课时规范训练--集合10-1
课时规范训练--集合10-1
课时规范训练A组基础演练1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样解析:选D.因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8D.1210 C.30=6,×设样本容量为NN,则选解析:B.7040∴N=14,∴高二年级所抽取的人数为14×=8.70150老年职工人,250中年职工人,350其中青年职工人,750某单位有职工.3.人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.7 B.15D.35C.25解析:选B.由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.4.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,己知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为()A.13 B.19D.20 51C.解析:选C.抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.5.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808D..C1 212 2 01212,而四个社区一共抽取的驾驶员人数为12+21由题意知抽样比为解析:选B.9612101+25+43=101,故有=,解得N=808.N966.某学校高三一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是()A.1,2,3,4,5,6 B.6,16,26,36,46,56D.3,9,13,27,36,541,2,4,8,16,32 C.,所以10由系统抽样知识知,所选取学生编号之间的间距相等且为B.选解析:应选B.7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一1学生的两倍,高二学生比高一学生多300人,现在按的抽样比例用分层抽样100的方法抽取样本,则高一学生应抽取的人数为()A.8 B.11D .10C.16解析:选A.设高一学生有x人,则高三学生有2x人,高二学生有(x+300)人,1学校共有4x+300=3 500(人),解得x=800(人),由此可得按的抽样比例用分1001层抽样的方法抽取样本,高一学生应抽取的人数为×800=8(人),故应选A. 1008.某校初一、初二、初三年级各有300人,400人,302人,采用系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为()302100B. A. 1 0021 00230300D. C. 3021000n100=. 2人,但每人能抽到的概率为选B.利用系统抽样,虽然剔除解析:1 002N9.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10D 12 .13C.n3,故n==13.依题意得选解析:D.6060+120+8010.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()7.B 5 .A.C.11 D.13800=16,即每16人抽取一个人.由于39=2×16+7,=k解析:选B.间隔数50所以第1小组中抽取的数为7.B组能力突破1.某校共有学生2 000名,各年级男、女生人数如下表所示:一年级二年级三年级女生y380373男生z 370377现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24 B.18D.C.16 12解析:选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,所以应在三年级抽取64的人数为500×=16.2 0002.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8D..25,16,9 24,17,9C解析:选B.由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).103令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;4103令300<3+12(k-1)≤495得25-42因此第Ⅱ营区被抽中的人数是,42≤k<4.=17.结合各选项知,选B.3.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.答案:16,28,40,524.某课题组进行城市空气质量调查,按地域把24个城市分成某甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.61=,由已知得抽样比为解析:2441∴丙组中应抽取的城市数为8×=2.4答案:25.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.解析:由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:766.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.解析:由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x+(n-1)×8,所以第16组应抽出的号码为x+(16-1)×8=123,解得x=3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.11答案:。
2025高考数学一轮复习-1.1-集合-课时规范训练【含答案】
1.1-集合-课时规范训练基础巩固练1.(2023新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}2.(2023新高考Ⅱ)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-13.(2024南京、盐城一模)已知集合A={0,1,2},B={x|y=lg(-x2+2x)},则A∩B=()A.{0,1,2}B.{1}C.{0}D.(0,2)4.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4B.-2C.2D.45.(2023镇江检测)记集合M={x||x|>2},N={x|y=2- },则(∁R M)∩N=()A.{x|-2≤x≤2}B.{x|x>2}C.{x|0≤x<2}D.{x|x<-2}6.设集合A={2,3,a2-2a-3},B={0,3},C={2,a}.若B⊆A,A∩C={2},则a=()A.-3B.-1C.1D.37.设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N)B.N∪(∁U M)C.∁U(M∩N)D.M∪(∁U N)8.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%9.定义集合A,B的一种运算:A B={x|x=a2-b,a∈A,b∈B},若A={-1,0},B={1,2},则A B中的元素个数为()A.1B.2C.3D.410.(多选题)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0B.12C.1D.211.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”.对于集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则实数a的取值集合为.12.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax≤0},若A∩B中恰含有一个整数,则实数a的取值范围是.综合提升练13.设全集U={x||x|<4且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有()A.5个B.6个C.7个D.8个14.设集合M={(x,y)|y=4- 2},N={(x,y)|(x-2)2+(y-2)2=r2}(r>0).当M∩N有且只有一个元素时,正数r 的所有取值为()A.2+2或22-2B.2<r≤25C.2<r≤25或r=22-2D.2≤r≤25或r=22-215.已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k都乘(-1)k再求和,如A={1,3,6},可求得和为(-1)1×1+(-1)3×3+(-1)6×6=2,则对M的所有非空子集,这些和的总和为()A.5B.5120C.2555D.256016.(多选题)已知M是同时满足下列条件的集合:①0∈M,1∈M;②若x,y∈M,则x-y∈M;③x∈M且x≠0,则1 ∈M.下列结论中,正确的有()A.13∈MB.-1∉MC.若x,y∈M,则x+y∈MD.若x,y∈M,则xy∈M17.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,则有xy∈T;②对于任意x,y∈T,若x<y,则 ∈S.若S有4个元素,则S∪T有个元素.创新应用练18.已知数集A=[t,t+1]∪[t+4,t+9].若存在λ∈R,使得对任意a∈A都有 ∈A,则称A为完美集,给出下列四个结论:①存在t∈(0,+∞),使得A为完美集;②存在t∈(-∞,0),使得A为完美集;③如果t∉Z,那么A一定不为完美集;④使得A为完美集的所有t的值之和为-2.其中,所有正确结论的序号是.参考答案与解析1.C2.B3.B4.B5.A6.B7.A8.C9.C10.BD11 0,12,212 -52,-2∪113.D14.C15.D16.ACD17.718.①②。
高中数学课时作业(人教B版必修第一册)课时作业(一) 集合及其表示方法
课时作业(一) 集合及其表示方法一、选择题1.有下列说法:①{1,2}与{2,1}不同;②0∈{x |x 2+x =0};③方程(x +1)(x -2)2=0的所有解的集合可表示为{}-1,2,2 ;④集合{}x |-3<x <4 是有限集.其中正确的说法是( )A .只有①和④B .只有②和③C .只有②D .四种说法都不对2.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( )A .{x |x 是小于18的正奇数}B .{x |x =4k +1,k ∈Z ,且k <5}C .{x |x =4t -3,t ∈N ,且t ≤5}D .{x |x =4s -3,s ∈N *,且s ≤5}3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .04.(多选)下列集合的表示方法不正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }B. 不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R二、填空题5.给出下列关系:(1)13∈R ;(2)5 ∈Q ;(3)-3∉Z ;(4)-3 ∉N ,其中正确的是________. 6.用区间表示下列数集.(1){x |x ≥2}=________;(2){x |3<x ≤4}=________;(3){x |x >1且x ≠2}=________.7.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈N ,126-x ∈N ,用列举法表示集合A 为________. 三、解答题8.若集合A ={x |ax 2+1=0,x ∈R }不含有任何元素,求实数a 的取值范围.(用区间表示)9.用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合;(3)绝对值不大于2的所有整数;(4)方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1 的解; (5)函数y =1x图象上的所有点. [尖子生题库]10.下列三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?。
2022数学课时规范练1集合的概念与运算文含解析新人教A版
课时规范练1 集合的概念与运算基础巩固组1.(2020全国2,文1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.⌀B.{-3,—2,2,3}C。
{-2,0,2}D.{—2,2}2。
(2020陕西宝鸡三模,文1)设集合A={0,2,4},B={x∈N|log2x≤1},则A∪B=()A.{2,4} B。
{0,1,4}C。
{1,2,4} D。
{0,1,2,4}3.若集合A={0,1,2,3},B={1,2,4},C=A∩B,则C的子集共有()A.6个B。
4个C。
3个D。
2个4。
(2020山东滨州三模,1)已知集合M={x|x=4n+1,n∈Z},N={x|x=2n+1,n∈Z},则()A。
M⊆N B。
N⊆MC.M∈ND.N∈M5。
(2020山东淄博4月模拟,1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=()A.{3} B。
{1,4,6}C。
{2,5}D。
{2,3,5}6。
已知集合A={x|x2—x-2=0},B={x∈Z||x|≤2},则A∩B=()A.{1,2}B.{1,-2}C.{—1,2} D。
{—1,—2}7.设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)为()A.{1,2,3}B。
{1,2,4}C。
{1,3,4} D。
{2,3,4}8。
设全集U=R,集合A={x|x—1≤0},B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A。
{x|x<3}B.{x|—3〈x≤1}C。
{x|x<2}D。
{x|-2〈x≤1}9.若集合A={x|x≥3—2a},B={x|(x—a+1)(x—a)≥0},A ∪B=R,则a的取值范围为()A.[2,+∞)B.(-∞,2]C.(-∞,43]D.43,+∞10.设全集为R,集合P={x|x2—4x>0},Q={x|log2(x-1)〈2},则(∁R P)∩Q=()A.[0,4]B.[0,5)C.(1,4]D.[1,5)11.已知集合A={x|log2x≤2},B={x|x〈a},若A⊆B,则实数a的取值范围是.12。
新教材老高考适用2023高考数学一轮总复习课时规范练1集合北师大版
课时规范练1集合基础巩固组1.(2021湖南长沙雅礼中学高三月考)已知集合A={x∈Z|-2≤x<2},B={0,1},则下列判断正确的是()A.B∈AB.A∩B=⌀C.A⊆BD.B⊆A∈Z,则下列结论不正确的是() 2.(2021山东淄博实验中学高三月考)若集合A=x∈N*63-xA.1∈AB.3∉AC.-3∈AD.8∉A3.(2021江苏,1)已知集合M={1,3},N={1-a,3},若M∪N={1,2,3},则实数a的值是()A.-2B.-1C.0D.14.(2021山东烟台高三模拟)已知集合M,N都是R的子集,且M∩∁R N=⌀,则M∩N=()A.MB.NC.⌀D.R5.(2021湖北荆门高三月考)已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.⌀x,Q={(x,y)|y=-x2+2},则集合P∩Q的真子集6.(2021宁夏银川高三月考)集合P=(x,y)y=12个数为()A.0B.1C.2D.37.已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={-1,0,1,2},则下列说法错误的是()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={-1}D.A∩B的真子集个数是78.已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=⌀B.A∩B=BC.A∪B=RD.(∁U B)∪A=A综合提升组9.(2021江苏高三月考)已知集合A={1,2,3},B={-1,0,1,2},若M⊆A且M⊆B,则满足条件的集合M的个数为()A.1B.3C.4D.610.(2021河北沧州高三期末)设全集为R,M={x|f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}等于()A.(∁R M)∩(∁R N)B.(∁R M)∪NC.M∪(∁R N)D.(∁R M)∪(∁R N)11.(2021广东佛山高三月考)设A={x|1≤x≤3},B={x|ln(3-2x)<0},则图中阴影部分表示的集合为()A.-∞,32B.1,32C.(1,3]D.32,312.(2021山东泰安高三月考)已知集合A={x|x2+3<4x},B⊆N*,且A∩B≠⌀,则下列结论一定正确的是()A.1∈AB.B={2}C.2∈BD.(∁R A)∩B=⌀13.(2021湖南长郡中学高三期中)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4,5},A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.4B.6C.8D.16创新应用组14.(2021江苏南京高三月考)若A={(x,y)|x2+y2≤1},B={(x,y)||x|+|y|≤a},且A⊆B,则实数a的取值范围是()A.1,+∞ B.[1,+∞)2C.[√2,+∞)D.[2,+∞)15.已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列说法错误的是()A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若a=3,则A∩B={x|-3<x<6}课时规范练1集合1.D解析:∵A={x∈Z|-2≤x<2}={-2,-1,0,1},B={0,1},∴B⊆A,A∩B=B={0,1},故选D.∈Z且x∈N*,所以x的可取值有:1,2,4,5,6,9,即A={1,2,4,5,6,9},由此可判断2.C解析:因为63-xC错误,其余均正确.3.B解析:因为M∪N={1,2,3},所以1-a=2,解得a=-1,故选B.4.A解析:由题意M∩∁R N=⌀,可得M⊆N,所以M∩N=M,故选A.5.C解析:因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},当x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z},故选C.6.D解析:画x和y=-x2+2的图象,由图象可知两函数有两个交点,则集合P∩Q中有2个元素,则集出函数y=12合P∩Q的真子集有22-1=3(个),故选D.,x∈Z,B={-1,0,1,2},A∩B={0,1,2},故A正确;A∪7.B解析:A={x|2x+1≥0,x∈Z}=x x≥-12B={x|x≥-1,x∈Z},故B错误;∁U A=x x<-1,x∈Z,所以(∁U A)∩B={-1},故C正确;由A∩2B={0,1,2},知A∩B的真子集个数是23-1=7,故D正确.故选B.8.D解析:令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠⌀,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C不正确,D正确.故选D.9.C解析:∵集合A={1,2,3},B={-1,0,1,2},∴A∩B={1,2}.又M⊆A且M⊆B,∴M⊆(A∩B),即M⊆{1,2},∴M的个数为22=4,故选C.10.D解析:因为{x|f(x)g(x)=0}={x|f(x)=0或g(x)=0},又因为M={x|f(x)≠0},N={x|g(x)≠0},所以{x|f(x)g(x)=0}=(∁R M)∪(∁R N),故选D.11.B 解析:由图可知阴影部分表示的集合为A ∩B.因为A={x|1≤x ≤3},B={x|ln(3-2x )<0}=x 1<x<32,所以A ∩B=1,32,故选B .12.C 解析:因为x 2+3<4x ,所以(x-1)(x-3)<0,解得1<x<3,所以集合A={x|1<x<3}.因为B ⊆N *,且A ∩B ≠⌀,则2∈B ,故选C .13.C 解析:由题意可知,集合A 不能是空集,也不可能为{1,2,3,4,5}.若集合A 只有一个元素,则集合A 为{4};若集合A 有两个元素,则集合A 为{1,3},{3,4},{3,5};若集合A 有三个元素,则集合A 为{1,2,4},{1,2,5},{2,4,5};若集合A 有四个元素,则集合A 为{1,2,3,5}.综上所述,有序集合对(A ,B )的个数为8,故选C . 14.C 解析:集合A 为圆O :x 2+y 2=1的内部和圆上的点集,B 为由直线x+y=a ,x-y=a ,-x+y=a ,x+y=-a 围成的正方形的内部和边上的点集,画出图象(如图所示),当直线EF 与圆O 相切时,设切点为C ,连接OC ,∵△EOF 为等腰直角三角形,OE=OF ,∠EOF=90°,OC ⊥EF , ∴OC 为Rt △EOF 斜边上的中线, ∴OC=12EF ,即EF=2OC=2,∴OE=OF=√22EF=√2,此时a=√2. ∴a ≥√2,故选C .15.D 解析:由已知得,A={x|-3<x<6},令g (x )=x 2+ax+a 2-27.对于A,若A=B ,即-3,6是方程g (x )=0的两个根,则{a =-3,a 2-27=-18,得a=-3,正确;对于B,若A ⊆B ,则{g(-3)=a 2-3a -18≤0,g(6)=a 2+6a +9≤0,解得a=-3,正确;对于C,当B=⌀时,Δ=a 2-4(a 2-27)≤0,解得a ≤-6或a ≥6,正确;对于D,当a=3时,有B={x ∈R |x 2+3x-18<0}={x|-6<x<3},所以A ∩B={x|-3<x<3},错误.故选D .。
课时规范训练--集合
课时规范训练A组基础演练1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A.由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.2.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:选 A.∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.3.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=() A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解析:选A.由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A. 4.设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:选A.由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A. 5.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:选 D.由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.6.集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2-5x+4<0},则∁U(A∪B)=() A.{0,1,3,4} B.{1,2,3}C.{0,4} D.{0}解析:选C.因为集合B={x∈Z|x2-5x+4<0}={2,3},所以A∪B={1,2,3},又全集U={0,1,2,3,4},所以∁U(A∪B)={0,4}.所以选C.7.已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1]解析:选B.依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.8.已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2 B.3C.4 D.5解析:选C.依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.9.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=________.解析:A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.答案:{(0,1),(-1,2)}10.已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.解析:由a2-a+1=3,得a=-1或a=2,经检验符合.由a2-a+1=a,得a =1,由于集合中不能有相同元素,所以舍去.故a=-1或2.答案:-1或2B组能力突破1.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞) D.(-3,-1)解析:选D.由题意可知,M={x|-3<x<1},N={x|-1≤x≤1},∴阴影部分表示的集合为M∩(∁U N)={x|-3<x<-1}.2.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示()A.M∩N B.(∁U M)∩NC.M∩(∁U N) D.(∁U M)∩(∁U N)解析:选B.M∩N={5},A错误;∁U M={1,2},(∁U M)∩N={1,2},B正确;∁U N ={3,4},M∩(∁U N)={3,4},C错误;(∁U M)∩(∁U N)=∅,D错误.故选B. 3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:选D.集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n+2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2.4.设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7 B.10C.25D.52解析:选B.A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B. 5.已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.解析:本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).(A∩B)=(-∞,0)∪(0,+∞).所以阴影部分用集合表示为∁A∪B答案:(-∞,0)∪(0,+∞)6.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C∩A=C,则a的取值范围是________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎨⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.答案:(-∞,-1]。
课时规范训练(一)
课时规范训练A基础巩固练1.(多选题)下列各组对象能构成集合的有()A.接近于1的所有正整数B.小于0的实数C.(2023,1)与(1,2023)D.某校高一(1)班的聪明学生解析:BC A中,接近于1的所有正整数标准不明确,故不能构成集合;B 中小于0是一个明确的标准,能构成集合;C中(2023,1)与(1,2023)是两个不同的点,是确定的,能构成集合;D中“某校高一(1)班的聪明学生”中“聪明”的标准不确定,因而不能构成一个集合.2.给出下列关系:①13∈R;②5∈Q;③-3∉Z;④-3∉N,其中正确的个数为()A.1B.2C.3D.4解析:B 13是实数,①正确;5是无理数,②错误;-3是整数,③错误;-3是无理数,④正确.故选B.3.下列说法中正确的是()A.某学校高一(8)班比较漂亮的女生能确定一个集合B.由1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5组成的集合有5个元素C.将小于100的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到两个不同的集合D.方程x2+1=2x的解集中只有一个元素解析:D A是错误的,因为“漂亮”是个模糊的概念,因此不满足集合中元素的确定性;B是错误的,32=64,⎪⎪⎪⎪⎪⎪-12=0.5,根据互异性,得由1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5组成的集合只有3个元素:1,32,0.5;C是错误的,根据集合中元素的无序性可知,小于100的自然数无论按什么顺序排列,构成的集合都是同一集合;D是正确的,方程x2+1=2x有两个相等的解,即x1=x2=1,其解集中只有一个元素,故D正确.4.下列各组中,集合P与Q表示同一个集合的是()A.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集解析:A由于A中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C,D中P,Q的元素不相同,所以P与Q不表示同一个集合.5.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是()A.1∈M B.0∈MC.-1∈M D.-2∈M解析:C由2∈M知2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一根为-1.6.(多选题)集合A中含有三个元素2,4,6,若a∈A,且6-a∈A,那么a 可以为()A.2 B.-2C.4 D.6解析:AC若a=2,则6-2=4∈A;若a=4,则6-4=2∈A;若a=6,则6-6=0∉A.7.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.解析:因为x∈N,2<x<a,且集合P中恰有三个元素,易知a=6.答案:68.若由a ,b a ,1组成的集合A 与由a 2,a +b ,0组成的集合B 相等,则a 2023+b 2023的值为________.解析:由已知可得a ≠0,因为两集合相等,又1≠0,所以b a =0,所以b =0,所以a 2=1,即a =±1,又当a =1时,集合A 不满足集合中元素的互异性,舍去,所以a =-1. 所以a 2023+b 2023=-1.答案:-19.已知集合A 含有两个元素a -3和2a -1,a ∈R .(1)求实数a 的取值范围;(2)若a ∈A ,求实数a 的值.解:(1)如果a -3=2a -1,则a =-2.由于a -3,2a -1是集合A 含有的两个元素,所以实数a ≠-2.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,0=-3,不成立;当a =2a -1时,a =1,此时A 中有两个元素-2,1,符合题意,综上所述,实数a 的值为1.B 能力进阶练10.若集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ),则下列选项中元素与集合的关系都正确的是( )A .2∈A 且2∈BB .(1,2)∈A 且(1,2)∈BC .2∈A 且(3,10)∈BD .(3,10)∈A 且2∈B解析:C 集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ;集合B 中的元素为点(x ,y )且满足y =x 2+1,经验证,(3,10)∈B ,故选C .11.(多选题)由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值不可能是( )A .1B .-2C .-1D .2解析:ABD 由题意知a 2≠4,2-a ≠4,a 2≠2-a ,解得a ≠±2,且a ≠1,即a 的取值不可能是1,±2.12.已知集合A 含有两个元素1和2,集合B 表示方程x 2+ax +b =0的解组成的集合,且集合A 与集合B 相等,则a =________,b =________.解析:因为集合A 与集合B 相等,且1∈A ,2∈A ,所以1∈B ,2∈B ,即1,2是方程x 2+ax +b =0的两个实数根.所以⎩⎨⎧1+2=-a ,1×2=b ,所以⎩⎨⎧a =-3,b =2.答案:-3 213.已知集合A 的元素是a ,b ,2,集合B 的元素是2,b 2,2a ,若A =B ,求实数a ,b 的值.解:由已知A =B 得⎩⎨⎧a =2a ,b =b 2,① 或⎩⎨⎧a =b 2,b =2a ,② 解①得⎩⎨⎧a =0,b =0或⎩⎨⎧a =0,b =1.解②得⎩⎨⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12.又由集合元素的互异性,得⎩⎨⎧a =0,b =1,或⎩⎪⎨⎪⎧a =14,b =12.C 探索创新练14.已知a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,则:(1)若A 中只有1个元素,则a =________;(2)若A有且只有2个元素,则集合A的个数是________.解析:因为a∈A且4-a∈A,a∈N且4-a∈N,若a=0,则4-a=4,此时A满足要求;若a=1,则4-a=3,此时A满足要求;若a=2,则4-a=2.此时A含1个元素.答案:(1)2(2)2。
人教B版数学人教B版必修第一册课件课时作业集合的概念
数 a 的取值可以是( C )
A.1
B.-2
C.6
D.2
解析:当 a=1 时,由 a2=1,2-a=1,4 组成的集合 A 中含 有 2 个元素;
当 a=-2 时,由 a2=4,2-a=4,4 组成的集合 A 中含有 1 个元素;
当 a=6 时,由 a2=36,2-a=-4,4 组成的集合 A 中含有 3 个元素;
5.已知集合 A 含有三个元素 2,4,6,且当 a∈A,有 6-a∈A,
则 a 为( B )
A.2
B.2 或 4
C.4
D.0
解析:若 a=2∈A,则 6-a=4∈A;若 a=4∈A,则 6-a =2∈A;若 a=6∈A,则 6-a=0∉A.故选 B.
6.已知集合 A 是无限集且集合 A 中的元素为 12,22,32,42,…
若 m∈A,n∈A,则 m⊕n∈A.其中“⊕”表示的运算可以是( C )
A.加法
B.减法
C.乘法
D.除法
解析:因为两个正整数的平方的乘积肯定是一个正整数的 平方,故选 C.
二、填空题每小题8分,共计24分 7.设集合 A 中的元素有 2,3,a2+2a-3,集合 B 中的元素
有|a+3|,2.已知 5∈A,5∉B,则 a 的值为 -4 .
12.(15 分)已知集合 A 是关于 x 的方程 ax2-3x-4=0 的解 集.
(1)若 A 中只有一个元素,求 a 的值. (2)若 A 中至少有一个元素,求 a 的值.
解:(1)当 a=0 时,方程为-3x-4=0, 解得 x=-43,符合题意; 当 a≠0 时,因为方程只有一个根, 所以由 Δ=(-3)2-4×a×(-4)=0,解得 a=-196, 所以 a=0 或 a=-196.
课时规范训练(十一)物质的量,摩尔质量
课时规范训练(十一)[基础对点练]题组一物质的量、阿伏加德罗常数1.下列说法错误的是()A.物质的量是表示含有一定数目粒子的集合体的物理量B.使用摩尔作单位时必须指明微粒的名称C.物质的量是一个基本物理量,表示物质所含粒子多少D.物质的量适用于计量分子、原子、离子等粒子解析:C物质的量是含有一定数目粒子的集合体的物理量,其单位是摩尔,使用摩尔所指的对象是微粒,而微粒种类繁多,需要指明其名称;物质的量不是表示物质所含粒子的多少,而是表示物质所含一定数目的粒子集合体的多少;构成物质的粒子除原子外,还有分子、离子等,故选C。
2.下列叙述正确的是()A.1 mol任何物质都含有6.02×1023个分子B.摩尔只能用来计量纯净物中微观粒子数目C.摩尔是物质的量的单位,简称摩,符号molD.我们把含有6.02×1023个粒子的任何粒子的集合体计量为1摩尔解析:C物质不一定都是由分子组成的,可能是由原子或离子组成的,摩尔是物质的量的单位,1 mol任何粒子的粒子数约为6.02×1023,A错误;摩尔既能用来计量纯净物中微观粒子数目,也能用来计量混合物中微观粒子数目,B错误;含有6.02×1023个粒子的集合体计量不一定为1 mol,如含有6.02×1023个O 的O2的物质的量为0.5 mol,D错误。
3.现有CO、CO2、O3三种气体,它们分别都含有1 mol氧原子,则三种气体的物质的量之比为()A.1∶1∶1 B.1∶2∶3C.3∶2∶1 D.6∶3∶2解析:D含有1 mol氧原子的CO、CO2、O3三种气体的物质的量分别为1mol 、12 mol 和13 mol ,则n (CO)∶n (CO 2)∶n (O 3)=1 mol ∶12 mol ∶13mol =6∶3∶2。
题组二 摩尔质量4.下列关于摩尔质量的说法正确的是( )A .硫酸和磷酸(H 3PO 4)的摩尔质量相等,都是98 g·mol -1B .1 mol H 2SO 4的质量与H 2SO 4的摩尔质量相同C .摩尔质量与该物质的相对分子质量或相对原子质量相等D .某物质的物质的量越多,对应的摩尔质量越大解析:A B 项,二者的数值相同,但单位分别为g 和g·mol -1,错误;C 项,以g·mol -1为单位时,摩尔质量的数值与该物质的相对分子质量或相对原子质量相等,错误;D 项,摩尔质量不随物质的量发生变化,错误。
课时作业10:1.1.1 集合的概念
第一章集合§1.1集合与集合的表示方法1.1.1集合的概念一、选择题1.已知集合A由x<1的数构成,则有()A.3∈A B.1∈AC.0∈A D.-1∉A2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素3.下列结论中,不正确的是()A.若a∈N,则-a∉N B.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈Q D.若a∈R,则3a∈R4.已知x,y为非零实数,代数式x|x|+y|y|所有可能的值所组成的集合是M,则下列判断正确的是()A.0∉M B.1∈MC.-2∉M D.2∈M5.已知集合S中三个元素a,b,c是△ABC的三边长,那么△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.已知A中元素满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉A B.-11∈AC.3k2-1∈A D.-34∉A二、填空题7.在方程x2-4x+4=0的解集中,有________个元素.8.下列所给关系正确的个数是________.①π∈R;②3D∈/Q;③0∈N+;④|-4|D∈/N+.9.如果有一集合含有三个元素:1,x,x2-x,则实数x的取值范围是________.10.已知a ,b ∈R ,集合A 中含有a ,b a,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =____.三、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值.12.已知集合A 含有两个元素a -3和2a -1,a ∈R .(1)若-3∈A ,试求实数a 的值;(2)若a ∈A ,试求实数a 的值.13.数集A满足条件:若a∈A,则11-a∈A(a≠1).(1)若2∈A,试求出A中其他所有元素;(2)自己设计一个数属于A,然后求出A中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.四、探究与拓展14.已知集合A={a,b,c}中任意2个不同元素的和的集合为{1,2,3},则集合A的任意2个不同元素的差的绝对值的集合是()A.{1,2,3} B.{1,2}C.{0,1} D.{0,1,2}15.已知集合A中的元素x均满足x=m2-n2(m,n∈Z),求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于集合A.答案精析1.C 2.A 3.A 4.D 5.D 6.C 7.18.2 9.x ≠0,1,2,1±5210.-1 11.-32. 12.解 (1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,有0=-3,不成立;当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意.综上所述,满足题意的实数a 的值为1.13.解 (1)2∈A ,则11-2∈A , 即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A , 即2∈A ,所以A 中其他所有元素为-1,12. (2)如:若3∈A ,则A 中其他所有元素为-12,23. (3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a,a -1a ,且三个数的乘积为-1.证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1, 所以又有11-11-a=a -1a ∈A 且a -1a ≠1,进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a, 则a 2-a +1=0,而方程a 2-a +1=0无解).同理11-a≠a -1a ,a ≠a -1a ,所以A 中只能有3个元素, 它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 14.B15.证明 (1)令m =2∈Z ,n =1∈Z ,得x =m 2-n 2=4-1=3,所以3∈A .(2)假设4k -2∈A ,则存在m ,n ∈Z ,使4k -2=m 2-n 2=(m +n )(m -n )成立. ①当m ,n 同奇或同偶时,m +n ,m -n 均为偶数,所以(m +n )(m -n )为4的倍数与4k -2不是4的倍数矛盾.②当m ,n 一奇一偶时,m +n ,m -n 均为奇数,所以(m +n )(m -n )为奇数,与4k -2是偶数矛盾.所以假设不成立.综上,4k -2∉A .。
课时作业10:1.1.2 集合的表示方法
1.1.2 集合的表示方法一、选择题1.方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解集不可以表示为( ) A.⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =3x -y =-1 B.⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧ x =1y =2 C .{1,2}D .{(1,2)}答案 C 解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C 不符合.2.集合A ={x ∈Z |-2<x <3}的元素个数为( )A .1B .2C .3D .4答案 D解析 因为A ={x ∈Z |-2<x <3},所以x 的取值为-1,0,1,2.3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合答案 D解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4.已知集合A ={0,1,2},B ={z |z =x +y ,x ∈A ,y ∈A },则B 等于( )A .{0,1,2,3,4}B .{0,1,2}C .{0,2,4}D .{1,2} 考点 集合的表示综合题点 用另一个方法表示集合答案 A5.下列选项中,集合M ,N 元素相同的是( )A .M ={3,2},N ={2,3}B .M ={(3,2)},N ={(2,3)}C .M ={3,2},N ={(3,2)}D .M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2}答案 A解析 元素具有无序性,A 正确;点的横坐标、纵坐标是有序的,B 选项两集合中的元素不同;C 选项中集合M 中的元素是两个数,N 中的元素是一个点,不相同;D 选项中集合M 中元素是一个点(3,2),而N 中元素是两条直线x =3和y =2上所有的点,不相同.6.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A .{x |x 是小于18的正奇数}B .{x |x =4k +1,k ∈Z ,且k <5}C .{x |x =4t -3,t ∈N ,且t ≤5}D .{x |x =4s -3,s ∈N +,且s ≤5}考点 集合的表示综合题点 用另一种方法表示集合答案 D解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.二、填空题7.方程x 2-5x +6=0的解集用列举法可表示为______.答案 {2,3}解析 易知方程x 2-5x +6=0的解为x =2或3,则方程解集为{2,3}.8.集合{x ∈N |x 2+x -2=0}用列举法可表示为________.答案 {1}解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.9.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________. 答案 3解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.10.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x -23<0,则集合A -B =________________.答案 {x |x ≥2}解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12,且x ≥2 ={x |x ≥2}.三、解答题11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合中元素相同吗?试说明理由.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与两坐标轴的距离相等的点组成的集合.解 (1)用描述法表示为{x |2<x <5,且x ∈Q }.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.13.已知集合A ={x |ax 2-3x +2=0}.(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.考点 集合的表示综合题点 由元素个数求参数解 (1)当a =0时,A =⎩⎨⎧⎭⎬⎫23,符合题意; 当a ≠0时,方程ax 2-3x +2=0有两个相等的实数根,则Δ=9-8a =0,解得a =98,此时A =⎩⎨⎧⎭⎬⎫43,符合题意. 综上所述,当a =0时,A =⎩⎨⎧⎭⎬⎫23,当a =98时,A =⎩⎨⎧⎭⎬⎫43.(2)由(1)可知,当a =0时,A =⎩⎨⎧⎭⎬⎫23符合题意; 当a ≠0时,要使方程ax 2-3x +2=0有实数根,则Δ=9-8a ≥0,解得a ≤98,且a ≠0. 综上所述,若集合A 中至少有一个元素,则a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≤98.14.已知集合A ={x |x =3m ,m ∈N +},B ={x |x =3m -1,m ∈N +},C ={x |x =3m -2,m ∈N +},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A .2 018=a +b +cB .2 018=abcC .2 018=a +bcD .2 018=a (b +c ) 答案 C解析 由于2 018=3×673-1,不能被3整除, 而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足; abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合;a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.故选C.15.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2+14,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n 4+12,n ∈Z ,若x 0∈M ,判断x 0与N 的关系.考点 集合的表示综合题点 元素与集合关系的判定解 M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2k +14,k ∈Z , N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =n +24,n ∈Z , ∵2k +1(k ∈Z )是一个奇数,n +2(n ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .。
2021年高中数学新教材必修第一册1.2《集合间的基本关系》课时练习(含答案)-
2021年高中数学新教材必修第一册1.2《集合间的基本关系》课时练习(含答案)1、2021年新教材必修第一册1.2《集合间的基本关系》课时练习一、选择题1.集合{1,2}的真子集有()A.4个B.3个C.2个D.1个2.设A={x|1<x<2},B={x|x<a},若AB,则a的取值范围是()A.a≥2B.a≤1C.a≥1D.a≤23.若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是〔〕A.6B.7C.8D.94.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆BB.B⊆AC.A∈BD.B∈A25.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x+x=0}关系韦恩(Venn)图是()6.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};2、(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};22(6)M={x|x-3x+2=0},N={y|y-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组7.设集合A={x|x≤4},m=sin30°,则以下关系中正确的选项是()A.m⊆AB.m∉AC.{m}∈AD.{m}⊆A228.已知集合A={(x,y)|y=x+1},B={y|y=x+1},则以下关系正确的选项是〔〕A.A=BB.A⊆BC.B⊆AD.A∩B=∅29.已知集合A={x|ax+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1B.-1C.0,1D.-1,0,110.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y3、∈B}.若集合A={0,1},nB={2,3},则A*B的子集的个数是()A.4B.8C.16D.32二、填空题211.若{1,2}={x|x+ax+b=0},则a=________.b=________.212.设集合A={1,3,a},B={1,a-a+1},且A⊇B,则a的值为________.13.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.14.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若AB,则实数a取值范围是________.三、解答题22215.设A={x|x+4x=0},B={x|x+2(a+1)x+a-1=0},(1)若B⊆A,求a的值;(2)若A⊆B,4、求a的值.216.已知集合A={x|x-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.17.已知集合M={x|x2且x∈N},N={x|-2x2且x∈Z}.(1)写出集合M的子集;(2)写出集合N的真子集.18.已知集合,集合.〔1〕若,求实数m的取值范围;〔2〕若集合中有且只有3个整数,求实数m的取值范围.n0.参考答案1.B2.解析:选A.A={x|1x2},B={x|xa},要使AB,则应有a≥2.3.C4.D 解析:∵B的子集为{1},{2},{1,5、2},∴A={x|x⊆B}={{1},{2},{1,2},},∴B∈A.25.[答案]B[解析]由N={x|x+x=0}={-1,0}得,NM,选B.6.解析:选A.(5),(6)表示相等的集合,留意小数是实数,而实数也是小数.7.D8.D29.D解析:由于集合A有且仅有2个子集,所以A仅有一个元素,即方程ax+2x+a=0(a∈)仅有一个根或两个相等的根.(1)当a=0时,方程为2x=0,此时A={0},符合题意.22(2)当a≠0时,由Δ=2-4·a·a=0,即a=1,∴a=±1.此时A={-1}或A={1},符合题意.∴a=0或a=±1.10.解析:选B.在集合A和B中分别取出元素进行*运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(13+2)=6,1·3·(1+6、3)=12,因此可知A*B={0,6,12},因此其子集个数为2=8,选B.211.解析:由题意知,1和2为方程x+ax+b=0的两根,∴-a=1+2,b=1×2.∴a=-3,b=2.答案:-3,22212.解析:A⊇B,则a-a+1=3或a-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或213.[答案]A⊆D⊆B⊆C⊆E.14.解析:作出数轴可得,要使AB,则必需a+4≤-1或a>5,解之得{a|a>5或a≤-5}.答案:{a|a>5或a≤-5}15.解(1)A={0,-4},22①当B=∅时,Δ=4(a+1)-4(a-1)=8(a+1)<0,解得a<-1;②当B为单元素集时,a=-1,此时B={0}符合题意;③当B=A时,由根7、与系数的关系得:解得a=1.综上可知:a≤-1或a=1.(2)若A⊆B,必有A=B,由(1)知a=1.216.解:由A={x|x-3x-10≤0},得A={x|-2≤x≤5},(1)∵B⊆A,∴①若B=,则m+12m-1,即m2,此时满足B⊆A.-2≤m+1,②若B≠,则2m-1≤5.解得2≤m≤3.由①②得,m的取值范围是(-∞,3].nm-6≤-2,m≤4,(2)若A⊆B,则依题意应有2m-1≥5.解得m≥3.故3≤m≤4,∴m的取值范围是[3,4].m-6=-2,(3)若A=B,则必有2m-1=5,解得m∈,即不存在m值使得A=B.17.解:M={x|x<2且x∈N}={0,1},N={x|-2<x <2,且x∈Z}={-1,0,1}.〔1〕M的子集为:∅,{08、},{1},{0,1},〔2〕N的真子集为:∅,{-1},{0},{1},{-1,0},{-1,1},{0,1}.18.〔1〕;〔2〕。
数学人教B版必修1课后训练:1-1集合与集合的表示方法-
课后训练千里之行始于足下1.下列所给对象不能构成集合的是().A.平面内的所有点B.直角坐标系中第一、三象限的角平分线上的所有点C.清华大学附中高三年级全体学生D.所有高大的树2.下列语句中正确的个数是().①0∈N+;②π∈Q;③由3,4,4,5,5,6构成的集合含有6个元素;④数轴上1到1.01间的线段包括端点的点集是有限集;⑤某时刻地球上所有人的集合是无限集.A.0B.1C.2D.33.(易错题)由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是().A.1 B.-2 C.6 D.24R,②2.5∈Q,③0∈∅,④N.其中正确的个数是().A.1 B.2 C.3 D.45.以实数x,-x|x|,-|x|,多含有().A.2个元素B.7个元素C.4个元素D.5个元素6.已知x,y,z是非零实数,代数式xyzx y zx y z xyz+++的值所组成的集合为M,则M中有________个元素.7.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是________.8.用符号∈和∉填空.(1)设集合A是正整数的集合,则0________A A,(-1)0________A;(2)设集合B的所有实数的集合,则B,1B;(3)设集合C是满足方程x=n2+1(其中n为正整数)的实数x的集合,则3________C,5________C;(4)设集合D是满足方程y=x2的有序实数对(x,y)的集合,则-1________D,(-1,1)________D.9.关于x的方程ax2+bx+c=0(a≠0且a,b,c∈R),当a,b,c满足什么条件时,以实数解构成的集合分别为空集、含一个元素、含两个元素?百尺竿头更进一步数集M满足条件:若a∈M,则11aMa+∈-(a≠±1,且a≠0),已知3∈M,试把由此确定的M的元素求出来.参考答案1.答案:D解析:“高大”一词标准不明确,不满足集合元素的确定性.2.答案:A3.答案:C解析:将各个值代入检验,A中元素满足互异性.4.答案:C解析:①②④正确.5.答案:A解析:x=,x=-,x=-x=|,∴题目中的实数都可转化为x,-x,|x|,-|x|.当x=0时,构成的集合中有1个元素;x≠0时,有2个元素.6.答案:3解析:分x,y,z中有一个为正,有两个为正,三个均为正,三个均为负,这四种情况讨论.7.答案:2或4解析:当a=2时,6-a=4,符合题意;当a=4时,6-a=2,符合题意;当a=6时,6-a=0,不符题意.8.答案:(1) ∉∉∈(2) ∉∈(3) ∉∈(4) ∉∈解析:(1)0(-1)0=1是正整数,依次应填∉,∉,∈;(2)∵=>2(1311=+<,∴1.∴依次应填,∈;(3)由于n是正整数,∴n2+1≠3.而n=2时,n2+1=5,∴依次应填∉,∈;(4)由于集合D中的元素是有序实数对(x,y),而-1是数,所以1D-∉.又(-1)2=1,所以依次应填∉,∈.9.解:∵Δ=b2-4ac,∴(1)当Δ<0,即b2-4ac<0时,方程无实数解,此时以实数解构成的集合为空集.(2)当Δ=0,即b2-4ac=0时,方程有两个相等的实数解,此时解构成的集合含有一个元素.(3)当Δ>0,即b2-4ac>0时,方程有两个不相等的实数解,此时解构成的集合含有两个元素.百尺竿头更进一步解:∵a=3∈M,∴1132113aMa++==-∈--,∴121123M -=-∈+,∴11131213M -=∈+,∴1123112M +=∈-,∴M中的元素有:3,-2,13-,12.。
2021-2022年人教B版(2019)高一数学上册课时同步练 第1课 集合的含义【含答案】
2021-2022年人教B 版(2019)高一数学上册课时同步练 第1课 集合的含义【含答案】一、基础巩固1.现有以下说法,其中正确的是( )①接近于0的数的全体构成一个集合;②正方体的全体构成一个集合;③未来世界的高科技产品构成一个集合;④不大于3的所有自然数构成一个集合.A .①②B .②③C .③④D .②④【答案】D【解析】在①中,接近于0的数的全体不能构成一个集合,故①错误;在②中,正方体的全体能构成一个集合,故②正确;在③中,未来世界的高科技产品不能构成一个集合,故③错误;在④中,不大于3的所有自然数能构成一个集合,故④正确.2.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( ) A.5∈MB .0∉MC .1∈MD .-π2∈M 【答案】D 【解析】5>1,故A 错;-2<0<1,故B 错;1不小于1,故C 错;-2<-π2<1,故D 正确. 3.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5 C.37 D.7 【答案】D【解析】由题意知a 应为无理数,故a 可以为74.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集【答案】A【解析】由于A 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C ,D 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A.5. 设集合M 是由不小于23的数组成的集合,a =11,则下列关系中正确的是( )A .a ∈MB .a ∉MC .a =MD .a ≠M 【答案】B【解析】因为集合M 是由不小于23的数组成的集合,a =11,所以a 不是集合M 中的元素,故a ∉M.6.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素 【答案】A 【解析】x2=|x|,-3x 3=-x.当x =0时,它们均为0;当x>0时,它们分别为x ,-x ,x ,x ,-x ;当x<0时,它们分别为x ,-x ,-x ,-x ,-x.通过以上分析,它们最多表示两个不同的数,故此集合中元素最多含有2个.7.设集合A 是由1,k 2为元素构成的集合,则实数k 的取值范围是________.【答案】{k|k≠±1}【解析】∵1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k≠±1.8.设A 是由满足不等式x <6的自然数构成的集合,若a ∈A 且3a ∈A ,求a 的值.【答案】a =0或1.【解析】∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N , ∴a =0或1.二、拓展提升9.集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t ∈A ,则t 的值为( )A .0B .1C .0或1D .小于或等于1【答案】C【解析】由y ∈N 且y =-x 2+1≤1,所以y =0或y =1,所以A ={0,1}.又因为t ∈A ,所以t =0或t =1,故选C.10.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =________.【答案】6【解析】因为集合P 中恰有三个不同元素,且元素x 满足x ∈N ,且2<x <a ,则满足条件的x 的值为3,4,5,所以a 的值是6.11.已知数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),如果a =2,试求出A 中的所有元素. 【答案】-1,12,2 【解析】根据题意,由2∈A 可知,11-2=-1∈A ; 由-1∈A 可知,11-(-1)=12∈A ; 由12∈A 可知,11-12=2∈A. 故集合A 中共有3个元素,它们分别是-1,12,2. 12. 定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且a b∈A (b ≠0)”的集合A 为“闭集”.试问数集N ,Z ,Q ,R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【答案】数集N ,Z 不是“闭集”, 数集Q ,R 是“闭集”.【解析】(1)数集N ,Z 不是“闭集”,例如,3∈N ,2∈N ,而32=1.5∉N ;3∈Z ,-2∈Z ,而3-2=-1.5∉Z ,故N ,Z 不是闭集.(2)数集Q ,R 是“闭集”.由于两个有理数a 与b 的和,差,积,商,即a ±b ,ab ,a b(b ≠0)仍是有理数, 所以Q 是闭集,同理R 也是闭集.。
2024_2025学年新教材高中数学课时检测2集合的表示含解析北师大版必修第一册
集合的表示[A 级 基础巩固]1.下列说法正确的是( )A .0∈∅B .{∅}与∅表示的意义一样C .{x |ax +1=0}不含任何元素,则a =0D .方程2x +1+|y -2|=0的解集为⎩⎨⎧⎭⎬⎫-12,2 解析:选C 空集∅是不含任何元素的集合,故A 错;{∅}表示以空集为元素的集合,有意义不一样,故B 错;当a =0时,ax +1=0无解,反过来成立,故C 对;方程2x +1+|y-2|=0可化为⎩⎪⎨⎪⎧2x +1=0,y -2=0,其解是一个有序实数对,可表示为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x =-12,y =2,故D 错.2.下列说法中正确的是( )A .集合{x |x 2=1,x ∈R}中有两个元素B .集合{0}中没有元素 C.13∈{x |x <23}D .{1,2}与{2,1}是不同的集合解析:选A {x |x 2=1,x ∈R}={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x |x <23}={x |x <12},13>12,所以13∉{x |x <23};依据集合中元素的无序性可知{1,2}与{2,1}是同一个集合.3.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .其次、四象限内的点集 解析:选D 依据描述法表示集合的特点,可知集合表示横、纵坐标异号的点的集合,这些点在其次、四象限内.故选D.4.不等式x -2≥0的全部解组成的集合表示成区间是( )A .(2,+∞)B .[2,+∞)C .(-∞,2)D .(-∞,2]解析:选B 不等式x -2≥0的全部解组成的集合为{x |x ≥2},表示成区间为[2,+∞).5.定义集合A ,B 的一种运算:A *B ={x |x =x 1+x 2,其中x 1∈A ,x 2∈B }.若A ={1,2,3},B ={1,2},则A *B 中的全部元素之和为( )A .9B .14C .18D .21解析:选B 因为A *B ={x |x =x 1+x 2,其中x 1∈A ,x 2∈B },A ={1,2,3},B ={1,2},所以x 1=1或x 1=2或x 1=3,x 2=1或x 2=2,所以A *B ={2,3,4,5},所以A *B 中的全部元素之和为2+3+4+5=14,故选B.6.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M =________.答案:⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪xy ≥0,-2≤x ≤52,-1≤y ≤32 7.集合A ={x |x 2+ax -2≥0,a ∈Z},若-4∈A ,2∈A ,则满意条件的a 组成的集合为________.解析:由题意知⎩⎪⎨⎪⎧16-4a -2≥0,4+2a -2≥0,解得-1≤a ≤72. ∵a ∈Z ,∴满意条件的a 组成的集合为{-1,0,1,2,3}.答案:{-1,0,1,2,3}8.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=________.解析:由题意知,-5是方程x 2-ax -5=0的一个根,所以(-5)2+5a -5=0,得a =-4,则方程x 2+ax +3=0,即x 2-4x +3=0,解得x =1或x =3,所以{x |x 2-4x +3=0}={1,3}.答案:{1,3}9.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的全部正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.解:(1)用描述法表示为{x |2<x <5,x ∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.10.已知集合A ={x |x =3n +1,n ∈Z},B ={x |x =3n +2,n ∈Z},M ={x |x =6n +3,n ∈Z}.(1)若m ∈M ,则是否存在a ∈A ,b ∈B ,使m =a +b 成立?(2)对于随意a ∈A ,b ∈B ,是否肯定存在m ∈M ,使a +b =m ?证明你的结论.解:(1)设m =6k +3=3k +1+3k +2(k ∈Z),令a =3k +1(k ∈Z),b =3k +2(k ∈Z),则m =a +b .故若m ∈M ,则存在a ∈A ,b ∈B ,使m =a +b 成立.(2)不肯定存在.证明如下:设a =3k +1,b =3l +2,k ,l ∈Z ,则a +b =3(k +l )+3,k ,l ∈Z.当k +l =2p (p ∈Z)时,a +b =6p +3∈M ,此时存在m ∈M ,使a +b =m 成立;当k +l =2p +1(p ∈Z)时,a +b =6p +6∉M ,此时不存在m ∈M ,使a +b =m 成立. 故对于随意a ∈A ,b ∈B ,不肯定存在m ∈M ,使a +b =m .[B 级 综合运用]11.(2024·江苏高一课时练习)设直线y =2x +3上的点集为P ,则P =________.点(2,7)与P 的关系为(2,7)________P .解析:点用(x ,y )表示,{}(x ,y )|y =2x +3指在直线y =2x +3上的全部的点的集合,即P ={}(x ,y )|y =2x +3,而点(2,7)适合方程y =2x +3,所以点(2,7)在直线上,从而点属于集合P .答案:{}(x ,y )|y =2x +3 ∈12.已知a ,b ∈N +,现规定:a *b =⎩⎪⎨⎪⎧a +b (a 与b 同为奇数或同为偶数),a ×b (a 与b 一个为奇数,一个为偶数).集合M ={(a ,b )|a *b =36,a ,b ∈N +}. (1)用列举法表示a 与b 一个为奇数,一个为偶数时的集合M ;(2)当a 与b 同为奇数或同为偶数时,集合M 中共有多少个元素?解:(1)当a 与b 一个为奇数,一个为偶数时,集合M 中的元素(a ,b )满意a ×b =36,a ,b ∈N +.∵1×36=36,3×12=36,4×9=36,9×4=36,12×3=36,36×1=36.∴当a 与b 一个为奇数,一个为偶数时,M ={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a 与b 同为奇数或同为偶数时,集合M 中的元素(a ,b )满意a +b =36,a ,b ∈N +. ∵1+35=36,2+34=36,3+33=36,…,34+2=36,35+1=36.∴当a 与b 同为奇数或同为偶数时,集合M 中共有35个元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范训练--集合10-1
课时规范训练
A组基础演练
1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
解析:选D.因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.
2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()
A.6B.8
C.10 D.12
解析:选B.设样本容量为N,则N×30
70
=6,
∴N=14,∴高二年级所抽取的人数为14×40
70
=8.
3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150
应选B.
7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一
学生的两倍,高二学生比高一学生多300人,现在按
1
100的抽样比例用分层抽样
的方法抽取样本,则高一学生应抽取的人数为()
A.8 B.11
C.16 D.10
解析:选A.设高一学生有x人,则高三学生有2x人,高二学生有(x+300)人,
学校共有4x+300=3 500(人),解得x=800(人),由此可得按1
100
的抽样比例用分
层抽样的方法抽取样本,高一学生应抽取的人数为1
100×800=8(人),故应选A.
8.某校初一、初二、初三年级各有300人,400人,302人,采用系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为()
A.302
1 00
2 B.
100 1 002
C.300
1 000 D.30 302
解析:选B.利用系统抽样,虽然剔除2人,但每人能抽到的概率为n
N
=100
1 002.
9.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=() A.9 B.10
C.12 D.13
解析:选D.依题意得3
60=n
120+80+60
,故n=13.
10.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()
A .5
B .7
C .11
D .13
解析:选B.间隔数k =800
50=16,即每16人抽取一个人.由于39=2×16+7,
所以第1小组中抽取的数为7.
B 组 能力突破
1.某校共有学生2 000名,各年级男、女生人数如下表所示:
一年级 二年级 三年级 女生 373 380 y 男生
377
370
z
( ) A .24 B .18 C .16
D .12
解析:选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,所以应在三年级抽取的人数为500×
64
2 000
=16. 2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9
D .24,17,9
解析:选B.由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300得k ≤
103
4
,因此第Ⅰ营区被抽中的人数是25; 令300<3+12(k -1)≤495得
103
4
<k ≤42,因此第Ⅱ营区被抽中的人数是42-25
=17.结合各选项知,选B.
3.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.答案:16,28,40,52
4.某课题组进行城市空气质量调查,按地域把24个城市分成某甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.
解析:由已知得抽样比为6
24
=1
4
,
∴丙组中应抽取的城市数为8×1
4
=2.
答案:2
5.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.
解析:由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
答案:76
6.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.
解析:由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x+(n-1)×8,所以第16组应抽出的号码为x+(16-1)×8=123,解得x=3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.
答案:11。