概率初步25.1随机事件与概率2概率课件

合集下载

人教版数学九年级上册25.概率(共22张)

人教版数学九年级上册25.概率(共22张)

概率
适用 对象
等可能事件,其特点: (1)有限个;(2)可能性一样.
计算 公式
P( A) m (m是事件A包含的结果种数, n
n是试验总结果种数).
课后作业
见本课时练习
(1)事件B:抽出数字为偶数; 解:(1)点数为奇数有3种可能,即点数为2,4,6
因此P(B)= 3 1 62
(2)事件C: 抽出数字大于1小于6.
(2)点数大于1且小于6有4种可能,即点数为2,3,4, 5
因此 P(可能的结果,并
且它们产生的可能性都相等,事件A包括其中的m种结
合作探究
实验2:有6张数字卡片,它们的背面完全相同,正面分别
标有1,2,3,4,5、6现将它们的背面朝上,从中任意抽出 一张卡片
(1) 可能出现哪几种结果?
(2) 6个数字的出现可能性完全相同吗?
(3) 能否用一个具体数值来表示各个数 字出现的可能性吗?这个数值是多少?
思考:
以上三个实验有什么共同的特点:
D.1.
4、某射手在一次射击中,射中10环,9环,8环的概率分别是 0.2,0.3,0.1,那么此射手在一次射击中不够8环的概率为( A )
A. 0.4
B 0.3
C 0.6
D 0.9
课堂小结
定义
一般地,对于一个随机事件A,我们把刻画其产生可能性 大小的数值,称为随机事件A产生的概率,记为P(A).
果,那么事件A产生的概率
P( A) m n
事件A产生 的结果种数
实验的总共 结果种数
例1:话说唐僧师徒超出石砣岭,吃完午饭后,三徒弟商量着今天 由谁来刷碗,可半天也没个好主张.还是悟空聪明,他灵机一动, 扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子: 如果掷到2的倍数就由八戒来刷碗;

1人教版九年级数学上册25.1 《随机事件与概率》 课件(共21张PPT)

1人教版九年级数学上册25.1 《随机事件与概率》   课件(共21张PPT)

乐于探究,我抓住这一有利契 机,通过大量生动、鲜活的例 子,让学生在充分感知的基础 上,达到准确理解和把握随机
以适应,这是学习本节的不利因素; 事件的有关概念及特点。
【教法】
情景
教学
三、教法与学法
直观演 示法
在指导学生学习方法和提高学生学习能力方面,我打 算采用以下几种方法: 课前预习法、观察讨论法、阅读思考法、角色扮演法、 辩论法
让学生充 分发表意 见,相互 补充,相 互交流, 然后引导 学生建构 随机事件 的定义。
同学们,你们已经掌 握本课知识要领了,老 师知道一个宝楼,去那 里只要回答出宝楼主人 的问题,就可以获得宝 物赠送,你们想去试试 吗?
设计意图:掌握了基础理论知 识就像得到了一个藏好的宝物, 而开动脑筋,把知识应用到生 活中来,就像一把把打开宝盒 的钥匙,三者结合起来,才能 真正的拥有宝物。
活动1:五名同学参加演讲比赛,以抽签方式决 定每个人的出场顺序,盒中有五个形状、大小相 同的纸团,每个纸团里面分别写着表示出场顺序 的数字 1,2,3,4,5.把纸团充分搅拌后,小 军先抽,他任意(随机)从盒中抽取一个纸 团.请思考下列问题:
(1)抽到的数字有几种可能的结果? (2)抽到的数字小于 6 吗? (3)抽到的数字会是 0 吗? (4)抽到的数字会是 1 吗? (根据学生回答的具体情况,教师适当地加点拔 和引导。)
思考:能否通过改变纸牌的某种颜色的数量,使“摸出 黑桃”和“摸出红桃”的可能性大小相同吗?
要求:小组合作 讨论,分析要点。
小组推荐汇报,各组 之间互相补充,从不 同角度看待问题。 (打开里面还有一个 盒子)
第三层、应用知识,走进生活
(1)一个袋子里装有20个形状、质地、大小一样的球, 其中4个白球,2个红球,3个黑球,其它都是黄球,从 中任摸一个,摸中哪种球的可能性最大? (2)已知地球表面陆地面积与海洋面积的比均为3:7。 如果宇宙中飞来一块陨石落在地球上,“落在海洋里” 与“落在陆地上”哪个可能性更大? (3)袋子里装有红、白两种颜色的小球,质地、大小、 形状一样,小明从中随机摸出一个球,然后放回,如果 小明5次摸到红球,能否断定袋子里红球的数量比白球 多?怎样做才能判断哪种颜色的球数量较多?

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件(二)课件(新版)新人教版

九年级数学上册第25章概率初步25.1随机事件与概率25.1.1随机事件(二)课件(新版)新人教版

球的颜色 摸取次数
黑球
白球
信息交流, 揭示规律
问题:袋子中装有4个黑球2个白球,这些球形状、 大小、质地等完全相同,在看不到球的条件下,随 机地从袋子中摸出一个球。
⑴摸出的这个球是白球还是黑球?动手试试看。
大家通过实践,不难发现,摸出的这个球可能是 白球,也有可能是黑球。
信息交流, 揭示规律
⑵如果两种球都有可能被摸出,那么“摸出黑球” 和“摸出白球”的可能性一样大吗?各小组动手 试试看。
25.1.1 随机事件(二)
设计问题, 创设情境
问题:袋子中装有4个黑球2个白球,这些球形状、 大小、质地等完全相同,在看不到球的条件下,随 机地从袋子中摸出一个球。
⑴摸出的这个球是白球还是黑球?动手试试看。
⑵如果两种球都有可能被摸出,那么“摸出黑球”和 “摸出白球”的可能性一样大吗?各小组动手试试看。
师生共进, 课堂小结
确定性事
事件 件Biblioteka 必然事件 不可能事件随机事件
定义:在一定条件下,有可能发生也有可能不发生的事件称为随 机事件。
特征:事先不能预料事件是否发生,即事件的发生具有不确定 性。
一般地,随机事件发生的可能性是有大小的, 不同的随机事件发生的可能性的大小可能不同。
运用规律, 解决问题
1.已知地球表面陆地面积与海洋面积的比为3:7。如果 宇宙中飞来一块陨石落在地球上,则陨石“落在海洋里” 与“落在陆地上”哪个可能性更大?
解:落在海洋里的可能性大一些;
2.一个人随意翻书三次,三次都翻到了偶数页, 我们能否说翻到偶数页的可能性大?
解:不能。例如:共100页的一本书,翻到奇 数页与偶数页的可能性一样大。
球的颜色
黑球
白球

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(2) 掷出的点数是偶数的概率是多少?
解:任意掷一枚质地均匀的骰子,掷出的点数可能是1,2,3,4,
5,6,即所有可能的结果有6种.因为骰子是质地均匀的,所以每种
结果出现的可能性相等.
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(1)掷出的点数大于4的结果只有2种,即
掷出的点数分别是5,6.
所以P(掷出的点数大于4)=

= .

随堂练习
2. 任意掷一枚质地均匀的骰子.
(2) 掷出的点数是偶数的概率是多少?
(2)掷出的点数是偶数的结果有3种,即掷
出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=
知识点2 简单随机事件的概率的求法
【例 4】一儿童行走在如图所示的地板上,当他随意停下时,最终停
在地板上阴影部分的概率是( A )
A.

B.


C.


D.


解析:观察这个图可知,阴影区域(3块)的面积占
总面积(9块)的


,故其概率为 .


知识讲解
知识点2 简单随机事件的概率的求法
【例 5】如图所示的是一个可以自由转动的转盘,转盘分成7个大小相
1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出
现如图所示的情况.我们把与标号3的方格相邻的方格记为A区
域(画线部分),A区域外的部分记为B区域.数字3表示在A区域
有3颗地雷.下一步应该点击A区域还是B区域?

25.1.2概率课件

25.1.2概率课件

10这十个数中随机取出一个数,取出的数 是3的倍数的概率是( B )
1 (A) 5
3 (B) 10
2、从1、2、3、4、5、6、7、8、9、
1 (C) (D) 1 3 2
3 话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着 今天由谁来刷碗,可半天也没个好主意。还是悟空聪明, 他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道: 我们三人来掷骰子:
抽出的签上号码有5种可能,即1,2,3,4,5。 标有偶数号的有2,4两种可能,所以标有偶数号的概率 就为2/5
如何计算事件发生的概率: 事件A发生的概率表示为 事件A发生的结果数 所有可能的结果总数
P(A )=
摸到红球的概率
盒子中装有只有颜色不同的3个黑棋 子和2个白棋子,从中摸出一棋子,是黑 棋子的可能性是多少?
必然发生
必然事件:在一定条件下,必然 会发生的事件; 不可能事件:必然不会发生的事件; 随机事件:可能会发生,也可能不 发生的事件.也叫不确定性事件
1.概率的定义:
一般地,对于一个随机事件A,我们把刻 画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).
概率从数量上刻画了一个随机事件发生 的可能性大小。
如果掷到 2 的倍数就由八戒来刷碗; 如果掷到 3 就由沙僧来刷碗;
如果掷到 7 的倍数就由我来刷碗;
徒弟三人着洗碗的概率 分别是多少!
如何计算事件发生的概率: 事件A发生的概率表示为 事件A发生的结果数 所有可能的结果总数
P( )=
必然事件、不可能事件、不确定事件的概率
(1)必然事件发生的概率为1,
实验:掷一枚硬币,落地后 (1)会出现几种可能的结果?两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?

25-1 随机事件与概率 课件(共45张PPT)

25-1 随机事件与概率 课件(共45张PPT)
7个扇形大小相同,转动的转盘又是自由停
止,所以指针指向每个扇形的可能性相等。
概率
小练手
按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2。所
有可能结果的总数为7,并且它们出现的可能性相等。
(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因
3
此P(A)= 。
7
(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,
小军先抽,他任意(随机)从盒中抽取一个纸团。请思考以下问题:
(1)抽到的数字有几种可能的结果?
(2)抽到的数字小于6吗?
(3)抽到的数字会是0吗?
(4)抽到的数字会是1吗?
随机事件
通过简单的推理或试验,可以发现:
(1)数字1,2,3,4,5都有可能抽到,共有5种
可能的结果,但是事先无法预料一次抽取会出现哪
机事件发生的频率去估计它的概率。
概率
在问题一中,从分别写有数字1,2,3,4,5
的五个纸团中随机抽取一个,这个纸团里的数
字有5种可能,即1,2,3,4,5。因为纸团
看上去完全一样,又是随机抽取,所以每个数
1
字被抽到的可能性大小相等。我们用 表示每
5
一个数字被抽到的可能性大小。
概率
在问题二中,掷一枚骰子,向上一面的
点数有6种可能,即1,2,3,4,5,6。
因为骰子形状规则、质地均匀,又是随
机掷出,所以每种点数出现的可能性大
1
小相等。我们用 表示每一种点数出现的
6
可能性大小。
概率

1 1
数值 和 刻画了试验中相应随机事件发
5 6
生的可能性大小、一般地,对于一个随

九年级数学上册 第二十五章 概率初步 25.1 随机事件与

九年级数学上册 第二十五章 概率初步 25.1 随机事件与
25.1.2 概率
1.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的
数值,称为随机事件A发生的 概率 ,记为 P(A) .
2.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个
给甲打电话的概率为( B )
A.16
B.13
C.12
D.23
3.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的
同),使新构成的黑色部分的图形是轴对称图形的概率

.
关闭
3 13
答案
A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)
C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)
关闭
B
答案
1
2
3
4
5
6
7
3.甲、乙、丙、丁四名选手参加100米决赛,赛场共设1,2,3,4四个跑
道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽
到1号跑道的概率是( )
A.1
B.12
C.13
D.14
关闭
D
答案
1
2
3
4
5
6
7
4.在一个不透明的摇奖箱内装有20个形状、大小、质地等完全相
同的小球,其中只有5个球标有中奖标志,则随机抽取一个小球中奖
的概率是
.
关闭
1 4
答案
1
2
3
456源自75.如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意
一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相
可能性都������相等,事件A包含其中的m种结果,那么事件A发生的概率 P(A)= ������ ,且P(A)的范围是 0≤P(A)≤1 .特别地,当A为必然

九年级数学上册25.1随机事件与概率25.1.1随机事件2课件(新人教版)_1

九年级数学上册25.1随机事件与概率25.1.1随机事件2课件(新人教版)_1
行讨论解疑 提醒用时:1分钟
嘿嘿,这次非 让你死不可!
相传古代有个王国,国王非常阴险而多疑,一 位正直的大臣得罪了国王,被叛死刑,这个国家 世代沿袭着一条奇特的法规:凡是死囚,在临刑 前都要抽一次“生死签”(写着“生”和“死” 的两张纸条),犯人当众抽签,若抽到“死”签 ,则立即处死,若抽到“生”签,则当众赦免。 国王一心想处死大臣,与几个心腹密谋,想出一 条毒计:
嘿嘿,这次非 让你死不可!
暗中让执行官把“生死签”上都写成“死 ”,两死抽一,必死无疑。然而,在断头 台前,聪明的大臣迅速抽出一张签纸塞进 嘴里,等到执行官反应过来,签纸早已吞 下,大臣故作叹息说:“我听天意,将苦 果吞下,只要看剩下的签是什么字就清楚 了。”剩下的当然写着“死”字,国王怕 犯众怒,只好当众释放了大臣。
嘿嘿,这次非让你 死不可!
老臣自有妙计!
(1)在法规中,大臣被处死是什么事件? (2)在国王的阴谋中,大臣被处死是什么事件? (3)在大臣的计策中,大臣被处死是什么事件?
第25章 概率
25.1随机事件与概率
一.学习目标
1、了解随机事件、必然事件、不可能事件的概念。 2、经历“猜测---实验并收集数据---分析实验结果”的活动过程,体 会随机事件发生的可能性大小。
二.探究新知:
自学指导1:带着下面的问题看课本128页到129页问题3上面的内容,并 完成课本129页的《练习》和自学检测1: 思考: 1.什么是必然事件? 2.什么是不可能事件? 3.什么是确定性事件? 4.什么是随机事件?

人教版初中九年级上册数学课件 《随机事件》概率初步名师教学课件

人教版初中九年级上册数学课件 《随机事件》概率初步名师教学课件

在我们的生活中,有些事情一定会发生,有些事情可能 发生,有些事情一定不会发生.下面事情是否会发生.
姚明投篮一定会投中吗? 十字路口会遇到红灯吗? 剪刀石头布一定会赢吗?
新知探究 知识点1
掷一枚质地均匀的骰子,骰子的六个面上分别刻有1 到6的点数.请思考以下问题:掷一次骰子,在骰子向 上的一面:
(1) 可能出现哪些点数? 1点,2点,3点,4点,5点,6点,共6种 (2) 出现的点数是7,可能发生吗? 不可能发生
不可能事件
判断事件的类型,要从定义出发,同时还要 结合生活中的常识,看在一定条件下该事件 是一定发生、一定不发生还是可能发生.
2.下列事件中,哪些是必然事件,哪些是不可能事
件,哪些是随机事件.
(1)通常加热到100℃时,水沸腾; (2)篮球队员在罚线上投篮一次,未投必中然;事件
(3)掷一枚骰子,向上的一面是6点;
由于两种球的数量不等,所以“摸出黑球”和“摸出白 球”的可能性的大小是不一样的,且“摸出黑球”的可 能性大于“摸出白球”的可能性.
袋中装有4个黑球,2个白球,这些球的形状、大小、质 地等完全相同,随机地从袋子中摸出一个球. (3)能否通过改变袋子中某种颜色的球的数量,使“摸出 黑球”和“摸出白球”的可能性大小相同?
解:图中有14个白色方块,6个黑色 方块,所以小球停在白色方块上的 可能性大.
2.桌上倒扣着背面图案相同的5张扑克牌,其中3张黑桃, 2张红桃.从中随机抽取1张. (1)能够事先确定抽取的扑克牌的花色吗? (2)你认为抽到哪种花色的可能性大? (3)能否通过改变某种花色的扑克牌的数量,使“抽 到黑桃”和“抽到红桃”的可能性大小相同?
2.已知地球表面陆地面积与海洋面积的比约为3:7.如果 宇宙中飞来一块陨石落在地球上,“落在陆地上”与 “落在海洋里”哪种可能性大?

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397
第二十五章
概率初步
25.1 随机事件与概率
25.1.2 概 率
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点)
导入新课
视频引入
视频中的游戏公平吗?为什么?
讲授新课
一 概率的定义及适用对象
的概率,记为P(A).
例如 :“抽到1”事件的概率:P(抽到1)=
1 . 5
想一想 “抽到奇数”事件的概率是多少呢?
二 简单概率的计算
互动探究
试验1:抛掷一个质地均匀的骰子 (1)它落地时向上的点数有几种可能的结果? (2)各点数出现的可能性会相等吗?
相等 6种
1 (3)试猜想:各点数出现的可能性大小是多少? 6
解:A区域的方格总共有8个,标号3表示在这8个方 格中有3个方格各藏有1颗地雷.因此,点击A区域的任 3 一方格,遇到地雷的概率是 ; 8 B区域方格数为9×9-9=72.其中有地雷的方格数 为10-3=7.因此,点击B区域的任一方格,遇到地雷
7 的概率是 72
;
3 7 由于 8 > 72 ,即点击A区域遇到地雷的可能 性大于点击B区域遇到地雷的可能性,因而第
活动2 掷一枚骰子,向上一面的点数有6种可能,即 1,2,3,4,5,6. 因为骰子形状规则、质地均匀,又是随机 掷出,所以每种点数出现的可能性大小相 等.我们用 性大小.
1 6
表示每一种点数出现的可能
概率的定义 一般地,对于一个随机事件A,我们把刻画其
发生可能性大小的数值,称为随机事件A发生
(2)指向红色或黄色;
(3)不指向红色.

九年级数学上册25.1随机事件与概率25.1.2概率课件人教版

九年级数学上册25.1随机事件与概率25.1.2概率课件人教版
第二十五章 概率初步
25.1.2 概率
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
教学目标 1.理解什么是随机事件的概率,认识概率是反映随机事件发生可能性大小的 量; 2.理解“事件 A 发生的概率是 P(A)=mn(在一次试验中有 n 种等可能的结果, 其中事件 A 包含其中的 m 种结果)”,并能求出简单问题的概率.
解:(1)P(黄球)=250=14. (2)设从袋中取出 x(0<x<8,且 x 为整数)个黑球,则此时袋中共有(20-x)个球, 黑球剩(8-x)个. ∵从袋中摸出 1 个球是黑球的概率是13, ∴P(黑球)=280--xx=13, 解得 x=2(经检验,符合实际). ∴从袋中取出 2 个黑球.
9.端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转 盘被平均分成 16 等份),并规定:顾客每购买 100 元的商品,就能获得一次转转 盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以 分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了 125 元的商品,请你分析 计算:
1 A.4
B.12
C.34
D.1
3.[2018·衢州]某班共有 42 名同学,其中有 2 名同学习惯用左手写字,其余同
学都习惯用右手写字.老师随机请 1 名同学解答问题,习惯用左手写字的同学被
选中的概率是( B )
A.0
B.211
C.412
D.1
4.下面四个转盘中,C,D 转盘被分成 8 等份,若让转盘自由转动一次,停 止后,指针落在阴影区域内的概率最大的转盘是( A )
课堂导入 在一个不透明的袋子里装有 3 个白球和 2 个红球,它们除颜色不同外其余完 全相同,小明从袋中任意摸出 1 个球. 思考:(1)小明摸出的球可能是什么颜色? (2)如果将每个球都编上号码,分别记为 1 号球(白)、2 号球(白)、3 号球(白)、 4 号球(红)、5 号球(红),那么摸到每个球的可能性一样吗? (3)如果把刻画一个随机事件发生的可能性大小的数值叫做概率,你能求出摸 到红球的概率吗?

九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.2 概率优质课件 新人教版

九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.2 概率优质课件 新人教版
24
感觉到数学的美,感觉到数与形的协 调,感觉到几何的优雅,这是所有真 正的数学家都清楚的真实的美的感觉。
— —庞加莱
25
0
事件发生的可能性越来越小
1 概率的值
不可能发生 事件发生的可能性越来越大
必然发生
11
三、掌握新知
例1 掷一枚质地均匀的骰子,观察向上一面的点 数,求下列事件的概率: (1)点数为2; (2)点数为奇数; (3)点数大于2且小于5.
12
13
例2 如图是一个可以自由转动的转盘,转盘分成7 个大小相同的扇形,颜色分为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇 形会恰好停在指针所指的位置(指针指向两个扇形 的交线时,当作指向右边的扇形).求下列事件的概 率:
22
8.从一副扑克牌中找出所有红桃的牌共13张,从 这13张牌中任意抽取一张,求下列事件的概率。
(1)抽到红桃5; 1
13
(2)抽到花牌J、Q、K中的一张;
3 13
(3)若规定花牌点为0.5,其余牌按数字记点, 抽到点数大于5的可能性有多大? 5
13
23
五、归纳小结
本课堂你学到了哪些概率知识?你有什么 疑问?
25.1.2 概率
1
一、情境导入
提问(1)这是个什么事件? (2)这个事件发生的可能性有多大?
2
二、掌握新知
试验1 从分别写有数字1,2,3,4,5的五个纸团 中随机抽取一个,回答下列问题:
(1)抽出的数字有多少种情况?
有1,2,3,4,5这5种可能. (2)抽到1的可能性与抽到2的可能性一样吗?它
一般地,对于一个随机事件A,我们把刻画其 发生可能性大小的数值称为随机事件A发生的概 率,记作:P(A).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档