2018年嘉兴市中考数学试卷(含答案解析)-优选.doc

合集下载

2018年浙江省嘉兴市中考数学试卷附答案解析

2018年浙江省嘉兴市中考数学试卷附答案解析

一、选择题(共10题;共20分)1.下列几何体中,俯视图为三角形的是()A. B. C.D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为 2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A.B.C.D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C.D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。

则该方程的一个正根是()B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲C.丙D.丙与丁二、填空题(共6题;共7分)11.分解因式m2-3m=________。

2018年浙江省嘉兴市中考数学试卷(带解析)

2018年浙江省嘉兴市中考数学试卷(带解析)

点 D 在量角器上的读数为 60°,则该直尺的宽度为
cm.
【解答】解:连接 OC, ∵直尺一边与量角器相切于点 C, ∴OC⊥AD, ∵AD=10,∠DOB=60°, ∴∠DAO=30°, ∴OE= ,OA= , ∴CE=OC﹣OE=OA﹣OE= ,
第 6页(共 18页)
故答案为:
15.(4 分)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个,则根据题意,可
9.(3 分)如图,点 C 在反比例函数 y= (x>0)的图象上,过点 C 的直线与 x 轴,y 轴分别交于点 A,B,且 AB=BC,△AOB 的面积为 1,则 k 的值为( )
A.1 B.2 C.3 D.4 【解答】解:设点 A 的坐标为(a,0), ∵过点 C 的直线与 x 轴,y 轴分别交于点 A,B,且 AB=BC,△AOB 的面积为 1, ∴点 C(﹣a, ), ∴点 B 的坐标为(0, ),
7.(3 分)欧几里得的《原本》记载,形如 x2+ax=b2 的方程的图解法是:画 Rt △ABC,使∠ACB=90°,BC= ,AC=b,再在斜边 AB 上截取 BD= .则该方程的一 个正根是( )
A.AC 的长 B.AD 的长 C.BC 的长 D.CD 的长 【解答】解:欧几里得的《原本》记载,形如 x2+ax=b2 的方程的图解法是:画 Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边 AB 上截取 BD= , 设 AD=x,根据勾股定理得:(x+ )2=b2+( )2, 整理得:x2+ax=b2, 则该方程的一个正根是 AD 的长, 故选:B.
【解答】解:所有可能出现的结果如下表所示:

2018年浙江省嘉兴市中考数学试卷含答案解析(Word版)(2)

2018年浙江省嘉兴市中考数学试卷含答案解析(Word版)(2)

浙江省嘉兴市2018年中考数学试卷一、选择题(共10题;共20分)1.下列几何体中,俯视图为三角形的是()A. B. C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。

则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C. D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题(共6题;共7分)11.分解因式m2-3m=________。

2022年浙江省嘉兴市中考数学试卷(含答案)

2022年浙江省嘉兴市中考数学试卷(含答案)

2022年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2B.﹣1C.1D.22.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a34.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B28.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.B.C.D.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8B.16C.24D.3210.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.24.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.2022年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.)1.(3分)(2022•嘉兴)若收入3元记为+3,则支出2元记为()A.﹣2B.﹣1C.1D.2【分析】根据正负数的概念得出结论即可.【解答】解:由题意知,收入3元记为+3,则支出2元记为﹣2,故选:A.【点评】本题主要考查正负数的概念,熟练掌握正负数的概念是解题的关键.2.(3分)(2022•嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【分析】根据主视方向判断出主视图即可.【解答】解:由图可知主视图为:故选:C.【点评】本题主要考查视图的知识,熟练掌握三视图的知识是解题的关键.3.(3分)(2022•嘉兴)计算a2•a()A.a B.3a C.2a2D.a3【分析】根据同底数幂相乘,底数不变,指数相加,即可解决问题.【解答】解:原式=a1+2=a3.故选:D.【点评】本题主要考查了同底数幂乘法,解决本题的关键是掌握同底数幂乘法法则.4.(3分)(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°【分析】根据同弧所对的圆周角等于圆心角的一半即可得出∠BAC的度数.【解答】解:∵∠BOC=130°,点A在上,∴∠BAC=∠BOC==65°,故选:B.【点评】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.5.(3分)(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以解答本题.【解答】解:3x+1<2x,移项,得:3x﹣2x<﹣1,合并同类项,得:x<﹣1,其解集在数轴上表示如下:,故选:B.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cm B.2cm C.(﹣1)cm D.(2﹣1)cm 【分析】根据正方形的性质、勾股定理求出BD,根据平移的概念求出BB′,计算即可.【解答】解:∵四边形ABCD为边长为2cm的正方形,∴BD==2(cm),由平移的性质可知,BB′=1cm,∴B′D=(2﹣1)cm,故选:D.【点评】本题考查的是平移的性质、正方形的性质,根据平移的概念求出BB′是解题的关键.7.(3分)(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B2【分析】根据平均数及方差的意义直接求解即可.【解答】解:A,B两名射击运动员进行了相同次数的射击,当A的平均数大于B,且方差比B小时,能说明A成绩较好且更稳定.故选:C.【点评】本题主要考查平均数及方差的意义,熟练掌握平均数及方差的意义是解答此题的关键.8.(3分)(2022•嘉兴)“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.B.C.D.【分析】由题意:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.列出二元一次方程组即可.【解答】解:根据题意得:,即,故选:A.【点评】此题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8B.16C.24D.32【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.【解答】解:∵EF∥AC,GF∥AB,∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,∵AB=AC,∴∠B=∠C,∴∠B=∠EFB,∠GFC=∠C,∴EB=EF,FG=GC,∵四边形AEFG的周长=AE+EF+FG+AG,∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,∵AB=AC=8,∴四边形AEFG的周长=AB+AC=8+8=16,故选:B.【点评】本题考查平行四边形的判定与性质、等腰三角形的性质、平行线的在等知识,熟练掌握平行四边形的判定与性质是解题的关键.10.(3分)(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a (ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=﹣,即可求出c =2.【解答】解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:C.【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.二、填空题(本题有6小题,每题4分,共24分)11.(4分)(2022•嘉兴)分解因式:m2﹣1=(m+1)(m﹣1).【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣1=(m+1)(m﹣1).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.12.(4分)(2022•舟山)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是.【分析】直接根据概率公式可求解.【解答】解:∵盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是;故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.(4分)(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【分析】根据等边三角形的判定定理填空即可.【解答】解:有一个角是60°的等腰三角形是等边三角形,故答案为:∠B=60°.【点评】本题考查等边三角形的判定,解题的关键是掌握等边三角形的定义及等边三角形与等腰三角形的关系.14.(4分)(2022•嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.【分析】根据正切的定义求出AB,证明△ADE∽△ABC,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】解:由题意得,DE=1,BC=3,在Rt△ABC中,∠A=60°,则AB===,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BD=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、解直角三角形,掌握相似三角形的判定定理是解题的关键.15.(4分)(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).【分析】根据“动力×动力臂=阻力×阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,由题意可得BP•k=P A•a,B′P•k′=P A•a,∴BP•k=B′P•k′,又∵B′P=nBP,∴k′==,故答案为:.【点评】本题考查列代数式,属于跨学科综合题目,理解题意,掌握杠杆原理(动力×动力臂=阻力×阻力臂)是解题关键.16.(4分)(2022•舟山)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为60°,折痕CD的长为4.【分析】设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD 于点H,可得OO′⊥CD,CH=DH,O′C=OA=6,根据切线的性质开证明∠EOF=60°,则可得的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O′,连接O′E,O′F,OO′,O′C,OO′交CD于点H,∴OO′⊥CD,CH=DH,O′C=OA=6,∵将沿弦CD折叠后恰好与OA,OB相切于点E,F.∴∠O′EO=∠O′FO=90°,∵∠AOB=120°,∴∠EO′F=60°,则的度数为60°;∵∠AOB=120°,∴∠O′OF=60°,∵O′F⊥OB,O′E=O′F=O′C=6,∴OO′===4,∴O′H=2,∴CH===2,∴CD=2CH=4.故答案为:60°,4.【点评】本题考查了翻折变换,切线的性质,解决本题的关键是掌握翻折的性质.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2022•嘉兴)(1)计算:(1﹣)0﹣.(2)解方程:=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解;(2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根.【解答】解:(1)原式=1﹣2=﹣1;(2)去分母得x﹣3=2x﹣1,∴﹣x=3﹣1,∴x=﹣2,经检验x=﹣2是分式方程的解,∴原方程的解为:x=﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母.18.(6分)(2022•舟山)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理.【解答】解:赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.【点评】本题考查菱形的判定,掌握平行四边形的判定和菱形的判定方法(对角线互相垂直平分的四边形是菱形)是解题关键.19.(6分)(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.【点评】本题主要考查数字的变化规律,根据数字的变化规律得出=100a(a+1)+25的结论是解题的关键.20.(8分)(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;(2)该函数的两条性质如下(答案不唯一):①当2≤x≤7时,y随x的增大而增大;②当x=14时,y有最小值为80;(3)由图象,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,货轮进出此港口.【点评】本题考查函数的图象,理解题意,准确识图,利用数形结合思想确定关键点是解题关键.21.(8分)(2022•舟山)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】(1)过点C作CF⊥DE于点F,根据等腰三角形的性质可得∠DCF=20°,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF交AD、BE延长线于点G,连接AB,所以DE∥AB,根据直角三角形两个锐角互余可得∠A=∠GDE=20°,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.【点评】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.22.(10分)(2022•舟山)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第三组;(2)(1200﹣200)×(1﹣8.7%﹣43.2%﹣30.6%)=175(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).【点评】本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取信息是解题的关键.23.(10分)(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.【分析】(1)把(1,0)代入抛物线的解析式求出a即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,根据y1>y2,构建不等式求解即可.【解答】解:(1)∵y=a(x+1)2﹣4(a≠0)经过点A(1,0),∴4a﹣4=0,∴a=1,∴抛物线L1的函数表达式为y=x2+2x﹣3;(2)∵y=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点(﹣1,﹣4+m),而(﹣1,﹣4+m)关于原点的对称点为(1,4﹣m),把(1,4﹣m)代入y=x2+2x﹣3得到,1+2﹣3=4﹣m,∴m=4;(3)抛物线L1向右平移n(n>0)个单位得到抛物线L3,的解析式为y=(x﹣n+1)2﹣4,∵点B(1,y1),C(3,y2)在抛物线L3上,∴y1=(2﹣n)2﹣4,y2=(4﹣n)2﹣4,∵y1>y2,∴(2﹣n)2﹣4>(4﹣n)2﹣4,解得n>3,∴n的取值范围为n>3.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,平移变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.24.(12分)(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.【分析】(1)利用等腰三角形的性质证明,再利用AC=AP,即可得出结论;(2)①由题意可得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,再求解∠ACP =∠APC=67.5°,∠CPB=112.5°,证明∠DPE=∠CPB=112.5°,从而可得答案;②先证明△ADP∽△ACB,可得∠APD=45°,DP∥CB,再证明MP=MD=MC=MN,∠EMP=45°,∠MPE=90°,从而可得出结论.【解答】解:(1)赞同,理由如下:∵△ABC是等腰直角三角形,∴AC=BC,∠A=∠B=45°,∴cos45°=,∵AC=AP,∴,∴点P为线段AB的“趣点”.(2)①由题意得:∠CAB=∠B=45°,∠ACB=90°,AC=AP=BC,∴=67.5°,∴∠BCP=90°﹣67.5°=22.5°,∴∠CPB=180°﹣45°﹣22.5°=112.5°,∵△DPE∽△CPB,D,A重合,∴∠DPE=∠CPB=112.5°,∴∠CPE=∠DPE+∠CPB﹣180°=45°;②点N是线段ME的趣点,理由如下:当点D为线段AC的趣点时(CD<AD),∴,∵AC=AP,∴,∵,∠A=∠A,∴△ADP∽△ACB,∴∠ADP=∠ACB=90°,∴∠APD=45°,DP∥CB,∴∠DPC=∠PCB=22.5°=∠PDE,∴DM=PM,∴∠MDC=∠MCD=90°﹣22.5°=67.5°,∴MD=MC,同理可得MC=MN,∴MP=MD=MC=MN,∵∠MDP=∠MPD=22.5°,∠E=∠B=45°,∴∠EMP=45°,∠MPE=90°,∴=,∴点N是线段ME的“趣点”.【点评】本题考查了等腰直角三角形的性质,锐角三角形函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊几何图形的性质是解题的关键.。

2019年浙江省嘉兴市中考数学摸底考试试卷附解析

2019年浙江省嘉兴市中考数学摸底考试试卷附解析

2019年浙江省嘉兴市中考数学摸底考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.甲、乙、丙三人抽签确定一人参加某项活动,乙被抽中的概率是( )A .12B .13C .14D .162.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年 到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( )A .25y x x =+B .2500y x =+C .2500y x x =+D .2500(1)y x =+3. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.与分式2x y的值相等的是( ) A .222x y ++ B .63x y C .3(2x)y D .2x y- 5.方程组251x y x y -=⎧⎨+=⎩的解是( ) A .31x y =⎧⎨=⎩ B .01x y =⎧⎨=⎩ C .21x y =⎧⎨=-⎩ D .21x y =-⎧⎨=⎩6.如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°7.任意一个三角形被一条中线分成两个三角形,则这两个三角形:①形状相同,②面积相同,③全等.上述说法正确的有( )A .0个B .1个C .2个D .3个8.仔细思考下列各对量:①胜2局与负 3局;②气温上升3℃与气温为-3℃;③下降3 米与后退5米.其中具有相反意义的量有( )A . 1 对B .2对C .3对D .0对二、填空题9.在直角坐标平面内,一点光源位于(0,4)处,点P 的坐标为(3,2),则点P 在x 轴上的影子的坐标为 . 10.抛物线22(2)3y x =-+的对称轴为直线 .11. 如图是某市一景点 6月份 1~10 日每天的最高温度折线统计图,由图信息可知该景点这10天的最高温度的平均数是 .12.在四边形ABCD 中,已知∠A+∠B=180°,要使四边形ABCD 是梯形,还需添加一个条件,如果这个条件是与角有关的,那么这个条件可以是 .13.商店买进一批总价为1530元的衣服,第一天以每件20元的价格销售l6件,以后以每件22.5元的价格出售,至少要再卖 件才能获利.14.正比例函数y kx =的自变量增加4 ,函数值就相应减少2,则k 的值为 .15.如图,如果所在位置的坐标为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为 .16.如图,点A 为反比例函数1y x=的图象上一点,B 点在x 轴上且OA BA =,则AOB △的面积为 .17.当0a <,b<0 时,a b +< ,ab 0.18.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).19.如图,在△ABC 中,BI 、CI 分别平分∠ABC 与∠ACB ,若∠BIC=1100,∠A= . 20.若02910422=+-+-b b a a ,则a = ,=b .21.如图,ΔDEF 是ΔABC 以直线GH 为对称变换所得的像.请写出图中的各对全等三角形: .22.如图,AD 为△ABC 中BC 边上的中线,则S △ADB S △ADC 12S △ABC (填“>”或“<”或“一”号)三、解答题23.为解决楼房之间的档光问题,•某地区规定:•两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40•米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.3≈1.732,2≈1.414).24.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)25.已知:如图,∠AOB=∠AOC ,∠1=∠2.试说明:(1)△ABC 是等腰三角形;(2)AO ⊥BC .26.一只口袋内有7个红球、3个白球,这 10个球除了颜色外都相同,先从中摸出一个球(但不知是红球还是白球),并且不放回,试针对第一次摸球的两种情况,分别求第二次从中摸出一个红球的概率.27.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.28.小王是一个很有头脑而又乐于助人的学生,一天,邻居家正在读小学的小明请小王帮助检查作业:7963⨯=;8×8=64;1113143⨯=;1212144⨯=;2426624⨯=;2525625⨯=;小王检查后,直夸小明聪明仔细,“作业全对了.”小王还从这几道题中发现了一个规律,你知道小王发现了什么规律吗?请用含字母 n 的等式表示这一规则 (n 为正整数),并说明它的正确性.29. 已知3a b +=,求:(1)2a b ++;(2)332a b ++.30.一种被污染的液体每升含有2.4×1013个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死4×1010个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少毫升?(注:15滴=1毫升)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.A4.B5.C6.A7.B8.A二、填空题9.(6,0)10.x=226.4℃12.∠B+∠C ≠180°等13.5414.12-15. (-3,1)16.117.0,>18.答案不唯一,如AB =AC19.40°20.2,521.△ABC 与△DEF,△EGH 与△BGH22.=,=三、解答题23.约24米.24.在 Rt △ADF 中,∠D=60°,tan AF D DF=,∴9tan 3AF DF D ==⨯=在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++10919=+=+(1)证明:△AOB ≌△AOC ,得AB=AC ,∴△ABC 是等腰三角形;(2)由(1)得,∠OAB=∠OAC ,∴AO ⊥BC .26.分两种情况:(1)若第一次摸出的是红球,则第二次摸球时,袋内还有6个红球和三个白球,共9个球,摸出一个红球的概率为6293=; (2)若第一次摸出的是白球,则第二次摸球时,袋内还有 7个红球和 2个白球,共 9个球,摸出一个红球的概率为7927.(3a+b )(2a+b )-(a+b )2=5a 2+3ab (平方米);•当a=3,b=2时,5a 2+3ab=63(平方米).28.2(1)(3)(2)1n n n ++=+-;左边=243n n ++,右边=243n n ++,∴成立29.(1)5 (2) 1130.40毫升.。

(中考精品)浙江省嘉兴市中考数学真题(解析版)

(中考精品)浙江省嘉兴市中考数学真题(解析版)

2022年浙江省嘉兴市中考数学试题考试时间:120分钟一、选择题(本题有10小题)1. 若收入3元记为+3,则支出2元记为( )A. 1B. -1C. 2D. -2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 2. 如图是由四个相同小立方体搭成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是: .故选:B .【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键. 3. 计算a 2·a ( )A. aB. 3aC. 2a 2D. a 3为的【答案】D【解析】【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:23,a a a =g故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.4. 如图,在⊙O 中,∠BOC =130°,点A 在 BAC上,则∠BAC 的度数为( )A. 55°B. 65°C. 75°D. 130°【答案】B【解析】 【分析】利用圆周角直接可得答案.【详解】解: ∠BOC =130°,点A 在 BAC上, 165,2BAC BOC \Ð=Ð=° 故选B【点睛】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.5. 不等式3x +1<2x 的解在数轴上表示正确的是( )A. B.C. D.【答案】B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A. 1cmB. 2cmC. -1)cmD. -1)cm【答案】D【解析】 【分析】先求出BD ,再根据平移性质求得BB '=1cm ,然后由BD BB -′求解即可.【详解】解:由题意,BD =cm ,由平移性质得BB '=1cm ,∴点D ,B ′之间的距离为DB '=BD BB -′=(1)cm ,故选:D .【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >.B. A B x x >且22B A S S <. C. A B x x <且22A B S S >D. A B x x <且22B A S S <. 【答案】B【解析】【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8. “市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A. 7317x y x y +=⎧⎨+=⎩B. 9317x y x y +=⎧⎨+=⎩C. 7317x y x y +=⎧⎨+=⎩D.9317x y x y +=⎧⎨+=⎩【答案】A【解析】 【分析】由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场+平场+负场9=,得分总和为17.【详解】解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:29317x y x y ++=⎧⎨+=⎩, 7317x y x y +=⎧∴⎨+=⎩ 故选:A .【点睛】根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 8【答案】C【解析】 【分析】根据EF AC ∥,GF AB ∥,可得四边形AEFG 是平行四边形,从而得到FG =AE ,AG =EF ,再由EF AC ∥,可得∠BFE =∠C ,从而得到∠B =∠BFE ,进而得到BE =EF ,再根据四边形AEFG 的周长是2(AE +EF ),即可求解.详解】解∶∵EF AC ∥,GF AB ∥,∴四边形AEFG 是平行四边形,∴FG =AE ,AG =EF ,∵EF AC ∥,∴∠BFE =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF ,∴四边形AEFG 的周长是2(AE +EF )=2(AE +BE )=2AB =2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.10. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A. 52 B. 2 C. 32 D. 1【答案】B【解析】【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+【∴2239(3)3(24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k =-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B . 【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.二、填空题(本题有6小题)11. 分解因式:m 2-1=_____.【答案】()()11m m +-【解析】【分析】利用平方差公式进行因式分解即可.【详解】解:m 2-1=()()11,m m +- 故答案为:()()11m m +-【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.12. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____. 【答案】25 【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球, ∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25.【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.13. 小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.【答案】60A ∠=︒(答案不唯一)【解析】【分析】利用等边三角形的判定定理即可求解.【详解】解:添加60A ∠=︒,理由如下:ABC 为等腰三角形,180602A B C ︒-∠∴∠=∠==︒, ABC ∴ 为等边三角形,故答案为:60A ∠=︒(答案不唯一).【点睛】本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理. 14. 如图,在 ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.【解析】【分析】先求解AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC ==-=30,90,A ABC Ð=°Ð=°Qtan 60BC AB \=°同理:tan 60DE AD =°BD AB AD \=-=【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15. 某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】k n【解析】 【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n= 故答案为:k n . 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16. 如图,在廓形AOB 中,点C ,D 在 AB 上,将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 E F 的度数为_______;折痕CD 的长为_______.【答案】①. 60°##60度 ②.【解析】 【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将 CD沿弦CD 折叠 ∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即 E F 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∴MEO MFO ≅ (HL ) ∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN=∵MO⊥DC∴12DN CD====∴CD=故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17. (1)计算:(1--(2)解方程:3121xx-=-.【答案】(1)1-;(2)2x=-【解析】【分析】(1)先计算零次幂与算术平方根,再合并即可;(2)先去分母,化为整式方程,再解整式方程并检验即可.【详解】解:(1)(1--121=-=-(2)3121xx-=-,去分母:321,x x-=-整理得:2,x=-经检验:2x=-是原方程的根,所以原方程的根为: 2.x=-【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,分式方程的解法,掌握“以上基础运算”是解本题的关键.18. 小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,小洁:这个题目还缺少条件,需要补充一个条件才能证明.∴四边形ABCD 是菱形.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充,OA OC =证明见解析【解析】【分析】先由OB =OD ,,OA OC =证明四边形ABCD 是平行四边形,再利用对角线互相垂直,从而可得结论.【详解】解:赞成小洁的说法,补充.OA OC =证明:∵OB =OD ,,OA OC =∴ 四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形.【点睛】本题考查的是平行四边形的判定,菱形的判定,掌握“菱形的判定方法”是解本题的关键.19. 设5a 是一个两位数,其中a 是十位上的数字(1≤a ≤9).例如,当a =4时,5a 表示的两位数是45.(1)尝试:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=; ……(2)归纳:25a 与100a (a +1)+25有怎样的大小关系?试说明理由.(3)运用:若25a 与100a 的差为2525,求a 的值.【答案】(1)③34100+25´´;(2)相等,证明见解析; (3)5a =【解析】【分析】(1)③仔细观察①②的提示,再用含有相同规律的代数式表示即可;(2)由()222510510010025,a a a a =+=++再计算100a (a +1)+25,从而可得答案; (3)由25a 与100a 的差为2525,列方程,整理可得225,a =再利用平方根的含义解方程即可.【小问1详解】解:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=34100+25´´;【小问2详解】解:相等,理由如下:()222510510010025,a a a a =+=++ 100a (a +1)+25=210010025,a a ++()5100125.a a a \=++【小问3详解】5a 与100a 的差为2525, 2100100251002525,a a a \++-=整理得:21002500,a = 即225,a =解得:5,a =±1≤a ≤9,5.a ∴=【点睛】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键.20. 6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下: x (h ) … 11 12 13 14 15 16 17 18 … y (cm ) … 189 137 103 80 101 133 202 260 … (数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可;②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y =260时所有的x 值,再结合图像判断即可.【小问1详解】①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.【小问2详解】答案不唯一.①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80.【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,关键.21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.【答案】(1)3.4cm(2)22.2cm【解析】【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =, 20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.【小问1详解】解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠.∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=,∴2 3.4cm DE DF ==.【小问2详解】解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形,∴对称轴l 经过点C .∴AB l ⊥,DE l ⊥,∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,∵DG ⊥AB ,HE ⊥AB ,∴∠EDG =∠DGH =∠EHG =90°,∴四边形DGCE 是矩形,∴DE =HG ,∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=,∴22.2cm AB BH AG DE =++=.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x (h )分为5组:第一组(0≤x <0.5),第二组(0.5≤x <1),第三组(1≤x <1.5),第四组(1.5≤x <2),第五组(x ≥2).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【答案】(1)第三组 (2)175人的(3)该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一)【解析】【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【小问1详解】解:由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第三组;【小问2详解】解:(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;【小问3详解】解:由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).【点睛】本题考查的是频数分布直方图和扇形统计图的知识,解题的关键是读懂频数分布直方图和利用统计图获取信息.23. 已知抛物线L 1:y =a (x +1)2-4(a ≠0)经过点A (1,0).(1)求抛物线L 1的函数表达式.(2)将抛物线L 1向上平移m (m )个单位得到抛物线L 2.若抛物线L 2的顶点关于坐标原点O 的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.【答案】(1)223y x x =+-(2)m 的值为4(3)3n >【解析】【分析】(1)把(1,0)A 代入2(1)4y a x =+-即可解得抛物线1L 的函数表达式为223y x x =+-;(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,顶点为(1,4)m --+,关于原点的对称点为(1,4)m -,代入223y x x =+-可解得m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得抛物线3L 为2(1)4y x n =-+-,根据点B (1,y 1),C (3,y 2)都在抛物线3L 上,当y 1>y 2时,可得22(2)4(4)4n n -->--,即可解得n 的取值范围是3n >.【小问1详解】解:把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=,解得1a =,22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-;【小问2详解】解:抛物线21:(1)4L y x =+-的顶点为(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+, 而(1,4)m --+关于原点的对称点为(1,4)m -,把(1,4)m -代入223y x x =+-得:212134m +⨯-=-,解得4m =,答:m 的值为4;【小问3详解】解:把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+-,点1(1,)B y ,2(3,)C y 都抛物线3L 上,221(11)4(2)4y n n ∴=-+-=--,222(31)4(4)4y n n =-+-=--,y 1>y 2,22(2)4(4)4n n ∴-->--,整理变形得:22(2)(4)0n n --->,(24)(24)0n n n n -+---+>2(62)0n -⨯->,620n -<解得3n >,n ∴的取值范围是3n >.【点睛】本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的在关键是能得出含字母的式子表达抛物线平移后的解析式.24. 小东在做九上课本123页习题:“1也是一个很有趣的比.已知线段AB (如图1),用直尺和圆规作AB 上的一点P ,使AP :AB =1.”小东的作法是:如图2,以AB 为斜边作等腰直角三角形ABC ,再以点A 为圆心,AC 长为半径作弧,交线段AB 于点P ,点P 即为所求作的点.小东称点P 为线段AB 的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP ,点D 为线段AC 上的动点,点E 在AB 的上方,构造 DPE ,使得 DPE ∽ CPB .①如图3,当点D 运动到点A 时,求∠CPE 的度数.②如图4,DE 分别交CP ,CB 于点M ,N ,当点D 为线段AC 的“趣点”时(CD <AD ),猜想:点N 是否为线段ME 的“趣点”?并说明理由.【答案】(1)赞同,理由见解析,(2)①45 ,②点N 是线段ME 的“趣点”,理由见解析【解析】【分析】(1)利用等腰三角形的性质证明AC AB = 再利用,AC AP = 从而可得结论; (2)①由题意可得:45,90,,CAB B ACB AC AP BC Ð=Ð=°Ð=°== 再求解67.5,ACP APC Ð=Ð=° 112.5,CPB Ð=° 证明112.5,DPE CPB Ð=Ð=° 从而可得答案;②先证明,ADP ACB V V ∽可得 45,,APD DP CB Ð=°∥ 再证明,MP MD MC MN ===45,90,EMP MPE Ð=°Ð=° 从而可得结论.【小问1详解】证明:赞同,理由如下:等腰直角三角形ABC ,,45,AC BC A B \=Ð=Ð=°cos 45AC AB \°===,AC AP =QAP AB \ ∴点P 为线段AB 的“趣点”.【小问2详解】①由题意可得:45,90,,CAB B ACB AC AP BC Ð=Ð=°Ð=°== ()11804567.5,2ACP APC \Ð=Ð=°-°=° 9067.522.5,BCP \Ð=°-°=°1804522.5112.5,CPB \Ð=°-°-°=° DPE ∽ CPB ,D ,A 重合, 112.5,DPE CPB \Ð=Ð=°18045.CPE DPE CPB \Ð=Ð+Ð-°=° ②点N 是线段ME 的“趣点”,理由如下: 当点D 为线段AC 的“趣点”时(CD <AD ),AD AC \而,AC AP =AD AP \,AC A A AB Ð=ÐQ ,ADP ACB \V V ∽90,ADP ACB \Ð=Ð=°45,,APD DP CB \Ð=°∥22.5,DPC PCB PDE \Ð=Ð=°=Ð ,DM PM \=9022.567.5,MDC MCD \Ð=Ð=°-°=° ,MD MC \=同理可得:,MC MN =,MP MD MC MN \===22.5,45,MDP MPD E B Ð=Ð=°Ð=Ð=°Q 45,90,EMP MPE \Ð=°Ð=°,MP MN ME ME\= 点N 是线段ME 的“趣点”.【点睛】本题考查的是等腰直角三角形的性质,锐角三角函数的应用,相似三角形的判定与性质,三角形的外角的性质,等腰三角形的判定与性质,理解新定义的含义,掌握特殊的几何图形的性质是解本题的关键。

2023年浙江省嘉兴市中考数学真题(解析版)

2023年浙江省嘉兴市中考数学真题(解析版)

嘉兴市2023年初中毕业生学业水平考试数学(本试卷满分120分,考试时间120分钟)第I 卷(选择题共30分)一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.【答案】B【解析】解:()236⨯-=-.故选:B .2.【答案】C【解析】解:从上面看从下往上数,左边有1个正方形,右边有1个正方形,∴俯视图是:.故选:C .3.【答案】B【解析】A 选项,了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;B 选项,了解某校803班学生的视力情况,适合采用普查,符合题意;C 选项,了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意;D 选项,了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意.故选:B .4.【答案】D【解析】解:A 选项,3332a a a +=,故错误;B 选项,660a a -=,故错误;C 选项,()339a a =,故错误;D 选项,12212210a a a a -÷==,故正确;故选:D .5.【答案】C【解析】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .6.【答案】D【解析】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a -<-,故选项B 不符合题意;∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .7.【答案】D 【解析】解:如图所示,连接CH ,∵折叠,∴EB EH EC==∴,,B C H 在以E 为圆心,BC 为直径的圆上,∴90BHC ∠=︒,∴CH BD⊥∵矩形ABCD ,其中34AB BC ==,,∴4,3BC CD ==∴5BD ==,∴125BC CD CH BD ⨯==,∵tan BC CH BDC CD HD ∠==∴95HD =,故选:D .8.【答案】C【解析】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小,∵2101-<-<<,∴2130y y y <<<.故选:C .9.【答案】B【解析】解:如图,连接BD,点P 是ABC 的重心,点D 是边AC 的中点,P 在BD 上,∴2ABC BDC S S = ,:2:1BP PD =,D F B C ∥ ,∴DFP BEP14DFP BEP S S ∴= ,EF AC ∥Q ,∴BEP BCD △△,222439BEP BCD S BP S BD ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,设DFP △的面积为m ,则BEP △的面积为4m ,BCD △的面积为9m ,四边形CDFE 的面积为6,946m m m ∴+-=,1m ∴=,∴BCD △的面积为9,ABC ∴ 的面积是18.故选:B .10.【答案】D【解析】解:由蓄水池的横断面示意图可得,水的深度增长的速度由慢到快,然后再由快到慢,最后不变,故选:D .第Ⅱ卷(非选择题共90分)二、填空题(本题有6小题,每小题4分,共24分)11.【答案】2023【解析】解:2023-的相反数是2023,故20232023-=,故答案为:2023.12.【答案】OA OC =或OB OD =或AB CD=【解析】解:∵在AOB 与COD △中,A C ∠=∠,AOB COD ∠=∠,∴添加OA OC =,则()ASA AOB COD ≌;或添加OB OD =,则()AAS AOB COD V V ≌;或添加AB CD =,则()AAS AOB COD V V ≌;故答案为:OA OC =(答案不唯一).13.【答案】13【解析】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.14.【答案】65︒##65度【解析】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.15.【答案】158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩【解析】解:依题意得:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩,故答案为:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩.16.【答案】①.-②.1218π-+【解析】解:如图1,过点G 作GH BC ⊥于H,∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒,∴BH =,GH CH =,∵12BC BH CH GH =+=+=,∴6GH =,∴()6CG ===;如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D ,由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =,∴1CDD 是等边三角形,∵30ABC ∠=︒,∴190CG B ∠=︒,∴112CG BC =,∵1CE BC =,∴1112CG CE =,即AB 垂直平分1CE ,∵11CD E 是等腰直角三角形,∴点1D 在直线AB 上,连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置,则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,∵12BC EF ==,∴22DC DB BC ===∴11D C D D ==作1DN CD ⊥于N ,则1ND NC ==∴DN ==,过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒,∵160D DC ∠=︒,90CDB ∠=︒,∴118030BDM D DC CDB ∠=︒-∠-∠=︒,∴12BM BD ==,∴线段DH 扫过的面积112D DB D D D S S =+ 弓形,111CD D D DB CD D S S S =-+ 扇形,(2601136022π⋅=-⨯+⨯1218π=-+,故答案为:-,1218π-+.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.【答案】(1)()2a a +;(2)3x >.【解析】解:(1)()222a a a a +=+;(2)()211x x ->+去括号,得221x x ->+,移项合并,得3x >.18.【答案】都错误,见解析【解析】小丁和小迪的解法都错误;解:去分母,得(3)2x x x +-=-,去括号,得232x x -=-,解得,1x =,经检验:1x =是方程的解.19.【答案】(1)①见解析;②见解析(2)四边形BECD 是菱形,见解析【解析】(1)①如图:直线MN 即为所求;②如图,即为所求;;(2)四边形BECD 是菱形,理由如下:∵MN 垂直平分BC ,∴,OB OC BD CD ==,∵OD OE =,∴四边形BECD 是平行四边形,又∵BD CD =,∴四边形BECD 是菱形.20.【答案】(1)6(2)n(3)见解析【解析】(1)解:∵223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯,∴2211985-=⨯,22131186-=⨯,故答案为:6;(2)由题意得:()()2221218+--=n n n ,故答案为:n ;(3)()()222121n n +--()()21212121n n n n =++-+-+42n =⨯8n =.21.【答案】(1)①3015辆,②68.3分(2)选B 款,理由见解析【解析】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆;②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分;(2)给出1:2:1:2的权重时,72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量,∴可以选B 款.22.【答案】(1)12.9cm (2)能,见解析【解析】(1)解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示,在Rt AEF 中,tan EAF EF AF∠=.tan151300.2735.1(cm)EF AF ∴=⋅︒=⨯=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=︒ ,ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==⨯=>,∴小杜下蹲的最小距离208195.112.9(cm)=-=.(2)解:能,理由如下:过点B 作OB 的垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示,在Rt APM △中,tan MP MAP AP∠=.tan 201500.3654.0(cm)MP AP =⋅⨯=︒∴=,,,90AP AP MAP NAP APM APN =∠=∠∠=∠=︒ ,AMP ANP ∴△≌△.54.0(cm)PN MP ∴==,16054.0106.0(cm)BN BP PN ∴=-=-=.小若垫起脚尖后头顶的高度为1203123(cm)+=.∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)-=>.∴小若垫起脚尖后能被识别.23.【答案】任务一:4m ;任务二:22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角【解析】任务一:建立如图所示的直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =-+,过点()0,1.6,∴ 1.8 1.6a +=,解得0.2a =-,∴()20.21 1.8y x =--+,当0y =时,()20.21 1.80x --+=,得14,2x x ==-(舍去),∴素材1中的投掷距离OB 为4m ;(2)建立直角坐标系,如图,设素材2中抛物线的解析式为2y ax bx c =++,由题意得,过点()()()0,1.6,1,2.45,8,0,∴ 1.6 2.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得0.1511.6a b c =-⎧⎪=⎨⎪=⎩,∴20.15 1.6y x x =-++∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯-⨯--==⨯-,49221.81515-=(m ),∴素材2和素材1中球的最大高度的变化量为22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.24.【答案】(1)8AB =;(2)①见解析;②80y x =;③BG 的长为5或【解析】(1)解:连接OA ,∵O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =,∴10CD CE DE =+=,AE BE =,∴152OA OD CD ===,3OE OD DE =-=,在Rt OAE △中,4AE ===,∴28AB AE ==;(2)解:①连接DG ,∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,∵O 的直径CD 垂直弦AB 于点E ,∴90CGD CEF ∠=∠=︒,∴90F DCG D ∠=︒-∠=∠,∴GAF F ∠=∠;②∵8CE =,4AE=,90CEA ∠=︒,∴22224845AC AE CE =+=+=∵O 的直径CD 垂直弦AB 于点E ,∴ AC BC=,∴CAF CGA ∠=∠,∵ACF GCA =∠∠,∴CAF CGA ∽△△,∴AC CF CG AC =,即x =,∴80y x =;③当10CF CD ==时,在Rt CEF △中,6EF ===,∴2BF EF BE =-=,∵180FGB BGC FAC ∠=︒-∠=∠,∴FGB FAC ∽△△,∴BG BFAC CF =,即210=,∴5BG =;当10DF CD ==时,在Rt DEF △中,222210246EF DF DE =-=-=,在Rt CEF △中,()222284610CF CE EF =+=+∴64BF EF BE =-=,同理FGB FAC ∽△△,∴BG BF AC CF =,即645410=,∴32BG =综上,BG 的长为455或32-.。

2024年浙江省嘉兴市中考数学一模试卷+答案解析

2024年浙江省嘉兴市中考数学一模试卷+答案解析

2024年浙江省嘉兴市中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若收入2元记为,则支出3元记为()A. B. C. D.2.给出四个数:、0、、,其中为无理数的是()A. B.0 C. D.3.下列事件中,属于必然事件的是()A.任意画一个三角形,其内角和为B.打开电视机正在播放广告C.在一个没有红球的盒子里,摸到红球D.抛一枚硬币正面向上4.下列计算正确的是()A. B. C. D.5.如图,下列四个几何体,它们各自的三视图主视图、左视图、俯视图中,有两个相同而另一个不同的几何体是()A.②③B.③④C.②④D.①②6.公元前4世纪的印度巴克沙利手稿中记载着一题:甲、乙、丙、丁四人各持金,乙为甲的二倍,丙为乙的三倍,丁为丙的四倍,并知四人持金的总数为132卢比,则乙的持金数为()A.4卢比B.8卢比C.12卢比D.16卢比7.如图,正比例函数的图象与反比例函数的图象交于点A,若菱形OBCD的顶点B,C,D分别在OA,反比例函数图象和x轴上,则菱形OBCD的边长为()A.B.C.D.8.抛物线为常数,满足条件,则()A.该抛物线与x轴有1个或2个交点B.该抛物线与x轴一定有2个交点C.该抛物线与x轴只有1个交点D.该抛物线与x轴没有交点9.如图,等边中,点D,E分别在边BC,AC上,,AD,BE交于点若则EF的长为()A.B.C.D.10.如图,直角坐标系中,点,,线段AB绕点B按顺时针方向旋转得到线段BC,则点C的纵坐标为()A.5B.C.D.二、填空题:本题共6小题,每小题4分,共24分。

11.用代数式表示“x的2倍与y的差”为______.12.若多项式为不等于0的常数能在有理数范围内因式分解,则k的值可以是______写出一个即可13.某校共有1200名学生.为了解学生的立定跳远成绩分布情况,随机抽取100名学生的立定跳远成绩,画出如图所示条形统计图,根据所学的统计知识可估计该校立定跳远成绩优秀的学生人数是______.14.已知二次函数,当时,则y的取值范围是______.15.如图,,以AB为直径作半圆,弦,将CD上方的图形沿CD向下折叠,使弧CD与直径AB恰好相切于点O,则图中阴影部分的面积为______.16.定义一个运算:,如,用表示大于m的最小整数,如,,按照上述规定,若整数x满足,则x的值是______.三、解答题:本题共8小题,共66分。

嘉兴市中考数学试卷及答案解析(WORD版)

嘉兴市中考数学试卷及答案解析(WORD版)
∵ S△ ABC= AC•BC= AB•CD,
∴ AC•BC=AB•CD,
即 CD=
= =,
∴ ⊙C 的半径为 , 故选 B.
点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此 题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用. 8.一元一次不等式 2(x+1)≥4 的解在数轴上表示为(▲)
(A)33528×107
(B)0.33528×1012
(C)3.3528×1010
(D)3.3528×1011
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,
要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数
浙江省嘉兴市 2015 年中考数学试卷
卷Ι(选择题)
一、选择题(本题有 10 小题,每小题 4 分,共 40 分,请选出各题中唯一的正确选项,不
选,多选,错选,均不得分)
1.计算 2-3 的结果为(▲)
(A)-1
(B)-2
(C)1
(D)2
考点:有理数的减法.
分析:根据减去一个数等于加上这个数的相反数进行计算即可.
绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
解答:解:将 335 280 000 000 用科学记数法表示为:3.3528×1011.
故选:D.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|
<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
4.质检部门为了检测某品牌电器的质量,从同一批次共 10 000 件产品中随机抽取 100 件进行

2024年初中数学中考高频考点解答题测试卷 (17)

2024年初中数学中考高频考点解答题测试卷 (17)

一、解答题1. 如图,在平面直角坐标系中,已知三个顶点的坐标分别为、、.(1)画关于原点成中心对称的;(2)把向上平移4个单位长度,得,画出;(3)和关于某点成中心对称,直接写出该对称中心的坐标_________.2. 二次函数(1)画出上述二次函数的图象;(2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC与反比例函数的图象交于点D,且BC=3CD,求反比例函数的解析式.(3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似.3. 以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.庐江城西高新区某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题(1)______,______.(2)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(3)随机调查了名新聘毕业生中有5名同学选择测试专业,他们男女性别比恰好为3:2,如果选取两名新聘测试专业的工人到省城合肥培训,用列表法或树状图方法,求恰好选一男一女的工人概率.4. 在数学活动课中,小明剪了一张如图所示的纸片,其中,他将折叠压平使点落在点处,折痕为点在上,点在上.(1)请作出折痕;(要求:尺规作图,不写作法,保留作图痕迹)(2)判断的形状,并说明理由.5. 如图,半圆的直径,点在上且,点是半圆上的动点,过点作交(或的延长线)于点.设,.(当点与点或点重合时,的值为0)小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:1 1.52 2.53 3.5________________ 3.74 3.8 3.3 2.50(2)在给出的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当与直径所夹的锐角为时,的长度约为________.6. 在数轴上表示下列各数,并用“”把它们连接起来.,,,,,.7. 如图,等腰中,.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①作的角平分线交于点D;②在边的延长线上作一点E,使,连接.(2)在(1)所作的图形中,猜想线段与的数量关系,并证明.8. 阅读下面的材料:如图1,在线段上找一点C(),若,则称点C为线段的黄金分割点,这时比值为,人们把称为黄金分割数,长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O表示数0,点E表示数2,过点E作,且,连接;以F为圆心,长为半径作弧,交于H;再以O为圆心,长为半径作弧,交于点P,则点P就是线段的黄金分割点.根据材料回答下列问题:(1)根据作图,写出图中相等的线段: ;(2)求点P在数轴上表示的数,并写出的值.9. 作图题.(1)过点作的高,并指出垂足;(2)过点作直线平行于;(3)利用尺规,画出的中线.10. 【问题呈现】老师在课堂中提出这样的问题:如图1,在中,,,若,求的长.【合作交流】(1)在解决这个问题时,小胡代表小组给了一种不同的做法:解:把沿着翻折,得到.,,,,(请在下面补全小胡的证明过程)【思维拓展】(2)如图2,点是内一点,,,,若,则、、三者之间的相等关系是___________.【能力提升】(3)①如图3,在四边形中,,,,且,则的周长为__________.②如图4,在四边形中,,平分,,,,则________.11. 如图,已知≌,且、、、四点在同一直线上.(1)在图1中,请你用无刻度的直尺作出线段的垂直平分线;(2)在图2中,请你用无刻度的直尺作出线段的垂直平分线.12. 在正方形中,为正方形的外角的角平分线,点在线段上,过点作于点,连接,过点作于点,交射线于点.(1)如图1,若点与点重合.①依题意补全图1.②判断与的数量关系并加以证明.(2)如图2,若点恰好在线段上,正方形的边长为,请写出求长的思路().可以不写出计算结果13. 如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)尺规作图:过点E作EF⊥BC,垂足为F(保留作图痕迹);(3)在(2)的条件下,若△ABC的面积为40,BC=10,求EF的长.14. “书香三晋,文化山西”全民阅读系列活动始于2014年,过去六年,我省全民阅读活动取得了长足进步.今年,我省“书香三晋,文化山西”全民阅读工作将紧围绕“学习宣传贯彻党的十九大精神”“纪念改革开放四十周年”“红色的魅力”“弘扬中华优秀传统文化”四大主题展开.本学期初,某校开展了以“弘扬中华优秀传统文化”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)本次共调查了名学生;(2)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为;(3)求本次所抽取学生四月份“读书量”的平均数;(4)该年级读书爱好者社团名成员代表中有名女生名男生,现在需要从这人中随机抽取人参加省电视台举办的“弘扬中华优秀传统文化”主题读书活动,请用列表或画树状图的方法.求被抽取的人恰好是名男生名女生的概率.15. 初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“独立思考”所在的扇形的圆心角的度数为 度;(3)请将条形统计图补充完整;(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?16. 如图所示的正方形网格中,每个小正方形的边长为1,的三个顶点都在格点上,且顶点,的坐标分别为,.(1)判断的形状是__________三角形;(2)在网格内画出平面直角坐标系,并写出点的坐标__________;(3)画出关于轴对称的.17. 图①、图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,线段的端点均在格点上,只用无刻度的直尺,在给定的网格中按要求画图.(1)的长为_______________.(2)在图①中画一个以为直角边的等腰直角三角形.(3)在图②中画一个以为斜边的等腰直角三角形.18. 如图,在中,,.(1)用直尺和圆规作,使圆心O在边,且经过A,B两点上(不写作法,保留作图痕迹);(2)连接,求证:平分.19. 如图,已知锐角和直角.在内部求作,使与互余.(尺规作图,保留作图痕迹,不写作法)20. 如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A、B、C的坐标;(2)求出△AOA1的面积.21. 如图,在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.22. 一辆巡逻车从文化广场A出发,向西走了2km到达学校B,继续向西走了1km到达公园C,然后向东走了5km 到达商场D,最后回到文化广场A.(1)用一个单位长度表示1km,向东为正方向,以文化广场为原点,画出数轴,并在数轴上标明 A、B、C、D 的位置.(2)商场 D 离文化广场 A 有多远?(3)巡逻车一共行驶了多远?23. 某校组织了一次全校1000名学生参加的“中考体育模拟”测试,测试结束后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次模拟测试的成绩分布情况,学校随机抽取了其中100名学生的成绩作为样本进行整理,得到如下两个不完整的统计图表:成绩分频数频率5二、解答题103040请根据所给的信息,解答下列问题:(1) , ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段 ;(4)若成绩在90分以上(包括90分)的为“优”,则该校参加这次模拟测试的1000名学生中成绩“优”的学生优多少人?24. 如图,AB 表示路灯,CD 、CʹDʹ表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DDʹ长为3米,你能帮他算出路灯的高度吗?(B 、D 、Dʹ在一条直线上)25.如图,已知的三个顶点的坐标分别是,,.(1)画出与关于轴对称的,并直接写出的坐标;(2)在轴上有一点,使得,请直接写出点的坐标.26. 游泳池应定期换水,某游泳池在一次换水前存水936立方米,换水时关闭进水孔打开排水孔,以每小时78立方米的速度将水放完,当放水时间增加时,游泳池的存水随之减少,它们的变化情况如下表:放水时间/小时123456游泳池的存水/立方米858780702546(1)在这个变化过程中,自变量是________,因变量是________;(2)请将上述表格补充完整;(3)设放水时间为小时,游泳池的存水量为立方米,写出与的关系式(不要求写自变量范围).27. 综合实践为了测量一条两岸平行的河流宽度,三个数学兴趣小组设计了不同的方案,他们在河的南岸点A处测得北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器、皮尺等测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向点C在点A的正西方向测量数据,,.,,.,,.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(结果精确到).(参考数据:,,,)28.曲阜尼山圣境孔子像,背山面湖,面南而立,为世界最高最大的孔子像,成为儒客和游人朝拜、瞻仰必到之处.一游客想知道孔子像的高度.如图,与水平面垂直,在点D处测得顶部A 的仰角是,向前走了24米至点E处,测得此时顶部A的仰角是,请聪明的你帮他求出孔子像的高度.(参考数据:)29. 抚顺市某中学在今年11月份组织七年级学生去抚顺市素质教育基地进行实践活动学习,由胡主任和甲、乙两名同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”胡主任说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”请你求出来.(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,你知道七年级共有多少人去素质教育基地进行实践活动吗?(3)胡主任在一旁听了他们的谈话说:考考你们七年数学学习的情况,“若从省钱角度考虑,还有别的方案吗?”如果是聪明的你,你该如何设计租车方案,请直接写出租车方案.30. 某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元?31. 某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?32. 某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化满足;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?33. 列方程解应用题:某商场经销甲、乙两种服装.甲种服装每件进价250元,售价400 元;乙种服装每件进价400元,售价600元.(1)销售甲种服装每件利润为元______,销售乙种服装每件利润率为______.(2)该商场同时购进甲、乙两种服装共50件,总进价恰好为17000元,求商场销售完这批服装共盈利多少?34. 某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:年销售额(万2016106元)人数(人)1374根据以上信息,回答下列问题:(1)年销售额在 万元的人数最多,年销售额的中位数是 万元;(2)计算平均年销售额;(3)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由.35. 下表为抄录体育官方票务网公布的三种球类比赛的部分门票价格,根据某公司购买的门票种类、数量绘制的统计图表如下:4依据上边的图表,回答下列问题:(1)其中足球比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有门票的形状、大小、质地完全相同且充分洗匀),则员工小李抽到男篮门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的,求每张乒乓球门票的价格.36. 一商场经销的A,B两种商品,A种商品每件进价40元,利润率为50%;B种商品每件进价50元,售价80元.(1)A种商品每件售价为______元;(2)若该商场同时购进A,B两种商品共100件,恰好总进价为4700元,求购进A,B两种商品各多少件?(3)元旦期间,该商场对A,B两种商品进行优惠促销活动:如果购物超过600元,那么超过600元的部分打折优惠.琪琪购买了总价值为800元的A,B商品,享受优惠后,实际共付款720元,直接写出该商场超过600元的部分是打几折销售的?37. 某种产品的成本是每件元,试销售阶段每件产品的销售价x(元)与日销售量y(件)之间的关系如下表所示.已知y是x的一次函数.x/元152030…y/件252010…(1)若每日的销售利润是元,求每件产品的销售价;(2)要使每日获得最大销售利润,每件产品的销售价应定为多少?此时每日的销售利润是多少?38. 某商场购进甲、乙两种服装后,都加价再标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装共付款元,两种服装标价之和为元,这两种服装的进价和标价各是多少元?39. “蛟龙号”载人潜水器是中国探索深海的利器,如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为;当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为,求点C到海面的深度.(结果精确到0.1千米,参考,)40. 为了迎接“十·一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格/种类甲乙进价(元/双)m售价(元/双)160120已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润售价进价)不少于10800元,且不超过11100元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售.乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?41. 如图,某动力科学研究实验基地内装有一段长为的笔直轨道,现将长度为的金属滑块在上面往返滑动一次,滑动开始前,滑块左端与点A重合,滑动过程由三个阶段组成:1.滑块以的速度沿方向匀速滑动,当滑块的右端与点B重合时,滑动停止.2.滑块停顿.3.滑块以小于的速度沿方向匀速返回,当滑块的左端与点A重合时,滑动停止.设滑动时间为时,滑块左端离点A的距离为,右端离点B的距离为,(1)当时,求的值.(2)整个滑动过程总用时(含停顿的时间),请根据所给条件解决下列问题:①求滑块返回的速度.②记,若,求t的值.42. (1)【操作】有若干张如图①所示的正方形纸片,将其沿虚线剪成如图②所示的A、B、C三类纸片.由图①可得到一个我们学习过的乘法公式,它是______;(2)【理解】用图②中的A、B、C三类纸片拼成一个两边长分别为和的长方形.求需要A、B、C三类纸片的张数,并画出拼出的长方形;(3)【拓展】从图②中取出2张A型和1张C型纸片,将其中2张A型纸片放入到C型纸片内,如图③所示;再从图②中取出2张A型和1张C型纸片,将2张A型纸片放入到C型纸片内,如图④所示.若图④中的阴影部分图形的面积和比图③中的阴影部分图形的面积大,求a的值.43. 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?44. 仁寿某商场服装柜在销售中发现:“爱童”牌童装平均每天可售出20件,每件盈利40元.为迎接“元旦”节,商场决定采取适当的降价措施扩大销量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,则平均每天就可多售出8件.(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?(2)如果你是老总,请算一下每件童装应降价多少元可使一天的盈利最大?最大盈利是多少?45. 某超市以20元/千克的价格购进一批绿色食品,在整个销售旺季的40天里,设第天的销售单价为元/千克,与满足如下关系:,(1)第几天时销售单价为24元/千克?(2)如图,设第天的销售量为千克,与之间的关系可用图中的函数图象来刻画.若超市第天销售该绿色食品获得的利润为元,求关于的函数表达式,并求出第几天的利润最大,最大利润是多少?46. 某新型农场正值草莓丰收季节,安排6位员工进行草莓采摘工作.规定每位员工每天采摘数量以为标准,超出部分记作正数,不足部分记作负数,下面是6位员工某一天采摘草莓的实际情况:,,,,,(1)这6位员工草莓采摘实际总质量能达到标准总质量吗?(2)该农场工资标准是:每人每天的基本工资是200元.若没达到标准数量,每少扣2元;若超出标准数量,每多奖励3元,该农场这天共需支付的工资总额是多少元?47. 某个体户计划投入一笔资金采购一批紧俏商品,经过市场调查发现,有两种销售方案可行,方案1:月初出售,可获利,并可用本利再投资其他商品,到月末又可获利;方案2:月末出售,可获利,但需付900元存储费.(1)若该个体户投资2.5万元,选择哪种销售方案获利较多?(2)若该个体户投入a万元,当a为何值时,两种销售方案的利润一样多?(3)若该个体户投入a万元,试根据a的值比较两种销售方案的利润.48. 如图,台风“海葵”中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A、B的距离分别为,又,经测量,距离台风中心及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?49. 在学校组织的数学竞赛中,八(1)班比赛成绩分为、、、四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩现整理并绘制成如下的统计图.请你根据以上提供的信息解答下列问题:(1)请补全条形统计图(2)八年级一班竞赛成绩众数是________,中位数落在________类.(3)若该校有1500名学生,请估计该校本次竞赛成绩为类的学生人数.三、解答题50. 某店商计划采购甲、乙两种不同型号的平板电脑共30台,两种型号的平板电脑每台进价和销售价格如表所示:型号甲乙每台进价/元16002500每台售价/元20003000设采购甲型平板电脑x 台,全部售出后获利y 元.(1)求y 与x 的函数表达式;(2)若要求采购甲型平板电脑数量不小于乙型的2倍,如何采购才能使得获利最大?最大利润为多少?51. 按逻辑填写步骤和理由,将下面的证明过程补充完整.如图,四边形中,点在上,,.(1)求证:.证明:(已知)()()在和中( )(已证)(已知)( )(用字母表示)(2)若,则度.(直接填空)52. 如图,在正方形中,E 是边的中点,F是上一点且,连接,,求证:.53. 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.54. 如图ABC中,AD是高,CE为中线,DC=BE,DG⊥CE于G点,求证:(1)G为CE的中点.(2)∠B=2∠BCE.55. 如图(1),正方形中,P为边上的一个动点,作等腰直角,,连接.(1)在点P的运动过程中,点E的运动是有规律的,试说明点E运动的方向路线,并证明你的结论;(2)若交于点F,连接,小红在研究这个图形时,经过思考,发现这道题目里面包含有一个什么角模型,请你在她的基础上,证明;(3)如图(2),连接,H为的中点,连接,若的长是方程的一个实数根,求线段的最小值.56. 在中,,,是的角平分线,于点E.(1)如图1,连接,求证:是等边三角形;(2)如图2,点N是线段上的一点,以为一边,在的下方作,交延长线于点G.试探究,与数量之间的关系,并说明理由.57. 如图,在⊙O中,AB为直径,C为⊙O上一点.过点C作⊙O的切线,与AB的延长线交于点P.(1)若∠CAB=25°,求∠P的大小;(2)求证:.58. 如图,在中,,平分,交于点,过点作于点.(1)求证:≌;(2)若,求的度数.59. 如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.60. 如图,已知在Rt△ABC中,∠ACB=90°,D是边AC延长线上一定点.(1)用直尺和圆规在边BC的延长线上求作一点P,使得∠CDP=∠A(不写作法和证明,保留作图痕迹);(2)在(1)的情况下,连接BD、AP,若AC=CD,猜想四边形ABDP是哪种特殊的四边形?并证明你的猜想.61. 已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,∠DAE=∠BAC.【初步感知】(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB EC.(填>、<或=)(2)发现证明:如图②,将图①中△ADE的绕点A旋转,当点D在△ABC外部,点E在△ABC内部时,求证:DB=EC.【深入研究】(3)如图③,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为 ;线段CE,BD之间的数量关系为 .(4)如图④,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E在同一直线上,AM为△ADE中DE边上的高,则∠CDB的度数为 ;线段AM,BD,CD之间的数量关系为 .62. 如图,在中,,,的垂直平分线交于点,交于点,,连接.。

浙江省嘉兴市中考数学试卷含答案

浙江省嘉兴市中考数学试卷含答案

2018年浙江省嘉兴市中考数学试卷解读一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.<2018•嘉兴)<﹣2)0等于< )A .1B.2C.0D.﹣2考点:零指数幂。

专题:计算题。

分析:根据0指数幂的定义直接解答即可.解答:解:<﹣2)0=1.故选A.点评:本题考查了0指数幂,要知道,任何非0数的0次幂为1.2.<2018•嘉兴)下列图案中,属于轴对称图形的是< )A .B.C.D.考点:轴对称图形。

分析:根据轴对称图形的概念求解.解答:解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.点评:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.<2018•嘉兴)南海资源丰富,其面积约为350万平方千M,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为< )b5E2RGbCAPA .0.35×108B.3.5×107C.3.5×106D.35×105考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,因为350万共有7位,所以n=7﹣1=6.解答:解:350万=3 500 000=3.5×106.故选C.点评:本题考查了科学记数法表示较大的数,准确确定n是解题的关键.4.<2018•嘉兴)如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于< )p1EanqFDPwA .15°B.20°C.30°D.70°考点:切线的性质。

分析:由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.解答:解:∵BC与⊙0相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°,∵OA=OB ,∴∠A=∠OBA=20°.故选B .点评: 此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用.5.<2018•嘉兴)若分式的值为0,则< )A . x=﹣2B . x=0C . x=1或2D .x=1考点:分式的值为零的条件。

【中考真题】2021年浙江省嘉兴市中考数学试卷(附答案)

【中考真题】2021年浙江省嘉兴市中考数学试卷(附答案)
连接dfef过点f作fnacfmab在abc?中90bac???点g是de的中点agdgeg又agfg点adfe四点共圆且de是圆的直径dfe90在rtabc中abac5点f是bc的中点cfbf15222bc?fnfm52又fnacfmab90bac???四边形namf是正方形anamfn52又90nfddfm?????90dfmmfe?????nfdmfe???答案第5页总19页nfdmfemednanad12aeamme3在rtdae中de2213adae??故选

将上式代入 中,
得: ,
解得: ,
由 ,得: ,
(两边同时乘上一个负数,不等号的方向要发生改变),
故选:D.
【点睛】
本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况.
11. (答案不唯一)
【分析】
根据题意确定出方程的整数解即可.
【详解】
解:方程 的一组整数解为
故答案为: (答案不唯一)
17.(1)计算: ;
(2)化简并求值: ,其中 .
18.小敏与小霞两位同学解方程 的过程如下框:
小敏:
两边同除以 ,得

则 .
小霞:
移项,得 ,
提取公因式,得 .
则 或 ,
解得 , .
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
19.如图,在 的正方形网格中,网格线的交点称为格点, 在格点上,每一个小正方形的边长为1.
【点睛】
此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
12.
【分析】
根据位似图形的对应顶点的连线交于一点并结合网格图中的格点特征确定位似中心.

2019年浙江省嘉兴市中考数学试卷-含答案

2019年浙江省嘉兴市中考数学试卷-含答案

2019年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.12019D.−120192.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106 3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.120196.(3分)已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( ) A .a +c >b +dB .a ﹣c >b ﹣dC .ac >bdD .ac>bd7.(3分)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .128.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .{4x +6y =383x +5y =48 B .{4y +6x =483y +5x =38 C .{4x +6y =485x +3y =38D .{4x +6y =483x +5y =389.(3分)如图,在直角坐标系中,已知菱形OABC 的顶点A (1,2),B (3,3).作菱形OABC 关于y 轴的对称图形OA 'B 'C ',再作图形OA 'B 'C '关于点O 的中心对称图形OA ″B ″C ″,则点C 的对应点C ″的坐标是( )A .(2,﹣1)B .(1,﹣2)C .(﹣2,1)D .(﹣2,﹣1)10.(3分)小飞研究二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y =﹣x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形; ③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2; ④当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2. 其中错误结论的序号是( ) A .① B .② C .③ D .④二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b 的大小关系为(用“<”号连接).14.(4分)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC 交⊙O于点D,则CD的最大值为.15.(4分)在x2++4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为cm2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)小明解答“先化简,再求值:1x+1+2x−1,其中x=√3+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE =CF”成立,并加以证明.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=kx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,√3≈1.73)23.(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.24.(12分)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).2019年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.12019D.−12019【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B .【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C .签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98% 【分析】两条折线图一一判断即可.【解答】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5−221.6244.5≈9.3%.故选:C .【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是( )A .tan60°B .﹣1C .0D .12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a +|﹣2|=√83+20,则a +2=3, 解得:a =1, 故a 可以是12019. 故选:D .【点评】此题主要考查了实数运算,正确化简各数是解题关键. 6.(3分)已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( ) A .a +c >b +dB .a ﹣c >b ﹣dC .ac >bdD .ac>bd【分析】直接利用等式的基本性质分别化简得出答案. 【解答】解:∵a >b ,c >d , ∴a +c >b +d . 故选:A .【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键. 7.(3分)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .12【分析】连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可. 【解答】解:连接OA , ∵∠ABC =30°,∴∠AOC =2∠ABC =60°,∵过点A 作⊙O 的切线交OC 的延长线于点P , ∴∠OAP =90°, ∵OA =OC =1,∴AP =OA tan60°=1×√3=√3, 故选:B .【点评】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .{4x +6y =383x +5y =48B .{4y +6x =483y +5x =38C .{4x +6y =485x +3y =38D .{4x +6y =483x +5y =38【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: {4x +6y =483x +5y =38. 故选:D .【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键. 9.(3分)如图,在直角坐标系中,已知菱形OABC 的顶点A (1,2),B (3,3).作菱形OABC 关于y 轴的对称图形OA 'B 'C ',再作图形OA 'B 'C '关于点O 的中心对称图形OA ″B ″C ″,则点C 的对应点C ″的坐标是( )A .(2,﹣1)B .(1,﹣2)C .(﹣2,1)D .(﹣2,﹣1)【分析】根据题意可以写出点C 的坐标,然后根据与y 轴对称和与原点对称的点的特点即可得到点C ″的坐标,本题得以解决. 【解答】解:∵点C 的坐标为(2,1), ∴点C ′的坐标为(﹣2,1),∴点C ″的坐标的坐标为(2,﹣1), 故选:A .【点评】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)小飞研究二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y =﹣x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形; ③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2; ④当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2. 其中错误结论的序号是( ) A .①B .②C .③D .④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数) ①∵顶点坐标为(m ,﹣m +1)且当x =m 时,y =﹣m +1 ∴这个函数图象的顶点始终在直线y =﹣x +1上 故结论①正确;②假设存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形 令y =0,得﹣(x ﹣m )2﹣m +1=0,其中m ≤1 解得:x =m −√−m +1,x =m +√−m +1∵顶点坐标为(m ,﹣m +1),且顶点与x 轴的两个交点构成等腰直角三角形 ∴|﹣m +1|=|m ﹣(m −√−m +1)| 解得:m =0或1∴存在m =0或1,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形 故结论②正确; ③∵x 1+x 2>2m ∴x 1+x 22>m∵二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数)的对称轴为直线x =m ∴点A 离对称轴的距离小于点B 离对称轴的距离∵x 1<x 2,且﹣1<0 ∴y 1>y 2 故结论③错误;④当﹣1<x <2时,y 随x 的增大而增大,且﹣1<0 ∴m 的取值范围为m ≥2. 故结论④正确. 故选:C .【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题. 二、填空题(共6小题,每小题4分,满分24分) 11.(4分)分解因式:x 2﹣5x = x (x ﹣5) . 【分析】直接提取公因式x 分解因式即可. 【解答】解:x 2﹣5x =x (x ﹣5). 故答案为:x (x ﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为23.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个, ∴甲被选中的概率为46=23;故答案为:23.【点评】本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键. 13.(4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,﹣a ,﹣b 的大小关系为 b <﹣a <a <﹣b (用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a >0,b <0,a +b <0, ∴|b |>a ,∴﹣b >a ,b <﹣a ,∴四个数a ,b ,﹣a ,﹣b 的大小关系为b <﹣a <a <﹣b . 故答案为:b <﹣a <a <﹣b【点评】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.14.(4分)如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连结OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为12.【分析】连接OD ,如图,利用勾股定理得到CD ,利用垂线段最短得到当OC ⊥AB 时,OC 最小,根据勾股定理求出OC ,代入求出即可.【解答】解:连接OD ,如图,∵CD ⊥OC , ∴∠COD =90°,∴CD =√OD 2−OC 2=√r 2−OC 2, 当OC 的值最小时,CD 的值最大,而OC ⊥AB 时,OC 最小,此时OC =√r 2−(12AB)2, ∴CD 的最大值为√r 2−(r 2−14AB 2)=12AB =12×1=12, 故答案为:12.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.15.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12√2)cm;连接BD,则△ABD的面积最大值为(24√3+36√2−12√6)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC =4√3cm,AB=8√3cm,ED=DF=6√2cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N =D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=12BC×AC+12×AC×D'N−12×BC×D'M=24√3+12(12﹣4√3)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4√3cm,AB=8√3cm,ED=DF=6√2cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC 于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=√2ED﹣CD=(12﹣6√2)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6√2)=(24﹣12√2)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=12BC×AC+12×AC×D'N−12×BC×D'M=24√3+12(12﹣4√3)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24√3+12(12﹣4√3)×6√2=(24√3+36√2−12√6)cm2.故答案为:(24﹣12√2),(24√3+36√2−12√6)【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)小明解答“先化简,再求值:1x+1+2x−1,其中x=√3+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】1【解答】解:1【点评】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE =CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=kx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=12OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2√3.把点A(2,2√3)代入y=kx,得k=4√3.∴反比例函数的解析式为y=4√3 x;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=√3,B′E=1.∴O′E=3,把y=√3代入y=4√3x,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=√3,O′H=1.把y=√3代入y=4√3x,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【点评】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=√5,BD=AC=BD''=√13,AD'=BC=AD''=√10;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=√5,BD=AC=BD''=√13,AD'=BC=AD''=√10;画出图形如图1所示;(2)如图2所示.【点评】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.21.(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:7575797979798080 8182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1757940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×2650=260(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2650=260(人),答:A小区500名居民成绩能超过平均数的人数260人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【点评】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,√3≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点评】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题. (2)根据题意画出图形即可.(3)首先证明四边形PQMN 是矩形,再证明MN =PN 即可.(4)证明△BQE ∽△BEM ,推出∠BEQ =∠BME ,由∠BME +∠EMN =90°,可得∠BEQ +∠NEM =90°,即可解决问题. 【解答】(1)解:如图1中,∵PN ∥BC , ∴△APN ∽△ABC , ∴PN BC=AE AD,即PN 6=4−PN 4,解得PN =125.(2)能画出这样的正方形,如图2中,正方形PNMQ 即为所求. (3)证明:如图2中,由画图可知:∠QMN =∠PQM =∠NPQ =∠BM ′N ′=90°,∴四边形PNMQ 是矩形,MN ∥M ′N ′, ∴△BN ′M ′∽△BNM , ∴M′N′MN=BN′BN, 同理可得:P′N′PN =BN′BN,∴M′N′MN=P′N′PN,∵M ′N ′=P ′N ′, ∴MN =PN ,∴四边形PQMN 是正方形.(4)解:如图3中,结论:∠QEM =90°.理由:由tan ∠NBM =MN BM =34,可以假设MN =3k ,BM =4k ,则BN =5k ,BQ =k ,BE =2k , ∴BQ BK =k 2k =12,BEBM=2k 4k=12,∴BQ BE=BE BM,∵∠QBE =∠EBM , ∴△BQE ∽△BEM , ∴∠BEQ =∠BME , ∵NE =NM , ∴∠NEM =∠NME , ∵∠BME +∠EMN =90°, ∴∠BEQ +∠NEM =90°, ∴∠QEM =90°.【点评】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题. 24.(12分)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =150t −15刻画;当25≤t ≤37时可近似用函数p =−1160(t ﹣h )2+0.4刻画. (1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:生长率p0.2 0.25 0.3 0.35 提前上市的天数m (天)51015①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p =−1160(t ﹣h )2+0.4,解方程即可得到结论; (2)①由表格可知,m 是p 的一次函数,于是得到m =100p ﹣20; ②当10≤t ≤25时,p =150t −15,求得m =100(150t −15)﹣20=2t ﹣40;当25≤t ≤37时,根据题意即可得到m =100[−1160(t ﹣h )2+0.4]﹣20=−58(t ﹣29)2+20;(3)(Ⅰ)当20≤t ≤25时,(Ⅱ)当25≤t ≤37时,w =300,根据二次函数的性质即可得到结论.【解答】解:(1)把(25,0.3)代入p =−1160(t ﹣h )2+0.4得,0.3=−1160(25﹣h )2+0.4,解得:h =29或h =21, ∵h >25,。

2023年浙江省嘉兴市中考数学真题试卷及答案

2023年浙江省嘉兴市中考数学真题试卷及答案

2023年浙江省嘉兴市中考数学真题试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. ()23⨯-的运算结果是( ) A. 6B. 6-C. 1D. 1-2. 如图的几何体由3个同样大小的正方体搭成,它的俯视图是( )A. B. C. D.3. 在下面的调查中,最适合用全面调查的是( ) A. 了解一批节能灯管的使用寿命 B. 了解某校803班学生的视力情况 C. 了解某省初中生每周上网时长情况 D. 了解京杭大运河中鱼的种类4. 下列计算正确的是( ) A. 336a a a +=B. 666a a a -=C. ()336a a =D. 12210a a a ÷=5. 如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''',则顶点C '的坐标是( )A. ()2,4B. ()4,2C. ()6,4D. ()5,46. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a ->-C. 0a b +<D. 22ac bc <7. 如图,已知矩形纸片ABCD ,其中34AB BC ==,,现将纸片进行如下操作: 第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②; 第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A.32B.85C.53D.958. 已知点()12A y -,,()21B y -,,()31C y ,均在反比例函数3y x=的图象上,则1y ,2y ,3y 的大小关系是( ) A. 123y y y <<B. 312 y y y <<C. 213y y y <<D. 321y y y <<9. 如图,点P 是ABC 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F ,若四边形CDFE 的面积为6,则ABC 的面积为( )A. 15B. 18C. 24D. 3610. 下图是底部放有一个实心铁球的长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y )与注水时间(x )关系的是( )A. B. C. D.第Ⅱ卷(非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11. 计算:2023-=___.12. 如图,在AOB 与COD △中,A C ∠=∠,请添加一个条件___________,使得△≌△AOB COD .13. 现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.14. 如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在BDC 上,已知50A ∠=︒,则D ∠的度数是___________.15. 我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为___________. 16. 一副三角板ABC 和DEF 中,90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是___________,现将DEF 绕点()C F 按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0︒到60︒的过程中,线段DH 扫过的面积是___________.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)分解因式:22a a +. (2)解不等式:()211x x ->+.18. 小丁和小迪分别解方程3122x x x x--=--过程如下:你认为小丁和小迪的解法是否正确?若正确,请在框内打“√”;若错误,请在框内打“×”,并写出你的解答过程.19. 如图,在Rt ABC △中,90ACB ∠=︒.(1)尺规作图:①作线段BC 的垂直平分线MN ,交AB 于点D ,交BC 于点O ;②在直线MN 上截取OE ,使OE OD ,连接CD BE CE ,,.(保留作图痕迹) (2)猜想证明:作图所得的四边形BECD 是否为菱形?并说明理由.20. 观察下面的等式:223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯,…. (1)尝试:2213118-=⨯___________.(2)归纳:()()2221218n n +--=⨯___________(用含n 的代数式表示,n 为正整数). (3)推理:运用所学知识,推理说明你归纳的结论是正确的.21. 小明的爸爸准备购买一辆新能源汽车.在爸爸的预算范围内,小明收集了A ,B ,C 三款汽车在2022年9月至2023年3月期间的国内销售量和网友对车辆的外观造型、舒适程度、操控性能、售后服务等四项评分数据,统计如下:(1)数据分析:∴求B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数;∴若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.22. 图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15︒,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据︒≈︒≈︒≈︒≈︒≈︒≈)sin150.26,cos150.97,tan150.27,sin200.34,cos200.94,tan200.3623. 根据以下素材,探究完成任务.小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面1.6m,当球到OA的水平距离为1m时,达到最大高度为1.8m.根据体育老师建议,第二次练习时,小林在正前方1m处(如图)架起距离地面高为2.45m的横线.球从点AOC=.处被抛出,恰好越过横线,测得投掷距离8m24. 小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是BC 上一动点,连接AG ,延长CG 交AB 的延长线于点F . ①当点G 是BC 的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由; ③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.2022年浙江省嘉兴市中考数学真题试题一、选择题(本题有10小题)1. 若收入3元记为+3,则支出2元记为()A. 1B. -1C. 2D. -22. 如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.3. 计算a2·a()A. aB. 3aC. 2a2D. a34. 如图,在⊙O中,∠BOC=130°,点A在BAC上,则∠BAC的度数为()A. 55°B. 65°C. 75°D. 130°5. 不等式3x+1<2x的解在数轴上表示正确的是()A. B.C. D.6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长'''',形成一个“方胜”图案,则点D,为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C DB′之间的距离为()A. 1cmB. 2cm-1)cm -1)cm7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >. B. A B x x >且22B A S S <. C. A B x x <且22A B S S >D. A B x x <且22B A S S <.8. “市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A. 7317x y x y +=⎧⎨+=⎩B. 9317x y x y +=⎧⎨+=⎩C. 7317x y x y +=⎧⎨+=⎩D. 9317x y x y +=⎧⎨+=⎩9. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 810. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A.52B. 2C.32D. 1二、填空题(本题有6小题)11. 分解因式:m 2-1=_____.12. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____.13. 小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.14. 如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.15. 某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为kn>)倍,且钢梁保持水平,则弹簧秤读数为(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(1_______(N)(用含n,k的代数式表示).16. 如图,在廓形AOB中,点C,D在AB上,将CD沿弦CD折叠后恰好与OA,OB相切于点E,F.已知OA=,则EF的度数为_______;折痕CD的长为_______.∠=︒,6AOB120三、解答题(本题有8小题)17. (1)计算:(01--(2)解方程:31 21xx-=-.18. 小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19. 设5a是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,5a表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:25a与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若25a与100a的差为2525,求a的值.20. 6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:∴1∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?∴2∴在本次被调查的中小学生中,选择“不喜欢”的人数为多少?∴3∴该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23. 已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.24. 小东在做九上课本123页习题:“1也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造DPE,使得DPE∽CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.2023年浙江省嘉兴市中考数学真题试卷答案一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. B2.C3. B4. D5. C6. D7. D .8. C9. B10. D解:由蓄水池的横断面示意图可得水的深度增长的速度由慢到快,然后再由快到慢,最后不变故选:D .第Ⅱ卷(非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11. 202312. OA OC =或OB OD =或AB CD = 13. 1314.65︒ 15. 158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩16. ∴.∴. 1218π-解:如图1,过点G 作GH BC ⊥于H∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒∴BH =,GH CH =∵12BC BH CH GH =+=+=∴6GH =∴()6CG ===; 如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =∴1CDD 是等边三角形∵30ABC ∠=︒∴190CG B ∠=︒ ∴112CG BC = ∵1CE BC = ∴1112CG CE =,即AB 垂直平分1CE ∵11CD E 是等腰直角三角形∴点1D 在直线AB 上连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积∵12BC EF ==∴DC DB BC ===∴11DC D D ==作1DN CD ⊥于N ,则1ND NC ==∴DN ===过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒∵160D DC ∠=︒,90CDB ∠=︒∴118030BDM D DC CDB ∠=︒-∠-∠=︒∴12BM BD ==∴线段DH 扫过的面积112D DB D D D S S=+弓形 111CD D D DB CDD S SS =-+扇形(2601136022π⋅=-⨯⨯1218π=-故答案为:1218π-.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)()2a a +;(2)3x >.18.都错误,见解析小丁和小迪的解法都错误;解:去分母,得(3)2x x x +-=-去括号,得232x x -=-解得,1x =经检验:1x =是方程的解.19. (1)①见解析;∴见解析(2)四边形BECD 是菱形,见解析【小问1详解】①如图:直线MN 即为所求;②如图,即为所求;;【小问2详解】四边形BECD 是菱形,理由如下:∵MN 垂直平分BC∴,OB OC BD CD ==∵OD OE =∴四边形BECD 是平行四边形又∴BD CD =∴四边形BECD 是菱形.20. (1)6 (2)n(3)见解析【小问1详解】解:∴223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯ ∴2211985-=⨯,22131186-=⨯故答案为:6;【小问2详解】由题意得:()()2221218+--=n n n故答案为:n ;【小问3详解】 ()()222121n n +--()()21212121n n n n =++-+-+42n =⨯8n =.21. (1)∴3015辆,∴68.3分(2)选B 款,理由见解析【小问1详解】∴由中位数的概念可得B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ∴172270367364268.32332x ⨯+⨯+⨯+⨯==+++分. ∴A 款新能原汽车四项评分数据的平均数为68.3分;【小问2详解】给出1:2:1:2的权重时72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分) 70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分) 75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分) 结合2023年3月的销售量∴可以选B 款.22. (1)12.9cm(2)能,见解析【小问1详解】解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示在Rt AEF 中,tan EAF EF AF∠=. tan151300.2735.1(cm)EF AF ∴=⋅︒=⨯=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=︒ ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==⨯=> ∴小杜下蹲的最小距离208195.112.9(cm)=-=.【小问2详解】解:能,理由如下:过点B 作OB 的垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示在Rt APM △中,tan MP MAP AP∠=. tan 201500.3654.0(cm)MP AP =⋅⨯=︒∴=,,90AP AP MAP NAP APM APN =∠=∠∠=∠=︒AMP ANP ∴△≌△.54.0(cm)PN MP ∴==16054.0106.0(cm)BN BP PN ∴=-=-=.小若垫起脚尖后头顶的高度为1203123(cm)+=.∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)-=>.∴小若垫起脚尖后能被识别.23.【详解】任务一:建立如图所示的直角坐标系由题意得:抛物线的顶点坐标为()1,1.8设抛物线的解析式为()21 1.8y a x =-+,过点()0,1.6 ∴ 1.8 1.6a +=解得0.2a =-∴()20.21 1.8y x =--+当0y =时,()20.21 1.80x --+=得14,2x x ==-(舍去)∴素材1中的投掷距离OB 为4m ;(2)建立直角坐标系,如图设素材2中抛物线的解析式为2y ax bx c =++由题意得,过点()()()0,1.6,1,2.45,8,0 ∴ 1.6 2.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩解得0.1511.6a b c =-⎧⎪=⎨⎪=⎩∴20.15 1.6y x x =-++ ∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯-⨯--==⨯- 49221.81515-=(m ) ∴素材2和素材1中球的最大高度的变化量为22m 15; 任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.24. (1)8AB =;(2)①见解析;②80y x =;③BG的长为5或. 【小问1详解】解:连接OA∵O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =∴10CD CE DE =+=,AE BE = ∴152OA OD CD ===,3OE OD DE =-=在Rt OAE △中,4AE ==∴28AB AE ==;【小问2详解】解:①连接DG∵点G 是BC 的中点∴CG BG =∴GAF D ∠=∠∵O 的直径CD 垂直弦AB 于点E∴90CGD CEF ∠=∠=︒∴90F DCG D ∠=︒-∠=∠∴GAF F ∠=∠;②∵8CE =,4AE =,90CEA ∠=︒∴AC ===∵O 的直径CD 垂直弦AB 于点E∴AC BC =∴CAF CGA ∠=∠∵ACF GCA =∠∠∴CAF CGA ∽△△∴AC CFCG AC =,即x = ∴80y x =; ③当10CF CD ==时,在Rt CEF △中,6EF ===∴2BF EF BE =-=∵180FGB BGC FAC ∠=︒-∠=∠∴FGB FAC ∽△△ ∴BG BFAC CF=,210=∴BG = 当10DF CD ==时在Rt DEF △中,EF ===在Rt CEF △中,CF ===∴4BF EF BE =-=同理FGB FAC ∽△△∴BG BFAC CF =,=∴BG =;综上,BG 的长为5或.2022年浙江省嘉兴市中考数学真题试卷答案一、选择题二、填空题11. ()()11m m +-12. 2513. 60A ∠=︒(答案不唯一)14. 315. k n16.∴. 60° ∴.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∴将CD 沿弦CD 折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∴将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∴ME ⊥OA ,MF ⊥OB∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∴MEO MFO ≅(HL ) ∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;三、解答题17. (1)1-;(2)2x =-18. 赞成小洁的说法,补充OA OC =19. (1)③34100+25;(2)相等,证明见解析;(3)5a =【小问1详解】解:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=34100+25;【小问2详解】解:相等,理由如下: ()222510510010025,a a a a =+=++100a (a +1)+25=210010025,a a 25100125.a a a【小问3详解】 25a 与100a 的差为2525 2100100251002525,a a a整理得:21002500,a即225,a = 解得:5,a1≤a ≤95.a ∴=20. (1)①见解析;②200y =,21x =(2)①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【小问1详解】①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.【小问2详解】答案不唯一.①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80.【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<21. (1)3.4cm(2)22.2cm22. (1)第三组 (2)175人(3)该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一)23.(1)223y x x =+-(2)m 的值为4(3)3n >【小问1详解】解:把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=解得1a =22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-;【小问2详解】解:抛物线21:(1)4L y x =+-的顶点为(1,4)-- 将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+ 而(1,4)m --+关于原点的对称点为(1,4)m - 把(1,4)m -代入223y x x =+-得:212134m +⨯-=- 解得4m =答:m 的值为4;【小问3详解】解:把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+- 点1(1,)B y ,2(3,)C y 都抛物线3L 上221(11)4(2)4y n n ∴=-+-=--222(31)4(4)4y n n =-+-=--y 1>y 222(2)4(4)4n n ∴-->--整理变形得:22(2)(4)0n n --->(24)(24)0n n n n -+---+>2(62)0n -⨯->620n -<解得3n >n ∴的取值范围是3n >.24. (1)赞同,理由见解析,(2)①45︒,②点N 是线段ME 的“趣点”,理由见解析【小问1详解】证明:赞同,理由如下:等腰直角三角形ABC,45,AC BC A B 21cos 45,22AC AB ,AC AP 1,2APAB ∴点P 为线段AB 的“趣点”.【小问2详解】①由题意可得:45,90,,CAB B ACB ACAP BC 11804567.5,2ACP APC 9067.522.5,BCP 1804522.5112.5,CPB DPE ∽CPB ,D ,A 重合112.5,DPE CPB18045.CPE DPE CPB②点N 是线段ME 的“趣点”,理由如下:当点D 为线段AC 的“趣点”时(CD <AD )第 31 页 共 31 页 1,2AD AC而,AC AP 1,2AD AP1,,2ACA A AB ,ADP ACB ∽90ADP ACB 45,,APD DP CB ∥ 22.5,DPCPCB PDE ,DM PM9022.567.5,MDCMCD ,MD MC同理可得:,MC MN,MP MD MC MN22.5,45,MDP MPD E B 45,90,EMP MPE 1,2MPMN ME ME点N 是线段ME 的“趣点”.。

备考2023年中考数学二轮复习-二元一次方程组的实际应用-销售问题-解答题专训及答案

备考2023年中考数学二轮复习-二元一次方程组的实际应用-销售问题-解答题专训及答案

备考2023年中考数学二轮复习-二元一次方程组的实际应用-销售问题-解答题专训及答案二元一次方程组的实际应用-销售问题解答题专训1、(2019吉林.中考模拟) 自农村义务教育学生营养餐改善计划开展以来,某校七年级(d)班某天早上分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共14元,该班分到牛奶、面包各多少件?2、(2018嘉兴.中考模拟) 购物广场内甲、乙两家商店对A,B两种商品均有优惠促销活动;甲商店的促销方案是:A商品打八折,B商品打七五折;乙商店的促销方案是:购买一件A商品,赠送一件B商品,多买多送。

请你结合小明和小华的对话,解答下列问题:(1)求A,B两种商品促销前的单价;(2)假设在同一家商店购买A,B两种商品共100件,且A不超过50件,请说明选择哪家商店购买更合算。

3、(2018龙岩.中考模拟) 甲、乙两种笔的单价分别为7元、3元,某学校用78元钱买这两种笔作为数学竞赛一、二等奖奖品,钱恰好用完.若买下的乙种笔是甲种笔的两倍,请问两种笔各买了几支?4、(2017宁德.中考模拟) 小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.5、(2019淄博.中考模拟) “一带一路”促进了中欧贸易的发展,我市某机电公司生产的,两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本).其每件产品的成本和售成本(单位:万元/件) 2 4售价(单位:万元/件) 5 7问该公司这两种产品的销售件数分别是多少?6、(2017青岛.中考模拟) 某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?7、(2014河池.中考真卷) 乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?8、(2019三亚.中考模拟) 某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?9、(2020遵义.中考模拟) 某校美术组要购买铅笔和橡皮,按照商店规定,若同时购买60支铅笔和30块橡皮,则需按零售价购买,共需支付30元;若同时购买90支铅笔和60块橡皮,则可按批发价购买,共需支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.求每支铅笔和每块橡皮的批发价各是多少元?10、(2020黄冈.中考真卷) 为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?11、(2020广州.中考模拟) (2019·南山模拟) 某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B 商品用了840元.A、B两种商品打相同折以后,某人买500件A商品和450件B 商品一共比不打折少花1960元,请问A、B两种商品打折前各多少钱?打了多少折?12、(2021三亚.中考模拟) 为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行了试验种植对比研究.今年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/千克,且B品种的平均亩产量比A品种高100千克,A,B两个品种全部售出后总收入为21600元.求A,B两个品种今年平均亩产量分别是多少千克?13、(2021罗平.中考模拟) 某水果专卖店在批发市场用740元购进甲、乙两种水果共100千克进行零售,已知甲种水果购进单价为5元,乙种水果购进单价为8元.该水果店购买了甲、乙两种水果各多少千克?14、列方程解应用题:在庆祝深圳经济特区建立40周年的活动中,八年级组购买了“小红旗”装饰各班教室,家委会先后两次在同一家商店以相同的单价购买了两种材质的“小红旗”,第一次购买300个塑料材质的“小红旗”,200个涤纶材质的“小红旗”,共花费660元;第二次购买100个塑料材质的“小红旗”,300个涤纶材质的“小红旗"共花费570元,求这两种材质的“小红旗”单价各为多少元?15、《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?二元一次方程组的实际应用-销售问题解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省嘉兴市2018年中考数学试卷一、选择题(共10题;共20分)1.下列几何体中,俯视图为三角形的是()A. B. C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为 2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A.B.C.D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C.D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。

则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题(共6题;共7分)11.分解因式m2-3m=________。

12.如图,直线l1∥l2∥l3,直线AC交l1, l2, l3,于点A,B,C;直线DF交l1, l2, l3于点D,E,F,已知,则=________。

13.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。

14.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。

15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。

16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt △EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。

三、解答题(共8题;共90分)17.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。

18.用消元法解方程组时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”。

(2)请选择一种你喜欢的方法,完成解答。

19.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF。

求证:△ABC是等边三角形。

20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。

乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。

整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率。

(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由,21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如图2所示。

(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义,②秋千摆动第一个来回需多少时间?22.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。

当点P位于初始位置P0时,点D与C重合(图2),根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。

(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B。

(1)判断顶点M是否在直线y=4x+1上,并说明理由。

(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+4b+1,根据图象,写出x的取值范围。

(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小。

24.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是“等高底”三角形请说明理由。

(2)问题探究:如图2,△ABC是“等高底”三角形,BC是“等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA'交直线BC于点D.若点B是△AA'C的重心,求的值.(3)应用拓展:如图3.已知l1∥l2, l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,AC所在直线交l2于点D.求CD的值。

答案解析部分一、选择题1.【答案】C【考点】简单几何体的三视图【解析】【解答】A、圆锥的俯视图是一个圆并用圆心,故A不符合题意;B、长方体的俯视图是一个长方形,故B不符合题意;C、直三棱柱的俯视图是三角形,故C符合题意;D、四棱锥的俯视图是一个四边形,故D不符合题意;故答案为C。

【分析】俯视图指的是在水平投影面上的正投影,通俗的讲是从上面往下面看到的图形.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1500000=1.5×1000000=1.5×106故答案为B。

【分析】考查用科学记数表示绝对值较大的数,将数表示形a×10n,其中1≤|a|<10,n是正整数.3.【答案】D【考点】折线统计图【解析】【解答】解:A、显然正确,故A不符合题意;B、2月份到3月份的线段最陡,所以2月到3月的月销量增长最快,说法正确,故B不符合题意;C、4月份销量为4.3万辆,3月份销量为3.3万量,4.3-3.3=1(万辆),说法正确,故不符合题意;D、1月到2月是减少的,说法错误,故D符合题意;故答案为D【分析】A、正确读取1月份的数据,即可知;B、根据折线统计图看增长快慢,只需要看各线段的陡的程度,线段越陡,则越快;C、正确读取4月、3月的数据,即可知;D、观察折线的趋势,逐月增加的应该是上升的折线,而图中有下降。

4.【答案】A【考点】解一元一次不等式【解析】【解答】解:因为1-x≥2,3≥x,所以不等式的解为x≤3,故答案为A。

【分析】解在不等式的解,并在数轴上表示,不等号是“≥”或“≤”的时候,点要打实心5.【答案】A【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。

故答案为A。

【分析】根据对称的性质,用倒推法去展开这个折纸。

6.【答案】D【考点】点与圆的位置关系,反证法【解析】【解答】解:点与圆的位置关系只有三种:点在圆内、点在圆上、点在圆外,如果点不在圆外,那么点就有可能在圆上或圆内故答案为D【分析】运用反证法证明,第一步就要假设结论不成立,即结论的反面,要考虑到反面所有的情况。

7.【答案】B【考点】一元二次方程的根,勾股定理【解析】【解答】解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2=(AD+BD)2,因为AC=b,BD=BC=,所以b2+=,整理可得AD2+aAD=b2,与方程x2+ax=b2相同,因为AD的长度是正数,所以AD是x2+ax=b2的一个正根故答案为B。

【分析】由勾股定理不难得到AC2+BC2=AB2=(AD+BD)2,代入b和a即可得到答案8.【答案】C【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义【解析】【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC 与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意;B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C 符合题意;D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形故D不符合题意;故答案为C【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定9.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】解:过点C作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,则∠AOB=∠CDB=∠CEA=90°又因为AB=BC,∠ABO=∠CBD,所以△ABO≅△CBD,所以S△CBD=S△ABO=1,因为∠CDB=∠CEA=90°,∠BAO=∠CAE,所以△ABO~△ACE,所以,则S△ACE=4,所以S矩形ODCE=S△CBD+S四边形OBCE=S△ACE=4,则k=4,故答案为D【分析】根据反比例函数k的几何意义,可过C点作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,即求矩形ODCE的面积10.【答案】B【考点】推理与论证【解析】【解答】解:小组赛一共需要比赛场,由分析可知甲是最高分,且可能是9或7分,当甲是9分时,乙、丙、丁分别是7分、5分、3分,因为比赛一场最高得分3分,所以4个队的总分最多是6×3=18分,而9+7+5+3>18,故不符合;当甲是7分时,乙、丙、丁分别是5分、3分、1分,7+5+3+1<18,符合题意,因为每人要参加3场比赛,所以甲是2胜一平,乙是1胜2平,丁是1平2负,则甲胜丁1次,胜丙1次,与乙打平1次,因为丙是3分,所以丙只能是1胜2负,乙另外一次打平是与丁,则与乙打平的是甲、丁故答案是B。

相关文档
最新文档