自然对流与强制对流及计算实例

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自然对流与强制对流及计算实例

热设计是电子设备开发中必不可少的环节。本连载从热设计的基础——传热着手,介绍基本的热设计方法。前面介绍的热传导具有消除个体内温差的效果。上篇绍的热对流,则具有降低平均温度的效果。

下面就通过具体的计算来分别说明自然对流与强制对流的情况。

首先,自然对流的传热系数可以表述为公式(2)。

热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2)

很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。但每次计算的时候,都必须代入五个特性值。因此,公式(3)事先代入了空气的特性值,简化了公式。

自然对流传热系数

h=2 .51C(⊿T/L)(W/m2K) (3)

是代入空气的特性值后求得的系数。如果是向水中散热,需要换成水的特性值。

公式(3)出现了C、L、⊿T三个参数。C和L从表1中选择。例如,发热板竖立和横躺时,周围空气的流动各不相同。对流传热系数也会随之改变,系数C 就负责吸收这一差异。

代表长度L与C是成对定义的。计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。

需要注意的是,表示大小的L位于分母。这就表示物体越小,对流传热系数越大。

⊿T是指公式(2)中的(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。因此,风速加快后,传热系数也会变大。

公式(3)叫做“半理论半实验公式”。第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。因为在这种情况下,理论上的温度边界线的厚度可以计算出来。

但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。这种情况下,就要根据原始的理论公式,通过实验求出系数。也就是说,在公式(3)中,理论计算得出的数值可以直接套用,C的值则要通过实验求出。

自然对流传热系数无法大幅改变?

图4:自然对流传热系数无法大幅改变

物体沿流动方向的尺寸越小,单位面积的散热量越大。自然对流的传热系数随斜率和面的曲率变化,但变化的幅度不大。而强制空冷可以通过提高风速和湍流化,大幅改变传热系数。

形状和配置对于自然对流的传热系数会产生多大的影响(图4)?举例来说,平面的传热系数h等于

××((Ts-Ta)/H),

而圆筒面的传热系数h等于

××((Ts-T

平面为,圆筒面为,差别只有2%左右,由此可见,平面与圆筒面的传热系数差别不大。

这就意味着当发热板倾斜时,下表面的传热能力会越来越差,而上表面的传热能力基本不变。发生倾斜后,下表面只受到沿倾斜面的向量成分的浮力。也就是说,下表面的浮力变弱。

假设垂直时的传热系数为hv,倾斜时的传热系数为hθ,物体沿垂直方向倾斜角度θ,此时,下表面的传热系数大致为:

hθ=hv.(cosθ) (4)

(θ在0~60度左右的范围内时公式成立)

如果倾斜45度,传热系数将缩小8%左右。由此可知,即使倾斜发热板,传热系数也没有太大变化。但一旦接近水平,传热系数就会急剧降低。

通过上面的介绍,大家应该已经明白,提高自然对流传热系数其实难度颇大。但物体越小,对流传热系数越大。比方说,我们可以采用把翅片分割成几个部分的方法。在翅片截断的地方,热边界层将重置,起到阻止边界层变厚的作用,借此可以提高对流传热系数。但这样做会减少翅片的表面积,总的散热能力依然变化不大。

强制对流传热系数的简易计算公式

接下来看看强制对流的传热系数。安装的强制对流的公式如下。

热流量=强制对流传热系数×物体表面积×(表面温度-流体温度) (5)

强制对流传热系数的计算也有很多种公式(图5)。

图5:强制对流热传导的简易计算公式

强制对流时,计算热流量使用与强制对流对应的传热系数。根据流体的流动是在层流区域还是在湍流区域,计算使用的传热系数均不同。

强制对流时,一旦提高风速,状态也会在途中随之改变。比方说,即便是在没有风的房间里,香烟的烟雾也是一开始径直向上,在途中四处飘散。径直向上的地方是层流,飘散的地方是湍流。

在层流区,香烟烟雾中颗粒物是单向流动。而在湍流区,颗粒物会到处乱飞,随着时间的推移,烟雾的形状将发生改变。湍流是非定常流,流向会随时间改变。印刷电路板周边的空气也一样,最初为层流,中途转变为湍流。

从散热的角度来看,湍流更有利于散热。因为在湍流中,热空气与冷空气将相互混合,冷空气会得到靠近壁面的机会,更加容易传热。也就是说,湍流化能够降低温度。尤其是对于低流速和水冷式,湍流化十分有效。但湍流化也会导致流体阻力增大,这回增加风扇和水泵的负荷。

强制形成湍流化的起始点时,可以采用在流体的通道中设置突起物(湍流促进器)的方式。在强制空冷的散热器中,可以看到这种设置突起的例子(注4)。

(注4)自然对流也存在湍流,但在电子产品的热设计中,可以认为基本不存在自然湍流化。但温度达到500~600℃的高温后,因为浮力增强,所以也会出现湍流化。

遏制流动的力与促进流动的力,二者的平衡决定着湍流的起始点。遏制流动的力是粘性力,在壁面附近的作用较强,而促进流动的力则是惯性力或浮力。

粘性力强,则流动受到遏制。因为气流之间会相互约束。例如,在细缝和靠近壁面的地方,粘性力较强。

同样,翅片与翅片之间的距离越窄,粘性力越强,也就很难发生湍流化。而惯性力由速度产生,只要提高速度,惯性力就会随之增大。

仍以香烟的烟雾为例,在烟雾开始流动时,热源上部的空气缓慢上升,发生流动的区域也十分狭窄。但随着流动的进行,周围的静止流体也被带动,流动的区域不断扩大。因此,粘性力会降低。而在浮力的加速作用下,空气的流速不断加快。因而产生了湍流化。

根据层流和湍流的不同,强制对流的传热系数公式存在相当大的差别。首先是层流的公式。

层流平均传热系数hm=√(V/L) (6)

其中加入了空气的特性值,与自然对流公式(3)中的含义相同。

湍流相关公式是实验性公式,系数和指数都有变化。

湍流平均传热系数hm=6×(V/) (7)

要想简单进行判断的话,不妨把两个系数都计算出来,选择传热系数大的一方。

下面,让我们使用上面介绍的知识,定量研究对流的散热能力。

【练习1】平板的放置方式与散热能力

假设有一块长200mm、宽100mm(忽略厚度),温度保持在40℃的平板(图6),平板的温度均匀,而且没有热辐射,下列放置方式的散热能力有多大差别?

相关文档
最新文档