但幼稚是她隐形的伤疤。
幼稚之人或有美感,文艺的幼稚和浅薄阶段则是必须超越的。
今天,充斥耳目的如果都是《小时代》们,或者因为票房有利可图,就无条件地纵容《小时代2》《小时代3》的出现,物质主义和消费主义引导社会思潮,小时代、小世界、小格局遮蔽甚至替代大时代、大世界、大格局,个人或者小团体的资本运作或许成功了,但是一个时代的人文建设和传播却失控了。
作家和艺术家作为中国知识分子的重要类别,是中国社会人文精神的建设者,也是人文精神的传播者。
文艺创作实践是个体性行为,文艺创作的功能却具有公共性,文艺创作无视大的人群,无视创作底色的世界性、历史性和社会性,是对作家、艺术家自身职责的放弃,也是对时代、历史的伤害和不公道。
④矫枉过正是我们常常会犯的毛病,走过贫穷和物质短缺年代,进入物质相对丰富的时代,对于贫穷的恐慌更加强烈,物质占有的欲望更加迫切。
“凌空高蹈”之不言已久矣。
普通人或可目光和目标向下倾,作家和艺术家不能不为时代唱大风。
作为先知先觉的人群,作家和艺术家要有勇气、有才华,更要有情怀、有格调。
沽名钓誉、追名逐利者请出列,浑浑噩噩、碌碌无为者也请走开。
(选自20XX年7月15日《人民日报》,有删节)1.下列对第②段中“‘小’了时代”的理解,正确的一项是(3分)A.在思想解放、物质财富迅速积累的今天,个人主义和消费主义虎视眈眈并表现出一往无前的力量,我们已不必讳言物质创造的重要性和必要性。
B.对于财富的炫耀和追求成为知识分子的终极目标,知识分子的精神追求向世俗和世故下倾,整个社会的思想面目变得“喜言通俗,恶称大雅”。
C.发展个性、发挥个体人的天赋特长,把对于个体的尊重和对于社会大群体的尊重和奉献,通过宗教的层面上升到价值领域并获得共识,付诸实践。
D.把个体的“小”存在于社会历史的“大”之中,工具性的物质服务于本原性的思想和精神。
即无沽名钓誉、追名逐利者,也无昏昏噩噩、碌碌无为者。
2.下列对原文思路的分析,正确的一项是(3分)A.第①段提出观点,因为文艺作品是对人类精神世界的一种记录,所以电影《小时代》影响了知识分子的精神追求,从而影响了整个社会思想面目。
B.第②段在第①段基础上论述文艺作品的探索停留在物质层面的弊端,然后从中国许多知识分子认识误区的角度探究其原因,最后表明自己的看法。
C.第③段开头照应第①段,指出物质主义和消费主义引导社会思潮带来的严重后果,进而强调了知识分子应具有的重大的社会责任感和历史使命感。
D.第④段紧承第③段,从历史和心理的角度分析了当代社会物质化的原因,强烈呼吁作家和艺术家们要有情怀,要有格调,为时代唱大风,力矫颓俗。
3.下列对原文中作者观点的概括,正确的一项是(3分)A.用文艺作品对物质和人的关系进行探索,这成为已经摆脱了贫困的知识分手对于财富的炫耀和追求。
B.中国文化传统以大化小,对个性和个体人发展进行剥夺和压迫,所以中国许多知识分子“言必称西”。
C.文艺的幼稚和浅薄就在于让个人主义、物质主义和消费主义引导社会思潮,这个阶段是必须超越的。
D.作为先知先觉的人群,作家和艺术家要致力于人文精神的建设和传播,普通人目光向下倾并不为过。
二、(33分)阅读下面的文言文,完成4~7题。
太元七年……冬,十月,秦王坚会群臣于太极殿,议曰:“自吾承业,垂三十载,四方略定,唯东南一隅,未沾王化。
今略计吾士卒,可得九十七万,吾欲自将以讨之,何如?”秘书监朱肜曰:“陛下恭行天罚,必有征无战,晋主不衔璧军门,则走死江湖,陛下返中国士民,使复其桑梓,然后后回舆东巡,告成岱宗,此千载一时也!”坚喜曰:“是吾志也。
”尚书左仆射权翼日:“昔纣为无道,三仁在朝,武王犹为之旋师。
今晋虽微弱,未有大恶。
谢安、桓冲皆江表伟人,君臣辑睦,内外同心。
以臣观之,未可图也。
”坚嘿然良久,曰:“诸君各言其志。
”太子左卫率石越曰:“今岁镇守斗①,福德在吴。
伐之,必有天殃。
且彼据长江之险,民为之用,殆未可伐也!”坚曰:“昔武王伐纣,逆岁违卜。
天道幽远,未易可知。
夫差、孙皓皆保据江湖,不免于亡。
今以吾之众,投鞭于江,足断其流,又何险之足恃乎!”对曰:“三国之君皆淫虐无道,故敌国取之,易于拾遗。
今晋虽无德,未有大罪,愿陛下且案兵积谷,以待其衅。
”于是群臣各言利害,久之不决。
坚曰:“此所谓筑室道旁,无时可成。
吾当内断于心耳!”群臣皆出,独留阳平公融,谓之曰:“自古定大事者,不过一二臣而已。
今众言纷纷,徒乱人意,吾当与汝决之。
”对曰:“今伐晋有三难:天道不顺,一也;晋国无衅,二也;我数战兵疲,民有畏敌之心,三也。
群臣言晋不可伐者,皆忠臣也,愿陛下听之。
”坚作色曰:“汝亦如此,吾复何望!吾强兵百万,资仗如山;吾虽未为令主,亦非暗劣。
乘累捷之势,击垂亡之国,何患不克,岂可复留此残寇,使长为国家之忧哉!”融泣曰:“晋未可灭,昭然甚明。
今劳师大举,恐无万全之功。
且臣之所忧,不止于此。
陛下宠育鲜卑、羌、羯,布满畿甸,此属皆我之深仇。
太子独与弱卒数万留守京师,臣惧有不虞之变生于腹心肘掖,不可悔也。
臣之顽愚,诚不足采;王景略一时英杰,陛下常比之诸葛武侯,独不记其临没之言乎!”坚不听。
于是朝臣进谏者众,坚曰:“以吾击晋,校其强弱之势,犹疾风之扫秋叶,而朝廷内外皆言不可,诚吾所不解也!”(选自《资治通鉴·肥水之战》)【注】①岁镇守斗:岁,木星;镇,土星;斗,星宿名。
斗宿的分野在吴地(东晋占据吴地,吴即东晋)。
《汉书·天文志》:“岁星所在,国不可伐。
”下文“福德在吴”也是此意。
4.对下列句子中加点词的解释,不正确的一项是(3分)A.君臣辑睦辑:和睦B.以待其衅衅:罪过C.吾虽未为令主令:敬辞D.臣惧有不虞之变生子腹心肘掖虞:料想5.下列各组句子中,加点词的意义和用法相同的一项是(3分)A.吾欲自将以讨之不赂者以赂者丧B.武王犹为之旋师吾属今为之虏矣C.愿陛下且按兵积谷犹且从师而问焉D.易于拾遗急于星火6.下列对原文有关内容的概括和分析,不正确的一项是(3分)A.朱肜大肆吹捧秦王苻坚,极力逢迎,认为东晋不堪一击,前秦替天行道,有不战而胜之功,他的说法正合苻坚的心意。
B.石越和权翼从天时、地利、人和等方面对东晋的有利条件作了客观的分析,认为形势对前秦不利,反对前秦攻打东晋。
C.苻融深受苻坚信任,他忠言直谏,可谓苦口婆心。
他主张先攻打鲜卑、羌、羯族,解决了心腹之患之后,再攻打东晋。
D.秦王苻坚狂妄自大,幻想一举消灭东晋。
他表面上虚心纳谏,其实刚愎自用,当臣子提出反对意见,他感到很不痛快。
7.把原文中画线的句子翻译成现代汉语。
(10分)(1)陛下返中国土民,使复其桑梓,然后回舆东巡,告成岱宗,此千载一时也!(6分)译文:(2)今以吾之众,投鞭于江,足断其流,又何险之足恃乎!(4分)译文:阅读下面这首元词,完成8~9题。
蝶恋花鄱江舟夜,有怀余干诸士,兼寄熊东采甫①。
[元]卢挚越水含秋光似镜。
泛我扁舟,照我纶巾影。
野鹤闲云知此兴,无人说与沙鸥省。
回首天涯江路永。
远树孤村,数点青山暝。
梦过煮茶岩下听,石泉呜咽松风冷。
[注]①元成宗大德平年,卢挚由集贤学士大中大夫调任湖南岭北道肃政廉访使,即贬谪南方,此词写于他被贬之后。
8.上阕表达了词人怎样的复杂情感?请结合诗句进行分析。
(4分)答:9.“梦过煮茶岩下听,石泉呜咽松风冷”两句采用虚实结合的手法,请作简要分析。
(4分)答:10.补写出下列名篇名句中的空缺部分。
(甲、己两题任选一题作答;如果两题都答,则按甲题计分)(6分)甲:每览昔人兴感之由,①,②,③。
④,⑤。
⑥。
亦犹今之视昔,悲夫!(王羲之《兰亭集序》)乙:①亦余心之所善兮,。
(屈原《离骚》)②,无以至千里。
(《荀子·劝学》)③,并怡然自乐。
(陶渊明《桃花源记》)④,烟光凝而暮山紫。
(王勃《滕王阁序》)⑤夜深忽梦少年事,。
(白居易《琵琶行》)⑥楚天千里清秋,。
(辛弃疾《水龙吟·登建康赏心亭》)三、(24分)阅读下面文字,完成11~14题。
梭罗木屋张炜多少人向我推荐梭罗的《瓦尔登湖》。
几年前我看了。
我得承认这是一本不会消失的书。
不是因为它有什么惊心动魄的主题和思想,也不是耸人听闻的事件和故事,更不是令人沉迷炫目的才华。