六年级找规律练习题57道

合集下载

六年级数学找规律题型

六年级数学找规律题型

一、等差型数列规律1.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定 第8个数为 , 第n 个数为 . 二、等比型数列规律2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定三、含n 2型数列规律3.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律 确定第8个数为 , 第n 个数为 .四、其它数列规律列举4.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082 的末位数是 .6. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律7. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .8. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1) 请用含n 的式子表示你发现的规律:___________________.(2) 请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型9.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.。

(完整版)六年级数学经典找规律专题

(完整版)六年级数学经典找规律专题

找规律专题一.解答题(共30小题)1.(2015•深圳)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子厘米(π取3)2.(2015•龙泉驿区校级三模)摆一个六边形需要六根小棒,摆2个六边形需要11根小棒,3个需要16根小棒…问:摆10个六边形需要根小棒,摆100个六边形需要根小棒,摆n个六边形需要根小棒.3.(2015春•淮安校级期中)用计算器计算,再根据规律编写一道算式并直接写出得数.(24+25)×5=;(872+873)×5=;(2830+2831)×5=;(+)×=.4.(2015春•射阳县校级期中)根据规律填数.9×9+9=90 9876×9+6=8889098×9+8=890 98765×9+5=987×9+7=8890 987654×9+4=.5.(2015春•成都校级期中)如图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”最下层包含多少个小三角形?六层呢?七层呢?n层呢?(2)整个五层“宝塔”一共包含多少个小三角形?六层呢?七层呢?n层呢?6.(2015春•西安校级期中)仔细观察,根据发现的规律把表格填完整.第几幅图 1 2 3 5 …n共几个面在外面…7.(2015春•盐城校级期中)用小棒如图的方式搭正方形.搭1个正方形要4根小棒,搭2个正方形要7根小棒.(1)搭3个正方形要根小棒;(2)搭8个正方形要根小棒;8.(2015春•团风县期中)一串珠子按照3颗黑珠,2颗白珠,3颗红珠,2颗蓝珠的顺序排列.(1)第14颗珠子是珠子.(2)第998颗珠子是颜色珠子.9.(2015春•射阳县校级期中)想一想,填一填.用上面的图形在左边表里框出5个数,先算出这5个数的和,再想想算出的和与中间一个数有什么关系?如果5个数的和为795,请在上面图形里写出这5个数.10.(2015春•威宁县校级期中)表中一共有50个奇数,黑线框出的5个数之和是115;仔细观察后回答问题.(1)你能发现每次框出的5个数的和与中间数有什么关系吗?(2)如果框出5个数的和要是375,应该怎么框?(先在图中框一框,并在下面用文字说明)(3)能框出和是295的5个数吗?为什么?(4)一共可以框出多少个大小不同的和?11.(2015春•株洲校级月考)不计算,运用规律在横线上填上合适的数.7×9=6377×9=693777×9=69937777×9=69993…777777777×9=1÷7=0.142857142857…2÷7=0.285714285714…3÷7=0.428571428571…4÷7=0.575÷7=0.76÷7=7÷7=12.(2014•涟水县模拟)观察与计算.计算:1+2+3+…+99+100+99+98+…+3+2+1=13.(2014•金寨县校级模拟)找规律,填表.序号①②③④⑤…⑩数列A 1 3 5 7 9 …数列B 0 1 4 9 (81)14.(2014•宝安区校级模拟)观察下面3题的规律,然后算出(1)(2)两小题的结果.1+2+1=2×2=41+2+3+2+1=3×3=91+2+3+4+3+2+1=16(1)1+2+3+…+99+100+99+…+3+2+1=(2)+++…+++1+++…+++=15.(2014•绍兴)有些题目可以通过观察找出规律,知道答案.按照下图算式的规律不变,如果商是123456,括号中的“减数”应该是.(3﹣3)÷27=0(33﹣6)÷27=1(333﹣9)÷27=12(3333﹣12)÷27÷=123.16.(2014•武平县)观察图形找规律:(1)按照图形变化规律填表:1 2 3 4 5 …正方形个数直角三角0 4 8 …形个数(2)如果画8个正方形能得到个直角三角形,画n个正方形能得到个直角三角形.17.(2014•东莞)探寻规律.如图 是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图‚),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图ƒ),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.18.(2014•东台市)准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.19.(2014•长沙)在如图所示的数表中,第100行左边的第一个数是.20.(2014•成都)有甲、乙两个同样的杯子,甲杯装满水,乙杯是空的.第一次将甲杯里的倒入乙杯,第二次将乙杯中水的倒回甲杯,第三次将甲杯中的倒回乙杯,第四次将乙杯中的倒回甲杯,…,这样反复倒2015 次后,甲杯中的水是原来的几分之几?21.(2014•陕西校级模拟)有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?22.(2014•江油市校级模拟)有一串数,,,,,,,,,,…则是第个分数.23.(2014•临夏县模拟)找规律填数.1,4,9,16,,,49,,81.24.(2014•湖南模拟)分析推理找规律①1+2+1=4②1+2+3+2+1=9③1+2+3+4+3+2+1=16④1+2+…+49+50+49+…+2+1=⑤1+2+…+(n﹣1)+n+(n﹣1)+…+2+1=(n为自然数)25.(2014•江油市校级模拟)1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,…1+3+5+…+(2n ﹣1)=20132,则n=.26.(2014•宁远县校级模拟)如图,第6个图形一共由个小三角形组成,第n 个图形,一共由个小角形组成.27.(2014•广州模拟)为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形.(1)填写下表正方形的层数 1 2 3 4 5该层所需花盆的个数 4 12(2)按这种规律搭下去,搭第n(n为正整数)层正方形,需要盆花.28.(2014•台湾模拟)如图所示,按一定规律用棉花棒摆放图案:第一组的图案用棉花棒2枝,第二组用棉花棒7枝,第三组用棉花棒15枝,如此类推,问第二十组的图案用棉花棒多少枝﹖29.(2014•成都校级模拟)下面的小点按如图所示的规律摆放:第1个图形有6个小点,第2个图形有10个小点,第3个图形有16个小点,第4个图形有24个点…,依次规律,第10个图形中点的个数是30.(2014•海安县模拟)用小棒按照如下的方式摆图形.摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,…摆50个八边形需要根小棒;如果摆这样的八边形用了771根小棒,你知道摆了个八边形.。

(完整)六年级数学找规律练习

(完整)六年级数学找规律练习

六年级找规律练习题班级姓名等级1、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_ ___。

2、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;…… ……由此规律知,第⑤个等式是。

3、如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n根火柴棍时,若摆出的正方形所用的火柴棍的根数为S,则S=(用含n的代数式表示,n为正整数).4、如图是五角星灯连续旋转闪烁所成的三个图形。

照此规律闪烁,下一个呈现出来的图形是5、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴根。

……6、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)。

7、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子()枚(用含有n的代数式表示)8、在计算机程序中,二杈树是一种表示数据结构的方法。

如图,一层二杈树的结点总数是1,二层二杈树的结点总数是3,三层二杈树的结点总数是7,四层二杈树的结点总数是15……照此规律七层二杈树的结点总数是。

A B C D1条2条3条……图③图②图①9、瑞士中学教师巴尔末成功地从光谱数据、591216⋯⋯32362125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。

请你按这种规律写出第七个数据是_________。

10、观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律;①211211-=⨯②322322-=⨯③433433-=⨯④544544-=⨯⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。

六年级数学找规律训练题

六年级数学找规律训练题

请问:当小马输入数据8时,输出的数据是(A. — B)8 B2009o C LD图案图图第3O oo o o o D67人,n 图2B. 2010C. 2011找规律训练1、小马利用计算机设计了一个计算程序,输入和输出的数据如下表:n=4块;第n 个图案中有白色地面砖 __________ 块. 按图中所示的规律,用2010个这样的三角形 n=1 n=2 n=3(1) 第4个图形中火柴棒的根数是 (2) 第n 个图形中火柴棒的根数是6、 用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若 干个图案:则第(4)个图案中有白色地面砖7、 如图所示,已知等边三角形 ABC 的边长为1,镶嵌而成的四边形的周长是( )人。

3张桌子拼在一起可坐 张桌子拼在一起可 1张大桌子,则409、( 7分)一张长方形桌子可坐6人,按下图方式 讲桌子拼在一起。

(1) 2张桌子拼在一起可坐坐 ______ 人(2) 一家餐厅有40张这样的长方形桌子,按照上图方式每 5张桌子拼成&用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 21个图案需要棋子枚.A C . A 63 65按某种规律在横线上填上适当的数:7 9 1625若(-3) *x=7,那么x= ________________ 。

4、小明在做数学题时,发现下面有趣的结果: 3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16 … 根据以上规律可知第100行左起第一个数是 ______ 5、下面由火柴棒拼出的一列图形中,第 n 个图形由n 个正方形组成,通过观察可以发现:D. 2012612、观察下列数据,彳3 51,,—,- , , ,4 9 一 --3、“* ”是规定的一种运算法则:a*b=a 2- 2b.那么2*3的值为张桌子可拼成8张大桌子,共可坐 ________ 。

六年级数学总复习--找规律练习题

六年级数学总复习--找规律练习题

班级姓名1、如图,摆1个三角形需要3根小棒,摆2个三角形需要5根小棒,摆3个三角形需要7根小棒…,像这样连续摆10个三角形需要()根小棒,摆n个三角形需要( )根小棒;有37根小棒可以摆个这样的三角形.2、如上图所示,用同样的火柴棒摆正方形,摆1个正方形需要()根火柴棒,摆2个正方形需要( )根火柴棒……,如果摆100个正方形需要()根火柴棒,摆n个正方形需要()根小棒。

3、用同样长的小棍摆成如图所示的图形,照这样继续摆,第⑥个图形用()根小棍,第n个图形用()根小棍。

4、像如图这样摆下去,n个六边形需要()小木棒,当n=20时,共用了( )根小木棒。

5、摆六边形(如图).(1)摆1个六边形需要( )根小棒,摆2个六边形需要()根小棒,摆3个六边形需要()根小棒。

(2)照这样下去,摆n个六边形需要()根小棒(用含有字母n的式子表示),101根可以摆()个六边形。

5、用小棒按照如下方式摆图形.(1)摆1个八边形需要8根小棒,摆2个八边形需要( )根小棒,摆10个八边形需要()根小棒。

(2)如果想摆n个八边形,需要()根小棒。

(3)有2010根小棒,可以摆()个这样的八边形.6、用小棒可摆成小鱼,摆要8根,摆要14根,摆要20根…像这样,当摆成10条小鱼连在一起的时,需要()根小棒。

7、如下图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第10个图案需棋子()枚,第n个图案需棋子()枚。

8、用长度相等的小木棒按照下图的方式搭塔式三角形,按照这样的规律搭下去,搭第5个图形需要( )根小木棒,搭第m个图形需要( )根小木棒.9、猜猜用火柴棒摆出大小不同的长方形(如下图).第1个长方形需要()根火柴棒,第2个长方形需要()根小棒,如果按这样的规律摆下去,第10个长方形共需要( )根火柴棒。

8、如图所示:用黑白两种颜色的正五边形地砖按下图所示的规律,拼成若干个蝴蝶图案,则第7幅蝴蝶图案中白色地砖有()块.9、用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干个图案,则第2012个图案中有白色地面砖()块.10、用同样规格的黑白两种颜色的正方形,按如图方式拼图,如果继续铺下去,那么第n个图形要用()块黑色正方形。

小学六年级数学复习找规律练习题

小学六年级数学复习找规律练习题

小学六年级数学复习找规律练习题一、填空题1.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.2.如图示方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.3.…用相同的小棒按左图方法拼组,如拼成的图形中含有10个小正方形,需要根小棒,154根小棒拼成的图形中含有个小正方体.4.如图所示,每个方框中数的排列是有规律的,则F=.5.用小棒摆三角形,照这样摆下去,摆10个三角形需根小棒,摆n个三角形需根小棒.6.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒根;现在有46根小棒可以摆个正方形.7.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用根小棒;搭n间房子要用根小棒(用含有n的式子表示).8.下面一组图形中的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来。

9.按下面的规律摆下去,图8应有()个三角形。

10.用3根小棒可摆一个三角形,按下面的方式摆下趣,摆100个三角形需要()根小棒。

11.按下面的方法拼下去(单位:厘米),第9个图的周长是()厘米,第100个图形的周长是()厘米。

12.二、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面. A .20 B .23 C .26 D .292.将一些小圆球如图摆放,第六幅图有( )个小圆球.A .30B .36C .423.按下列规律印刷笑脸图案,第8幅图案有( )个笑脸.A .8B .32C .364.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3112.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.对于一个多边形,定义一种“生长”操作(如图),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是.14.如图所示,它是由火柴棒拼成的图案,如在这个图案中用了51根火柴棒,可拼成个三角形.15.如图所示,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可坐8人…像这样n张方桌拼起来可以坐人,坐68人需要张方桌.16.用小棒摆正方形,如图摆6个正方形用小棒根,摆n个正方形用小棒 根.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是 厘米; (2)用n 个正方形拼成的长方形周长是 厘米.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n 个正方形需要 根小棒.三、解答题(共12小题) 19.探索规律. 正方体个数1 2 3 4 5 6 … N …正方形个数 6 10 1418… 62 …20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)摆两层一共有:1+2=3个 摆三层一共有1+2+3=6个 摆四层一共有 个. 摆五层一共有 个. 摆六层一共有 个. …(2)用n 表示摆的层数,你能总结出一个计算公式吗? .28.观察下图中由棱长是1厘米的小正方体摆成的立体图形,寻找规律并完成下表.摆成立体图形的序号①②③④⑤小正方体的总个数1827看不见小正方体的个数001看得见小正方体的个数182629.探寻规律.如图所示是一块瓷砖的图案,用这种瓷砖来铺设地面.如铺成一个2×2的正方形图案(如图所示),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图所示),其中完整的圆共有13个,如铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.30.准备(1)每个都是棱长为1厘米的正方体.(2)一个挨着一个排成一排你要研究的问题是:正方体个数与拼成的长方体表面积之间的关系.探索过程:根据你的发现填空.当正方体个数为10时,所拼成的长方体表面积是平方厘米.当正方体个数为a时,所拼成的长方体表面积是平方厘米.当拼成的长方体表面积是202平方厘米时,正方体个数是.苏教版五年级(上)小升初题单元试卷:五找规律(01)参考答案与试题解析一、选择题(共4小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20 B.23 C.26 D.29【分析】1个小正体有5个面露在外面,再增加一个正方体,2个小正方体有8个面露在外面;3个小正方体有11个面露在外面.每增加1个正方体漏在外面的面就增加3个即:n个正方体有5+(n﹣1)×3;由此求解.【解答】解:根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.【点评】解答此题应根据题意,进行推导,得出规律:即1个小正方体露出5个面,每增加1个小正方体增加3个面;进行解答即可.2.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30 B.36 C.42【分析】从第一个图形开始分析小圆圈的个数:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…第n个图形有n(n+1)个小圆球,利用规律解决问题.【解答】解:观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.【点评】此题主要考查了图形的规律,通过归纳与总结结合图形得出图形个数之间的规律是解决问题的关键.3.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8 B.32 C.36【分析】第一幅图有1个笑脸,第二幅图有3个笑脸,第三幅图有6个笑脸…;1=1,3=1+2,6=1+2+3,第n幅图中笑脸的数量就是1+2+3+…+n.【解答】解:1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.【点评】解决本题关键是找出笑脸的个数变化的规律,再由此规律求解.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可发现,任何一个大于1的“正方形数”都可看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【分析】题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.【解答】解:这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.【点评】本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(共14小题)5.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【分析】通过题意和观察图形可知,第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆第两个要3×2+1=7根,摆第三个要3×3+1=10根,摆第四个要3×4+1=13根,以此类推,得出规律连着摆n个这样的正方形需3n+1根火柴,进一步代入n=20求得答案即可.【解答】解:第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.【点评】本题是一道找规律的题目,首先应找出哪些部分发生了变化,是按照什么规律变化的,从而找出规律,然后利用规律解题.6.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【分析】第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.据此即可得解.【解答】解:有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.【点评】本题考查了图形的变化类问题,注意结合图形进行观察,即可得到规律.7.…用相同的小棒按左图方法拼组,如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.【分析】根据题干中的已知图形,推理得出这组图形的一般规律特点,即可解答.【解答】解:搭一个小正方形,需要1+1×3根小棒;搭2个小正方形,需要1+2×3根小棒;搭3个小正方形,需要1+3×3根小棒…;所以搭5个小正方形,需要小棒:1+5×3=1+15=16(根);则搭n个小正方形,需要小棒:1+3n根.当n=10时,需要1+3×10=31(根)当1+3n=154时,n=51答:如果拼成的图形中含有10个小正方形,需要31根小棒,154根小棒拼成的图形中含有51个小正方体.故答案为:31;51.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.8.如图,每个方框中数的排列是有规律的,则F=120.【分析】观察题干可知,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,那么左上方的数字就是(9+3)×10=120,据此即可解答问题.【解答】解:根据题干分析可得,左上方的数字=(左下方的数字+右上方的数字)×右下方的数字,且下方的数字排列依次为:3、4、5、6、7、8…,则最后一个正方形下方的数字分别是9、10,则F=(9+3)×10=120答:F=120.故答案为:120.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.用小棒摆三角形,照这样摆下去,摆10个三角形需21根小棒,摆n个三角形需2n+1根小棒.【分析】摆一个三角形需3根小棒;摆二个三角形需5根小棒;摆三个三角形时需要7根小棒;摆四个三角形时需要9根小棒;…第一个三角形需要3根小棒,以后每增加1个三角形就需要增加2根小棒;当有n个三角形时小棒的数量就是3+2(n﹣1),然后化简,找出小棒的根数与与三角形个数直接的关系,进而求出摆10个三角形需多少根小棒.【解答】解:当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1摆10个三角形需:2n+1=2×10+1=20+1=21(根)故答案为:21,2n+1.【点评】解决本题关键是找出小棒的数量随三角形的数量变化的规律,写出通项公式,进而求解.10.如图,用同样的小棒摆正方形.摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根小棒.【解答】解:第一个正方体需要4根火柴棒;第二个正方体需要4+3×1=7根火柴棒;第三个正方体需要4+3×2=10根火柴棒;…摆n个正方形需4+3×(n﹣1)=3n+1根火柴棒.当n=10时,3n+1=3×10+1=31,当3n+1=46时,3n=45,n=15,答:摆10个同样的正方形需要小棒31根;现在有46根小棒可以摆15个正方形.故答案为:31;15.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.11.如图,小明用小棒搭房子,他搭3间房子用13根小棒.照这样,搭10间房子要用41根小棒;搭n间房子要用1+4n根小棒(用含有n的式子表示).【分析】据图分析可得:每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;搭5间要用21根小棒,即1+5×4根,由此得出搭n间房子要用1+4n根小棒;据此解答即可.【解答】解:(1)每多搭一间房子就多4根小棒;搭3间房子用13根小棒,即1+3×4;搭4间用17根小棒,即1+4×4根;依此类推得:搭10间房子用:1+10×4=41(根)(2)搭n间房子用:1+4n(根)答:搭10间房子用41根小棒.照上面那样搭n个房子用1+4n根火柴棍.故答案为:41;1+4n.【点评】主要考查了通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【分析】编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12,得出规律为:小等边三角形的个数为编号的平方,周长是编号的3倍,据此解答即可.【解答】解:因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.13.对于一个多边形,定义一种“生长”操作(如图所示),将其中一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过四次“生长”操作得到的图形的周长是85.【分析】根据“一边AB变成折线ACDEB,其中C和E是AB的三等分点,C、D、E三点可构成等边三角形”得到CD=DE=CE=AC=EB=AB,则AC+CD+DE+EB=AB×4,按照次规律,每次“生长”,都变成原来的,即为一个以为等比的等比数列.【解答】解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过四次“生长”操作得到的图形的周长是85.故答案为:85.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.14.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【分析】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,由此可以推理出一般规律.【解答】解:第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.【点评】根据题干,从图中特殊的例子推理得出一般的规律是解决此类问题的关键.15.如图,一张方桌可以坐4人,两张方桌拼起来可以坐6人,三张方桌拼起来可以坐8人…像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.【分析】观察摆放的桌子,不难发现:在1张桌子坐4人的基础上,多1张桌子,多2人.则有n张桌子时,有4+2(n﹣1)=2n+2人;由此即可计算当2n+2=68人时,求得桌子张数n的值.【解答】解:第一张桌子可以坐4人;拼2张桌子可以坐4+2×1=6人;拼3张桌子可以坐4+2×2=8人;故n张桌子拼在一起可以坐4+2(n﹣1)=2n+2.当2n+2=68时,n=33,答:像这样n张方桌拼起来可以坐2n+2人,坐68人需要33张方桌.故答案为:2n+2,33.【点评】此题考查了平面图形的规律变化,要求学生观察图形,分析、归纳并发现其中的规律,并应用规律解决问题.16.用小棒摆正方形,如图摆6个正方形用小棒19根,摆n个正方形用小棒3n+1根.【分析】根据小棒的摆设规律可知,多摆一个正方形就需要加三根火柴棒,由此推理出一般规律即可解答问题.【解答】解:第一个正方体需要4根小棒;第二个正方体需要4+3×1=7根小棒;第三个正方体需要4+3×2=10根小棒;摆n个正方形需4+3×(n﹣1)=3n+1根小棒.当n=6时,需要小棒:3×6+1,=18+1,=19(根);答:摆6个同样的正方形需要小棒18根,摆n个正方形需要小棒3n+1根.故答案为:19;3n+1.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17.把边长为1厘米的正方形纸片,按如图的规律拼成长方形;(1)用6个正方形拼成的长方形周长是14厘米;(2)用n个正方形拼成的长方形周长是2n+2厘米.【分析】由图示得出规律:四个图形周长分别为4厘米、6厘米、8厘米,10厘米所以每增加一个正方形,周长增加2厘米,那么n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),据此解答即可.【解答】解:根据题干分析可得:n个正方形拼成的长方形的周长是:4+(n﹣1)×2=2n+2(厘米),当n=6时,2n+2=2×6+2=14(厘米)答:用6个正方形拼成的长方形周长是14厘米;用n个正方形拼成的长方形周长是2n+2厘米.故答案为:14;2n+2.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.18.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要1+3n根小棒.【分析】观察图形可知:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,由此找出规律解答即可.【解答】解:1个小正方形需要1+1×3根小棒,2个小正方形需要1+2×3根小棒,3个小正方形需要1+3×3根小棒…,所以n个小正方形需要1+3n根小棒,故答案为:1+3n.【点评】根据题干中特殊的例子,推理得出这组图形的一般规律,是解决此类问题的关键.三、解答题(共12小题)19.探索规律.123456…N …正方体个数正方形个数61014 18…62…【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.【解答】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.正方体个数123456…15N …正方形个数61014 182226…626+(N﹣1)×4…【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.20.怎样巧妙的计算连续偶数的和呢?通过下面的探索,你就会有新的发现.(1)计算:口算下列各题.2+4=62+4+6=122+4+6+8=202+4+6+8+10=(2)探索:观察上面的算式和如图,你一定会发现其中的规律.请你根据你发现的规律把下面的算式补充完整.2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.【分析】(1)因为2+4=6=2×3,2+4+6=12=3×4,所以连续偶数的和等于加数的个数乘比它多1的数,这个乘积就是该算式的和;(3)连续偶数的和等于这些偶数的个数乘比它多1的数.【解答】解:(1)因为2+4=6=2×3,2+4+6=12=3×4所以:2+4+6+8=4×5=202+4+6+8+10=5×6=30;(2)2+4+6+8+10+12=6×72+4+6+8+10+12+14=7×82+4+6+8+…+98+100=50×51.故答案为:20,30;6,7;7,8;50,51.【点评】此题考查数于形结合的规律,找出数字的运算规律是解决问题的关键.21.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【分析】观察所给出的图形知道,从第二个数起,每一个数分别是它前面的数加2、3、4、5、6…等自然数所得,由此得出答案.【解答】解:(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1).【点评】根据题干得出图形或数字的排列规律是解决此类问题的关键.22.如图是边长为1cm的正方形ABCD,沿水平方向翻滚4次后的位置图形,此时A翻滚后所在的位置与A点开始位置之间的距离为4厘米.请你根据图形,完成下表:(此题只加分不扣分)翻滚次数415164n﹣14n与A点开始位置之间(厘米)4【分析】由题意得:每滚动3次就回到原处,这段距离是3个边长的长度之和,翻滚多少次就是多少厘米,据此计算即可.【解答】解:翻滚次数4 15 16 4n ﹣1 4n 与A 点开始位置之间(厘米)415164n ﹣14n【点评】解决本题的关键是根据操作得出规律,再解答.23.平面内6个点最多可以连成多少条线段?8个点呢?学着下面的图画一画,数一数,你一定能发现其中的规律.6个点最多可以连成 15 条线段,8个点最多可以连成 28 条线段. 点数增加条数﹣﹣ 2 3 4 总13610【分析】2个点连成线段的条数:1(条), 3个点连成线段的条数:1+2=3(条), 4个点连成线段的条数:1+2+3=6(条), 5个点连成线段的条数:1+2+3+4=10(条), …;由此得出规律:n 个点的线段数是:1+2+3+4…+n ﹣1条线段;据此规律解答即可. 【解答】解:1+2+3+4+5=15(条); 1+2+3+4+5+6+7=28(条)答:6个点,一共可以连15条线段;8个点,一共可以连28条线段. 故答案为:15,28.【点评】此题属于探索规律的题目,先在草纸上找几个点进行连线,然后得出规律,然后根据规律进行解答.24.观察图形找规律:(1)按图形变化规律填表:正方形个数12345…048…直角三角形个数(2)如画8个正方形能得到28个直角三角形,画n个正方形能得到4n﹣4个直角三角形.【分析】1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;每增加一个正方形就增加4个直角三角形;由此填表,并得出通项公式,进行求解.【解答】解:(1)根据已知图形可将上表补充完整如下所示:正方形个数12345…04812 16…直角三角形个数(2)(3)根据上表中的数据可得:1个正方形有0个直角三角形,可以写成(1﹣1)×4个;2个正方形有4个直角三角形,可以写成(2﹣1)×4个;3个正方形有8个直角三角形,可以写成(3﹣1)×4个;4个正方形有12个直角三角形,可以写成(4﹣1)×4个;所以当正方形的个数为n时,三角形的个数可以写成:(n﹣1)×4=4n﹣4个;所以当n=8时,直角三角形个数是:4×8﹣4=28;答:如果画8个正方形,能得到28个直角三角形;如果画n个正方形,能得到4n﹣4个直角三角形.故答案为:28;4n﹣4.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.25.仔细观察下面的点子图,根据每个图中点子的排列规律,想一想,可以怎样计算每个图中点子的总个数?请你把下表填写完整.序号1234…表示点子数的算式11+4…点子的总个数1…观察表中数据,如果用A表示第n个图形中点子的个数,A和n之间的关系可以表示成:A=4n﹣3.【分析】通过观察可知:第一个图的点子数是1个,第二个图的点子数是1+4=5个,第三个图的点子数是1+2×4=9个,第4个图的点子数是1+3×4=13个,由此可知:A表示第n个图形中点子的个数,A和n之间的关系可以表示成A=4n ﹣3,据此解答即可.【解答】解:由分析可得:A=1+4(n﹣1)=4n﹣3如图:序号1234…表示点子数的算式11+41+2×41+3×4…点子的总个数15913…故答案为:4n﹣3.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.26.分析推理找规律点数增加条数﹣﹣234总条数13610根据上表的规律,20个点能连成190条线段,n个点能连成条线段.【分析】观察图形我们会发现,每增加一个点,该点与之前每个点之间都会增加一条线段,所以n个点连成的总线段条数是1~n﹣1这n﹣1个自然数之和,所以n个点能连成1+2+3+…+(n﹣1)=条线段;当n=20时,能连成==190条线段!【解答】解:2个点连成1条线段,3个点连成1+2=3条线段,4个点连成1+2+3=6条线段,5个点连成1+2+3+4=10条线段,…n个点连成1+2+3+4+…+(n﹣1)=条线段,当n=20时,能连成==190条线段;故答案为:190,.【点评】认真观察图形,发现每增加一个点,该点与之前每个点之间都会增加一条线段,即增加n﹣1条线段是解决此题的关键.27.仔细研究图1表示数的方法.(1)根据图1表示数的方法,把图2答案写在括号里.(2)在格子图3里画点表示50.。

六年级数学找规律练习题

六年级数学找规律练习题

六年级数学找规律练习题班级 姓名 等级例1 假设a#b=(a+b )+(a —b );求13#5和13#(5#4)练习一1、将新运算定义为a *b=(a+b )×(a —b );求27*92、设a *b=a 2+2b ;求10*6和5*(2*8)3、设a *b=3a —b ×21;求(15*24)*(10*12)例2 设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求3 #(4# 6)练习二1、设p 、q 是两个数;规定:p # q=4×q —(p +q )÷2;求5#(6# 4)2、设p 、q 是两个数;规定:p # q=p 2+(p —q )×2;求30#(5# 3)3、设M 、N 是两个数;规定:M # N=N M +MN ;求10#20—41例3如果1&5=1+11+111+1111+11111;2&4=2+22+222+2222;3&3=3+33+333;4&2=4+44;那么7&4= ;210&2= 。

练习三1、如果1&5=1+11+111+1111+11111;2&2=2+22;3&3=3+33+333……那么4&4= 。

2、规定a&b=a+aa+aaa+aaaa+a ……a (b 个a );那么8&5= 。

3、如果2&1=21;3&2=331;4&3=4441;那么(6&3)÷(2&6)= 。

例4 设a@b=4a —2b+21ab ;求x@(4@1)=34中的未知数x练习四1、设a@b=3a —2b ;已知x@(4@1)=7;求x2、对两个整数a 和b 定义新运算“&”;a&b=()()b a b a ba -⨯+-2;求6&4+9&83、对任意两个整数x 和y 定义新运算“#”:x#y=ymx xy34+(其中m 是一个确定的整数)。

六年级毕业找规律练习题

六年级毕业找规律练习题

六年级毕业找规律练习题在六年级毕业之际,当我们回顾所学的数学知识时,发现找规律是我们数学学习中最重要且有趣的一部分。

通过找规律,我们不仅能更好地理解数学概念,还能提高问题解决能力。

为了帮助大家巩固与提升这一技能,下面将提供一系列六年级毕业找规律练习题。

希望大家通过解答这些题目,能够更好地应用和运用找规律方法。

1. 找规律:下图为一个数字组成的三角形。

12 34 5 67 8 9 1011 12 13 14 15请写出这个三角形的第n行的数字。

2. 找规律:观察下图数列。

1, 4, 9, 16, 25, ...根据观察,写出这个数列的第n项。

3. 找规律:在下面的数表中,填上相应的数字。

12 63 5 84 9 12 145 7 10 13 154. 找规律:观察下列数表,写出每行中的 "?" 所代表的数字。

1, 4, 9, 16, 252, 6, 12, 20, ?3, 8, 15, ?, ?5, 14, ?, ?, ?5. 找规律:观察下列图案,写出每个图案中 "?" 所代表的数字。

□ □ □ □ □□ □ □ □□ □ □□ □□♦♦♦♦♦♦♦♦♦♦★★★★★★★★★★以上是一些六年级毕业找规律练习题,希望大家通过这些题目的练习,能够熟练应用找规律方法来解决问题。

找规律是数学学习中非常重要的一种技能,它不仅有助于提高数学成绩,也培养了我们的观察能力和逻辑思维能力。

祝愿同学们在六年级毕业后的学习中能够继续保持对数学的兴趣和热爱,不断挑战自己,取得更好的成绩!。

小学六年级数学找规律专项练习题,孩子提高必备!

小学六年级数学找规律专项练习题,孩子提高必备!

小学六年级数学找规律专项练习题,孩子提高必备!经典例题例1:找规律填数。

(1)1,3,5,7,(),()。

(2)65,60,55,50,(),()。

(3)1,10,100,1000,(),()。

(4)1,2,4,7,11,(),()。

(5)1,2,4,8,(),()。

(6)1,3,4,7,11,(),(),()。

思路点拨第(1)题,从左往右依次增加;第(2)题从左往右依次减少;第(3)题,从左往右依次在末尾添加一个,或者说依次乘;第(4)题从左往右,相邻两个数相差1,2,3,4……第(5)题中,1×2=2,2×2=4,4×2=8,所以,8×2=……第(6)题中,从第三个数开始,每个数都等于前面两个数的和。

模仿练习找规律填数。

(1)2,4,6,8,(),()。

(2)1,5,9,13,(),()。

(3)2,20,200,2000,(),()。

(4)1,2,2,4,3,6,4,8,(),()。

(5)49,42,35,(),(),()。

(6)4,6,9,13,(),24,()。

(7)100,81,64,(),36,25,(),9,4,1例2:仔细观察下列组图,在每一组的“?”处填上合适的数。

(1)(2)(3)(4)(5)思路点拨第(1)题中,3+4+8=15;第(2)题中,2×3+1=7;第(3)题中,3×4+5=17;第(4)题中4×5-5=20;第(5)题中,5+3+7=15,15+15=30。

模仿练习仔细观察每组图的规律,在空白处填合适的数。

(1)(2)例3:根据下表中的排列规律,在空格里填上适当的数。

思路点拨分析表格中的数可以发现,按行看,12+6=18,8+7=15,也就是说每一行中间的数等于两边的两个数的和。

依此规律可以填出空格中的数。

找规律练习题1.按照下面所绘图形的排列规律,第25个图形是________.(画出草图)□△○△□△○△□△○△……2.仔细观察下面的图,想一想,第3幅图问号处应填什么图形?3.仔细观察下面的图形,想一想,第4幅图应画怎样的图形?4.根据下面前三幅图的变化规律,在第4幅图中画出阴影部分.5.想一想,方框内应有多少个小圆点?6.按照图形的变化规律,在“?”处画出相符的图形.7.观察图的排列规律,在“?”处填上恰当的图形.8.下面哪个图形和其他几个图形不一样,找出来,并打上“√”.9.观察下列黑白小球的排列规律,然后回答方框内有几个白球,几个黑球?10.四个小动物排座位,如下图:一开始,小老鼠坐在第1号,小猴子坐第2号,小兔坐第3号,小猫坐第4号.以后它们多次地交换位子:第一次上下两排交换,第二次(在第一次交换之后)左右两列交换,第三次上下两排交换,第四次左右两列交换,……这样换下去,问:第十次交换后,小兔子坐在第几号位子上?答案解析1.□提示:在这列图形中出现的图形有:正方形、三角形、圆,且三种图形出现的规律是:按照正方形→三角形→圆→三角形的顺序4个一组循环出现.因25÷4=6……1,所以横线上应填第一个图形,即正方形.2.☆△提示:观察前两组图形可知,第一、二组都是由□○☆△组成,但顺序不同.第一组中的左边两个,在第二组中变为右边两个,而另外三个按原来的顺序移到了最左边.按此规律,“?”处应分别填上“☆”“△”.3.提示:观察前三幅图,大圆内都是■○△◇组成的,第一幅图中的图形按逆时针方向旋转可得到第二幅图形,第二幅图形按逆时针方向旋转可得到第三幅图形,同理可推得第四幅图形.4.提示:第一幅图的阴影部分均按顺时针方向旋转一格便可得到第二幅图,第二幅图中的阴影部分均按顺时针方向旋转一格便可得到第三幅图,由此,第三幅图中的阴影部分均按顺时针方向旋转一格便可得到第四幅图.5.方框内应填25个圆点.6.提示:观察前三幅图可知,前一幅图按逆时针方向旋转一格便可得到下一幅图.7.△提示:通过观察可知,从上到下每一横行圆的个数逐次减少1,三角的个数逐次增加1,由此推得“?”处的图形.8.(1)提示:图中的几何图形的共同特点是在图形内部都有一个同一类型的图形.但1、3、4、5内部的图形都较小,只有2内部图形较大,且位置和其它几个图形不同.(2)提示:这五幅图形都是由相同的两个图形重叠而成的,但不同的是前四个图形都是下面的图形盖住了上面的图形,只有5不同,是上面的图形盖住了下面的图形.9.9个白球,3个黑球.提示:观察图形可知,黑、白小球按照2个黑球,1个白球,2个黑球,3个白球,2个黑球,5个白球……的规律排列,即每组都是先有2个黑球,白球的个数每次增加2.10.小兔坐在第2号位置上.提示:小兔子开始在第3号位置上,第四次交换后,小兔子又回到原位,因10÷4=2……2,所以小兔第十次交换后应与第二次交换后的位置相同.。

六年级找规律公式练习题

六年级找规律公式练习题

六年级找规律公式练习题【六年级找规律公式练习题】一、数列的规律数列是由一系列按照一定规律排列的数字所组成的序列。

我们可以通过观察数列中的数字,找出它们之间的规律和公式。

1. 数列:2, 4, 6, 8, 10, ...规律:每个数字比前一个数字大2。

公式:aₙ = a₁ + 2(n - 1)2. 数列:1, 4, 9, 16, 25, ...规律:每个数字是其序号的平方。

公式:aₙ = n²3. 数列:3, 6, 12, 24, 48, ...规律:每个数字是前一个数字的两倍。

公式:aₙ = 3 × 2^(n - 1)4. 数列:1, 3, 6, 10, 15, ...规律:每个数字是前一个数字加上序号。

公式:aₙ = (n(n + 1))/2二、找规律填空根据给出的数列及其部分数字,填入下划线处的数字。

1. 数列:2, 5, 8, 11, ___答案:14规律:每个数字比前一个数字大3。

2. 数列:1, 4, 9, ___, 25答案:16规律:每个数字是其序号的平方。

3. 数列:4, 10, ___, 22, 31答案:16规律:每个数字比前一个数字增加6。

4. 数列:3, 8, ___, 18, 30答案:13规律:每个数字比前一个数字增加5。

三、找规律写公式根据给出的数列,写出数列的规律和公式。

1. 数列:1, 3, 6, 10, ...规律:每个数字是前一个数字加上序号。

公式:aₙ = (n(n + 1))/22. 数列:1, 4, 9, 16, ...规律:每个数字是其序号的平方。

公式:aₙ = n²3. 数列:2, 6, 12, 20, ...规律:每个数字是前一个数字加上偶数。

公式:aₙ = n(n + 1)4. 数列:1, 4, 9, 16, ...规律:每个数字是其序号的平方。

公式:aₙ = n²综上所述,通过观察数列中的数字,我们可以找出它们之间的规律并表示为公式。

分数找规律的数学题六年级

分数找规律的数学题六年级

分数找规律的数学题六年级一、分数找规律题目。

1. 观察下面的分数序列:(1)/(2),(2)/(3),(3)/(4),(4)/(5),(),(6)/(7)。

- 解析:观察这些分数,发现分子依次是1、2、3、4……,分母依次是2、3、4、5……,所以括号里的分数分子应该是5,分母应该是6,答案是(5)/(6)。

2. 按规律填数:(1)/(3),(3)/(6),(5)/(9),(7)/(12),()。

- 解析:分子的规律是依次加2,1,3,5,7……,分母的规律是依次加3,3,6,9,12……,所以下一个分数的分子是7 + 2=9,分母是12+ 3 = 15,答案是(9)/(15)。

3. 找出规律,填写分数:(2)/(5),(4)/(10),(8)/(20),(16)/(40),()。

- 解析:分子依次是2,2×2 = 4,4×2=8,8×2 = 16,后一个分子是前一个分子的2倍;分母依次是5,5×2 = 10,10×2 = 20,20×2=40,后一个分母是前一个分母的2倍。

所以下一个分数分子是16×2=32,分母是40×2 = 80,答案是(32)/(80)。

4. 观察分数列:(1)/(4),(3)/(8),(5)/(12),(7)/(16),()。

- 解析:分子是连续的奇数,1,3,5,7……,下一个奇数是9;分母是依次加4,4,8,12,16……,下一个分母是16 + 4=20,答案是(9)/(20)。

5. 按规律填空:(3)/(7),(6)/(14),(9)/(21),(12)/(28),()。

- 解析:分子依次是3的倍数,3×1 = 3,3×2 = 6,3×3=9,3×4 = 12,下一个分子是3×5 = 15;分母依次是7的倍数,7×1=7,7×2 = 14,7×3 = 21,7×4=28,下一个分母是7×5 = 35,答案是(15)/(35)。

数学六年级找规律练习题

数学六年级找规律练习题

数学六年级找规律练习题在数学学习的过程中,找规律是一个重要的能力培养方面。

让学生通过观察数列中的数字,找到其中的规律,进而预测未来的数字,不仅能锻炼学生的逻辑思维能力,也有助于提高他们解决问题的能力。

下面就让我们来一起解答一些六年级的数学找规律练习题。

1. 找规律填空(1)2,5,8,11,__,__,__,__,__,__(2)1,10,19,__,__,__,__,__,__,__(3)0,-1,-2,__,__,__,__,__,__,__(4)11,8,__,__,__,__,__,__,__,__(5)10,9,__,__,__,__,__,__,__,__这些题目中,我们需要找到数列中每个数字之间的规律,然后根据这个规律填写空缺的数字。

(1)这个数列中,每一项都比前一项大3,因此可以填写为14,17,20,23,26。

(2)这个数列中,每一项都比前一项大9,因此可以填写为28,37,46,55,64。

(3)这个数列中,每一项都比前一项减1,因此可以填写为-3,-4,-5,-6,-7。

(4)这个数列中,每一项都比前一项减3,因此可以填写为5,2,-1,-4,-7。

(5)这个数列中,每一项都比前一项减1,因此可以填写为8,7,6,5,4。

这些题目可以让学生分析数字之间的关系,通过观察找出规律,进而预测未来的数字。

这种能力对于日常生活中的问题解决也是很有帮助的。

2. 找规律继续下一项(1)2,4,6,8,__(2)3,6,9,12,__(3)1,4,7,10,__(4)100,90,80,70,__(5)8,6,4,2,__这些题目中,我们需要找到数列中每个数字之间的规律,并推测下一个数字是多少。

(1)这个数列中,每一项都比前一项大2,因此下一个数字是10。

(2)这个数列中,每一项都比前一项大3,因此下一个数字是15。

(3)这个数列中,每一项都比前一项大3,因此下一个数字是13。

(4)这个数列中,每一项都比前一项减10,因此下一个数字是60。

六年级找规律练习题大全

六年级找规律练习题大全

六年级找规律练习题大全找规律是数学学习中的一项重要技能。

通过观察数据和数字之间的关系,找到其中的规律,可以帮助我们解决各种问题。

下面是一些六年级找规律练习题,帮助同学们巩固和提高自己的找规律能力。

1. 数列规律题:(1)找出下列数列中的规律,写出下一个数:a) 2, 4, 6, 8, 10, ...b) 5, 10, 15, 20, 25, ...c) 1, 4, 9, 16, 25, ...d) 1, 3, 6, 10, 15, ...(2)写出符合下列规律的数列:a) 2, 4, 8, 16, ...b) 1, 3, 6, 10, 15, ...c) 10, 7, 4, 1, -2, ...d) 3, 8, 13, 18, 23, ...2. 图形规律题:(1)找出下列图形中的规律,写出缺失的图形:a)□ □ □□ □ □□ □ □□ □ ☆b)△△△△▽△△△△(2)画出符合下列规律的图形: a)★★★★★★★★★★b)□ □ □□ □ □□ □ □□ □ □3. 数字运算规律题:(1)找出下列数列中的规律,计算出问号的值:a) 2 × 1 = 24 × 2 = 86 × 3 = ?b) 9 ÷ 3 = 312 ÷ 4 = 315 ÷ 5 = ?(2)写出符合下列规律的数列,并计算出问号的值:a) 4 ÷ 2 = 29 ÷ 3 = 316 ÷ 4 = ?b) 2 × 1 = 24 × 2 = 88 × 4 = ?通过以上练习题,同学们可以锻炼自己的观察能力、分析能力和逻辑思维能力。

找规律不仅是数学中的基本技能,也是解决问题和思考的重要方法。

希望同学们能够认真思考并准确找出各种规律,提高自己的数学水平。

这些练习题可以根据自己的实际情况进行适当的调整和扩展,挑战更高难度的找规律问题。

最新小学六年级数学找规律练习题

最新小学六年级数学找规律练习题

最新小学六年级数学找规律练习题小学六年级数学找规律练习题11、一座拱形桥的两根望柱间隔1米,每侧各有15根望柱,这座拱形桥长几米?2、四年级一班有60人,排成两队,每两个同学相隔1米,队伍前后长几米?3、公园圆形草坪四周有10个小喷水池,每两个喷水池中间有2把休息椅。

你知道一共有几把休息椅吗?4、张强家住在6楼,从1楼到3楼需要走34级台阶。

如果各层楼台阶数相同,张强到家需要走多少级台阶?5、在一条路的两边装路灯,每隔15米装一盏。

如果路的两端都要装,一共需要装162盏。

这条路全长多少米?6、在一条公路的两侧栽树,每隔5米栽一棵,公路的两端都有树,公路长400米,公路每侧要植几棵树?两侧一共要植几棵树?7、张老师要沿200米圆形跑道每隔5米插一面彩旗,一共需要几面彩旗?8、在一张边长为3米的方桌周围摆水果,每个角上都要摆一盘。

如果每隔1米摆一盘,这张方桌上能摆几盘水果?每条边上有几盘?9、学校林荫路长54米,路的一边从一端到另一端一共栽了19棵树,每两棵树之间相距几米?10、为美化环境,园林公司在草坪的一侧每隔2米摆了一盆花,两端都摆共摆了56盆花,现在全部换成木桩做成护拦,这一侧共用了111根木桩,相邻两根木桩间相距几米?11、某人到高层建筑的10层去,他从1层到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?12、科学家进行一项实验,每隔5小时做一次记录。

做第12次记录时,挂钟的时针正好指向9,问做第一次记录时,时针指向几?13、两棵树相隔115米,中间以相等距离增加22棵后,第16棵与第1棵之间相隔几米?14、有一条植着等距离树的路,哥哥和弟弟同时出发,从第一棵数到最后一棵树方向走去,哥哥每分钟走84米,弟弟每分钟走36米。

哥哥走到第22棵树时,弟弟走到第几棵树?15、一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?16、请你把9棵树平均栽成8行,每行栽3棵,你能否做到?如果能请画出栽树的示意图。

小学六年级找规律练习题

小学六年级找规律练习题

小学六年级找规律练习题小学六年级找规律练习题在小学数学学习中,找规律是一个重要的能力。

通过找规律,我们可以发现数列中的规律,进而解决一些数学问题。

下面,我将为大家提供一些小学六年级找规律的练习题,希望能够帮助大家提高这一能力。

1. 数字序列:2, 4, 6, 8, 10, ...规律:每个数字都比前一个数字大2。

下一个数字是多少?2. 数字序列:3, 6, 9, 12, 15, ...规律:每个数字都比前一个数字大3。

下一个数字是多少?3. 数字序列:1, 4, 9, 16, 25, ...规律:每个数字都是前一个数字的平方。

下一个数字是多少?4. 数字序列:1, 3, 6, 10, 15, ...规律:每个数字都比前一个数字多1、2、3、4、5...下一个数字是多少?5. 数字序列:1, 4, 9, 16, 25, ...规律:每个数字都是从1开始的连续奇数的平方。

下一个数字是多少?6. 数字序列:1, 3, 6, 10, 15, ...规律:每个数字都是从1开始的连续自然数的累加和。

下一个数字是多少?通过以上的练习题,我们可以看到找规律的方法有很多种。

在解决这些题目时,我们可以通过观察数字之间的差异,或者是数字之间的倍数关系来找到规律。

除了以上的练习题,我们还可以通过一些游戏来锻炼找规律的能力。

例如,我们可以给出一组数字,要求孩子们找出其中的规律,并继续往下延伸。

这样的游戏不仅能够提高孩子们的观察力和逻辑思维能力,还能够培养他们的耐心和坚持不懈的品质。

找规律不仅仅是数学学习中的一种技能,它还贯穿于我们日常生活的方方面面。

例如,我们可以通过找规律来解决一些生活中的问题,比如整理书桌时,我们可以找到一种规律来摆放书籍,使得整个书桌看起来更加整洁有序。

通过找规律的练习,我们可以培养孩子们的观察力、逻辑思维能力和解决问题的能力。

这些能力不仅在数学学习中有用,还能够在其他学科和生活中发挥作用。

因此,我们应该多给孩子们提供找规律的机会,让他们在实践中不断提高。

六年级找规律数学题

六年级找规律数学题

六年级找规律数学题一、数字规律1. 按规律填数:1,3,6,10,15,(),28。

- 解析:观察这组数字,1到3增加了2,3到6增加了3,6到10增加了4,10到15增加了5。

可以发现相邻两个数的差值在依次递增1。

那么15后面的数应该比15大6,即15 + 6 = 21。

验证一下,21到28增加了7,符合规律。

所以括号里应填21。

2. 数列:2,4,8,16,32,()。

- 解析:这组数列中,2×2 = 4,4×2 = 8,8×2 = 16,16×2 = 32。

可以得出规律是后一个数是前一个数的2倍。

所以括号里的数应该是32×2 = 64。

二、图形规律1. 用小棒按照如下方式摆三角形:摆1个三角形需要3根小棒;摆2个三角形需要5根小棒;摆3个三角形需要7根小棒……(1)摆10个三角形需要多少根小棒?- 解析:观察可得,摆1个三角形用3根小棒(3 = 2×1+1);摆2个三角形用5根小棒(5 = 2×2 + 1);摆3个三角形用7根小棒(7 = 2×3+1)。

可以总结出规律,摆n个三角形需要2n + 1根小棒。

当n = 10时,2×10+1 = 21根小棒。

(2)有21根小棒,可以摆多少个三角形?- 解析:根据前面总结的规律2n+1。

设可以摆n个三角形,则2n + 1 = 21,2n = 20,解得n = 10。

所以21根小棒可以摆10个三角形。

2. 下列图形是由同样大小的小圆圈按照一定规律所组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈……(1)第5个图形中有多少个小圆圈?- 解析:观察图形,第1个图形有6 = 3×1+3个小圆圈;第2个图形有9 = 3×2 + 3个小圆圈;第3个图形有12 = 3×3+3个小圆圈。

可以得出规律,第n个图形有3n+3个小圆圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级总复习练习题
(找规律练习题)
1、一座拱形桥的两根望柱间隔1米,每侧各有15根望柱,这座拱形桥长几米?
2、四年级一班有60人,排成两队,每两个同学相隔1米,队伍前后长几米?
3、公园圆形草坪四周有10个小喷水池,每两个喷水池中间有2把休息椅。

你知道一共有几把休息椅吗?
4、张强家住在6楼,从1楼到3楼需要走34级台阶。

如果各层楼台阶数相同,张强到家需要走多少级台阶?
5、在一条路的两边装路灯,每隔15米装一盏。

如果路的两端都要装,一共需要装162盏。

这条路全长多少米?
6、在一条公路的两侧栽树,每隔5米栽一棵,公路的两端都有树,公路长400米,公路每侧要植几棵树?两侧一共要植几棵树?
7、张老师要沿200米圆形跑道每隔5米插一面彩旗,一共需要几面彩旗?
8、在一张边长为3米的方桌周围摆水果,每个角上都要摆一盘。

如果每隔1米摆一盘,这张方桌上能摆几盘水果?每条边上有几盘?
9、学校林荫路长54米,路的一边从一端到另一端一共栽了19棵树,每两棵树之间相距几米?
10、为美化环境,园林公司在草坪的一侧每隔2米摆了一盆花,两端都摆共摆了56盆花,现在全部换成木桩做成护拦,这一侧共用了111根木桩,相邻两根木桩间相距几米?
11、某人到高层建筑的10层去,他从1层到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?
12、科学家进行一项实验,每隔5小时做一次记录。

做第12次记录时,挂钟的时针正好指向9,问做第一次记录时,时针指向几?
13、两棵树相隔115米,中间以相等距离增加22棵后,第16棵与第1棵之间相隔几米?
14、有一条植着等距离树的路,哥哥和弟弟同时出发,从第一棵数到最后一棵树方向走去,哥哥每分钟走84米,弟弟每分钟走36米。

哥哥走到第22棵树时,弟弟走到第几棵树?
15、一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米
的速度通过81米长的隧道,需要几分钟?
16、请你把9棵树平均栽成8行,每行栽3棵,你能否做到?如果能请画出栽树的示意图。

17、六(1)班共有40名学生,集合排队时,老师让全班同学站成5行,(如下图)
(1)如果小明站在小华的右边,并且靠在一起,一共有多少种站法?
(2)如果小芳和小兰在同一列上,并且靠在一起,一共有多少种站法?
18.下面是2006年5月的台历,用“ ”形框,每次框住5个数。

(1)如果框住的数最小是4,那么框住的5个数的平均数是多少?
(2)一共可以框住多少个不同数的和?
(3)如果框住的5个数中,有3个数都在周三,那么有几种不同的排法?
19、如图,一张桌子可以坐6个人,二张桌子可以坐10个人,那么10张桌子可以坐多少个人? ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
20、有80面小旗,按 ……的规律排列。

那么 “ ” 有( )面, ”有( )面。

21、□○△□○△......第50个是( ). 第100个是( ),第2007个是( )。

22、流水线上生产若干个小木球。

○红○红○白○黄○红○红○白○黄......照这样下去,第10个小木球是( )色的,第47个小木球是( )色的,第56个小木球是( )色的。

23、按规律填数(1)-2、4、-8、16、( ) (2)1、3、7、15、( ) 24、按规律在括号里画出第28个图形。

(1)○△□○△□○△□......( ) (2)
……( )……
25、在括号里填上合适的素数。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34
35
36
37
38
39
40
30=( )+( )=( )+( ) 36=( )+( )=( )+( ) 26、你今年( )岁,属相是( ),属相和你一样的人可以是( )岁(填一个与你年龄不一样的岁数)。

27、今天是星期三,第47天是星期( )。

28、用计算器计算前三题,再直接写出最后一题的得数。

(1)3×6=( ) (2)3×4=( )
33×66=( ) 33×34=( ) 333×666=( ) 333×334=( ) …… ……
33…
3×66…6=( ) ( )×( )
20个3 20个6 =1111111122222222
29、某小学2007年9月3日正式上课,这一天是星期一,星期六和星期天不上课,那么这个月他们共上了( )天课。

①19 ②20 ③21 ④22 30、已知a=0.00…088,b=0.00…04,那a+b=( ) 2005个0 2006个0
①0.00…012 ②0.00…092 ③0.00…012 ④0.00…092 2005个0 2005个0 2006个0 2006个0
31、一列火车从上海到扬州,中途要经过4个站,这列火车要准备( )种不同的车票。

A 、15 B 、14 C 、18 D 、20
32、一根铁丝长18厘米,把它围成长和宽都是整厘米数的长方形,围成的长方形面积最大是( )平方厘米。

A 、8
B 、14
C 、18
D 、20
33、用48个1平方厘米的小正方形拼长方形,有多少种不同的拼法?它们的周长各是多少?
34、有同样大小的红、白、黑珠共有2006个,按先5个红的,再4个白的,再3个黑的顺序排列。

第144个珠是什么颜色?
35、五年级一班有51名学生,每2名同学一张桌子,每张桌子一名男生,一名女生。

最后剩一名男生。

男、女生各有多少人?
36、老师把1-38张贺卡依次发给小宇、小红、小丽三人,已知1号发给小宇。

(1)最后一号发给谁?
(2)他们三人各得几张贺卡?
37、课外活动上,有4个同学围成一起做游戏,从甲开始按顺时针的方向报数,问47是谁报的?甲、丙各报了几次数?

丁乙

38、从甲地到乙地有3条路可走,从乙地到丙地有2条路可走,那么由甲地到丙地共有多少条路可走?
39、两种物体间隔排列,两端相同,两端物体比中间物体()1。

两种物体间隔排列,两端不相同,两端物体与中间物体()。

两种物体间隔排列,首尾相连,两端物体与中间物体()。

40、△○△○△○△○△
(1)如图,每个△中间有1个○。

图中一共有()个△,()个○,○的个数比△少()。

(2)像这样一共摆20个△,那么中间一共要摆()个○。

41、———————————————
(1)如图,这段木料一共锯了()次,被锯成了()段,锯成的段数比锯的次数多()。

(2)像这样锯10次,这根木料要被锯成()段。

42、实验学校有一条40米的走道,计划在道路一旁栽树,每隔4米栽一棵。

(1)如果只有一端栽树,共需要()棵。

(2)如果两端都不栽树,共需要()棵。

(3)如果两端都各栽一棵树,共需要()棵。

43、有18个小朋友排成一路纵队,每两个小朋友之间相距1米。

这路纵队全长大约()米。

44、一幢楼房,相邻的上下两层之间都有18级台阶,从一楼到六楼,一共要爬()级台阶。

45、秦淮河一侧的河堤上栽了50棵柳树,每两棵柳树中间放一张休闲长椅,放了()张长椅。

在公园里的一个湖的四周栽了50棵柳树,每两棵柳树中间放一张休闲长椅,放了()张长椅。

46、张悦过生日,买了一个周长为50厘米的圆形蛋糕,在它的四周每隔5厘米插一根小蜡烛,需要()根蜡烛。

47、在相距120米的两楼之间种树,每隔20米栽一棵,共栽()棵。

(想想实际情况)
48、在正方形毛巾上四周绣花,四个顶点上各有一朵,这样每边都有6朵,毛巾四周一共绣了()朵花。

49、某公司在道路的一侧插彩旗,每隔5米插一面,从起点到终点共插了8面,这条道路长多少米?
50、把一根木头锯成6小段,每锯开一处需要花3分钟,全部需要多少分钟?
51、公园的一条路长42米,从一端开始,每隔7米摆一张石凳,共要摆多少张石凳?如果在相邻两张石凳之间摆3盆菊花,共要摆多少盆菊花?
52、一个正方形菜地边长25米,要在它的周围装上篱笆,每隔5米需要打一根桩,四个顶点都要打,一共要准备多少根木桩?
53、把一根木头截成4段需要12分钟,如果把这根木头截成8段需要多少分钟?
54、公园的环湖小路边有石凳20张,相邻石凳间隔36米。

现在把石凳改换成木椅,使相邻木椅之间间隔24米,一共要准备多少张木椅?
55、把20面小红旗插在正方形操场的四条边上,使每条边上的小红旗一样多,每个顶点上也要有一面,每边可插多少面?
56、在一个正方形草地的四周种树,每边种8棵,每个顶点上各有一棵,每两棵树之间间隔5米。

(1)这个正方形草地的四周一共种了多少棵树?(2)这个正方形草地的边长是多少米?面积多少米?
57、明明与晶晶住在同一幢楼,相邻两层楼之间的楼梯数相同,明明家住在四楼,每次回家要走48级台阶,晶晶家住六楼,每次回家要走多少级台阶?。

相关文档
最新文档