含苯硼酸材料在药物投递中的研究进展_吕娟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年 第61卷 第19期:2113 ~ 2123
引用格式: 吕娟, 马如江, 史林启. 含苯硼酸材料在药物投递中的研究进展. 科学通报, 2016, 61: 2113–2123
Lü J, Ma R J, Shi L Q. Advances of phenylboronic acid-containing materials in drug delivery (in Chinese). Chin Sci Bull, 2016, 61: 2113–2123, doi: 10.1360/N972016-00129 © 2016《中国科学》杂志社
《中国科学》杂志社
SCIENCE CHINA PRESS
专题:
进 展
含苯硼酸材料在药物投递中的研究进展
吕娟①, 马如江①, 史林启①②*
① 南开大学高分子化学研究所, 药物化学生物学国家重点实验室, 功能高分子材料教育部重点实验室, 天津300071; ② 天津化学化工协同创新中心, 天津300071 * 联系人, E-mail: shilinqi@
2016-01-28收稿, 2016-03-05修回, 2016-03-09接受, 2016-04-07网络版发表
国家自然科学基金(21274001, 51390483, 91527306)、天津市应用基础与前沿技术研究计划(15JCYBJC29700)和教育部创新团队支持计划(IRT1257)资助
摘要 苯硼酸(PBA)及其衍生物是一类非天然的人工合成的二醇类物质识别体, 在水溶液中可以与具有邻二醇或间二醇结构的多羟基化合物可逆反应形成共价复合物. 近年来, 基于PBA 与二醇类物质可逆结合, 人们对含有PBA 的材料在糖尿病和癌症治疗相关药物投递领域进行了广泛深入的研究, 取得了显著的成果. 本文综述了该领域最新的研究进展, 重点关注了含PBA 材料的癌细胞靶向性和刺激响应性, 包括葡萄糖响应性、pH 响应性、三磷酸腺苷(ATP)响应性和H 2O 2响应性, 并对今后的深入研究进行了展望. 关键词 苯硼酸, 药物投递, 刺激响应性, 糖尿病, 癌症
糖尿病是一种严重威胁人类健康的代谢性疾病, 胰岛素治疗是目前控制糖尿病患者血糖水平的重要手段之一. 近年来基于苯硼酸(PBA)的血糖响应性药物载体成为胰岛素投递领域的研究热点. 1959年, Lorand 和Edwards [1]研究了PBA 与多羟基化合物的结合作用. PBA 在水溶液中存在解离平衡, 以疏水性不带电荷的结构和亲水性带电荷的结构两种形式存在, 其中只有带电荷的结构可以与具有邻二醇或间二醇结构的多羟基化合物(包括葡萄糖)形成稳定的共价复合物. 当水溶液中的葡萄糖浓度增加时, 该离解平衡会朝向生成带电荷结构的方向移动, 体系的水溶性增强. 基于这种平衡关系及PBA 与二醇结构分子的可逆结合能力, 人们利用PBA 的糖响应性制备了胰岛素投递载体[2,3], 对载体的血糖响应性和胰岛素反复开关释放等都进行了逐步深入的研究.
化学疗法是抗癌治疗中的一种常规的临床疗法, 目前传统的化学疗法普遍存在着药物在肿瘤组织中
渗透性差、清除速度快、不可避免的细胞毒性和利用率低下等诸多问题. 理想的抗癌药物载体需要具备如下的功能: 在体内循环过程中能够靶向富集到肿瘤部位, 并且通过对癌细胞的靶向识别作用增加滞留时间; 进入细胞后能够响应释放负载的药物提高药物的利用率; 完成使命后能够同时解体, 降低载体的细胞毒性. 含有二醇结构的唾液酸(SA)分子在许多癌细胞表面都存在着过表达[4,5], PBA 分子可以与SA 分子在生理条件下结合形成稳定的复合物, 且结合常数要高于其他糖分子(葡萄糖和半乳糖)3~5倍[6], 这种独特的相互作用被大量应用于癌细胞的靶向识别[7], 能够促进载体在癌细胞表面的富集和延长在肿瘤部位的滞留时间. 同时, 由于PBA 可以与二醇结构分子可逆结合, 使得PBA-二醇结构在癌细胞内具有多重刺激响应性: pH 响应性[8,9]、三磷酸腺苷(ATP)响应性[10]和H 2O 2响应性[11], 因此含有PBA 载体在运送抗癌药物的过程中可以有多种投递机制, 实现药物
2016年7月 第61卷 第19期
2114
的高效利用.
本文综述了近年来含PBA 的材料在糖尿病治疗和抗癌治疗等方面作为药物投递载体的最新研究进展, 主要关注了载体的刺激响应性和对癌细胞的靶向性, 并对相关发展趋势进行了展望.
1 糖尿病治疗
1.1 生理条件下提高材料的葡萄糖响应性
人体生理环境的pH 为7.4, 而PBA 及其衍生物一般都具有较高的p K a (约为8~9)[12,13], 在正常的生理环境下, PBA 的聚合物具有较差的水溶性和较弱的葡萄糖响应性. 为了降低PBA 的p K a , 人们主要采取了两种解决方法: 一种是在PBA 的苯环上引入拉电子基团[14,15], 另一种方法是在含有PBA 的聚合物中或在PBA 苯环的邻位引入氨基[16], 通过氨基氮原子的孤对电子与硼原子空轨道发生配位作用, 降低含PBA 聚合物的p K a .
近年来, 人们发现还有一些方法能够有效降低含PBA 载体的p K a , 以提高其在生理环境下的葡萄糖响应性[17]. Wang 等人[18]将PBA 修饰到聚乙二醇-b -聚丙烯酸(PEG-b -PAA)的侧基上, 得到含有PBA 基团的两亲性嵌段共聚物PEG-b -(PAA-co -PAAPBA), 这种嵌段共聚物在pH 6的水溶液中自组装形成核-壳型胶束. 通过硼的魔角旋转核磁(11B MAS NMR)研究发现(图1), PAA-co -PAAPBA 链段中, 羧酸根对硼酸根起到一定的稳定作用, 使PBA 基团的表观p K a 降低[19]. 当PAA 链段上PBA 的接枝率为63%时, 聚合物胶束在pH 7.4时具有很好的葡萄糖响应性.
将带有PBA 基团的聚合物与含糖聚合物复合, 形成p K a 较低的苯硼酸酯的结构, 同样可以提高聚合物载体的葡萄糖响应性. Yang 等人[20]合成了嵌段共聚物聚乙二醇-b -聚(天冬氨酸-co -天冬酰胺基苯硼酸)(PEG-b-P(Asp-co -AspPBA))和基于聚氨基酸的糖聚物聚(天冬氨酸-co -天冬酰胺基葡萄糖, P(Asp- co -AspAGA)), 依靠PBA 与AGA 的复合作用形成复合胶束. PBA 和多元醇形成的苯硼酸环酯与单纯的PBA 相比具有更低的p K a [21], 因而利用这种方法能够有效地降低含有
PBA
材料的表观
p K
a , 由此增强了材料在生理pH 下的葡萄糖响应性. 实验结果表明这种胶束具有较为理想的葡萄糖响应性(正常血糖浓度保持稳定, 高血糖浓度下迅速响应), 适合于构建胰岛素投
图1 (网络版彩色)PEG-b -(PAA-co -PAAPBA)胶束的11B MAS NMR 谱图
Figure 1 (Color online) Solid state 11B MAS NMR spectra of micelles self-assembled from PEG-b -(PAA-co -PAAPBA)
递体系.
此外, Dowlut 和Hall [22]报道了一种邻位羟烷基苯硼酸与单糖的复合物, 这种苯硼酸结构中具有较小的C-B-O 二面角, 有利于苯硼酸与二醇类物质形成四面体结构, 因此这种新型的PBA 衍生物具有较低的p K a 和生理环境下的葡萄糖响应性, 适合作为胰岛素的载体材料.
在胰岛素投递体系的研究中, 许多研究者将水凝胶作为胰岛素的载体, 将PBA 基团引入凝胶网络中作为葡萄糖响应部分. 为了缩短凝胶对葡萄糖浓度的响应时间, 研究者对含有PBA 的微凝胶结构材料进行了积极探索[23,24], 微凝胶的粒径一般在100~ 1000 nm, 与宏观凝胶具有相同的化学结构, 但由于具有较小的尺寸, 含有PBA 的微凝胶具有更快的葡萄糖响应速度.
Zhao 等人[25]用开环聚合和叠氮点击化学制得了甲氧基聚乙二醇-b -聚(谷氨酸苄酯-co -(炔丙基谷氨酸-g -葡萄糖))(mPEG-b -P(BLG-co -(PLG-g -Glu)))微凝胶, 用AAPBA 将微凝胶的Glu 部分交联, 如图2所示. 这种微凝胶在pH 7.4的PBS 溶液中具有葡萄糖响应性, 随着环境中葡萄糖浓度的增加, 微凝胶的粒径逐